A ‘dibble’ (derived from ‘dimensional tibble’) is a data frame consisting of arrays with dimension names, known as data cubes. The columns of the dibbles are classified into dimensions or measures, and the operations on the measures are broadcasted by dimension names.
# the released version from CRAN:
install.packages("dibble")
# the development version from GitHub:
# install.packages("devtools")
::install_github("UchidaMizuki/dibble") devtools
library(dibble)
library(dplyr)
library(tidyr)
<- array(1:6, c(2, 3),
arr1 list(axis1 = letters[1:2],
axis2 = letters[1:3]))
<- array(1:2, 2,
arr2 list(axis2 = letters[1:2]))
try(arr1 * arr2)
#> Error in arr1 * arr2 : non-conformable arrays
<- as_dibble(arr1)
ddf1 <- as_dibble(arr2)
ddf2
* ddf2
ddf1 #> Warning: Broadcasting,
#> New axes, dim_names = c("axis1", "axis2")
#> New coordinates,
#> $ axis2: chr "c"
#> # A dibble: 6
#> # Dimensions: axis1 [2], axis2 [3]
#> axis1 axis2 .
#> <chr> <chr> <int>
#> 1 a a 1
#> 2 a b 6
#> 3 a c NA
#> 4 b a 2
#> 5 b b 8
#> 6 b c NA
# You can use broadcast() to suppress the warnings.
broadcast(ddf1 * ddf2,
dim_names = c("axis1", "axis2"))
#> # A dibble: 6
#> # Dimensions: axis1 [2], axis2 [3]
#> axis1 axis2 .
#> <chr> <chr> <int>
#> 1 a a 1
#> 2 a b 6
#> 3 a c NA
#> 4 b a 2
#> 5 b b 8
#> 6 b c NA
dibble provides some dplyr methods as follows,
as_tibble()
: From tibble packagefilter()
mutate()
: Experimentalrename()
select()
and relocate()
slice()
: Specify locations (a integer vector) for each
dimension<- expand_grid(axis1 = letters[1:2],
df axis2 = letters[1:2]) |>
mutate(value1 = row_number(),
value2 = value1 * 2)
<- df |>
ddf dibble_by(axis1, axis2)
ddf#> # A dibble: 4 x 2
#> # Dimensions: axis1 [2], axis2 [2]
#> # Measures: value1, value2
#> axis1 axis2 value1 value2
#> <chr> <chr> <int> <dbl>
#> 1 a a 1 2
#> 2 a b 2 4
#> 3 b a 3 6
#> 4 b b 4 8
# You can access the measures from the dibble with `$`.
$value1
ddf#> # A dibble: 4
#> # Dimensions: axis1 [2], axis2 [2]
#> axis1 axis2 .
#> <chr> <chr> <int>
#> 1 a a 1
#> 2 a b 2
#> 3 b a 3
#> 4 b b 4
<- expand_grid(tibble(axis1_key = letters[1:2],
df axis1_value = 1:2),
tibble(axis2_key = letters[1:2],
axis2_value = 1:2)) |>
mutate(value1 = row_number(),
value2 = value1 * 2)
# You can `pack` several columns into one dimension (See `tidyr::pack()`).
|>
df dibble_by(axis1 = c("axis1_key", "axis1_value"),
axis2 = c("axis2_key", "axis2_value"),
.names_sep = "_")
#> # A dibble: 4 x 2
#> # Dimensions: axis1 [2], axis2 [2]
#> # Measures: value1, value2
#> axis1$key $value axis2$key $value value1 value2
#> <chr> <int> <chr> <int> <int> <dbl>
#> 1 a 1 a 1 1 2
#> 2 a 1 b 2 2 4
#> 3 b 2 a 1 3 6
#> 4 b 2 b 2 4 8
dibble provides some dplyr methods as follows,
# from an array with dimension names
<- array(1:4, c(2, 2),
arr list(axis1 = letters[1:2],
axis2 = letters[1:2]))
<- as_dibble(arr)
ddf1
# from a vector
<- broadcast(1:4,
ddf2 list(axis1 = letters[1:2],
axis2 = letters[1:2]))
arr#> axis2
#> axis1 a b
#> a 1 3
#> b 2 4
ddf1#> # A dibble: 4
#> # Dimensions: axis1 [2], axis2 [2]
#> axis1 axis2 .
#> <chr> <chr> <int>
#> 1 a a 1
#> 2 a b 3
#> 3 b a 2
#> 4 b b 4
ddf2#> # A dibble: 4
#> # Dimensions: axis1 [2], axis2 [2]
#> axis1 axis2 .
#> <chr> <chr> <int>
#> 1 a a 1
#> 2 a b 3
#> 3 b a 2
#> 4 b b 4