Kernel/Hardware for bifrost

= |Linux for infrastructure

= Robustness, robustness, performance
= No chance to support all HW or SW

= Selection in lab

= Very time consuming process

= Costly, need resources and needs support & skill

Kernel/Hardware for bifrost

= We still on use Opteron

= Now Shanghai 2382 or close
Motherboard TYAN 2915, 2923, two NUMA nodes
Memory config to reach 128 bit transfers

Chassies, redundant power
USB boot seems OK.
No recommendations for low or mid range HW!!

Kernel/Hardware for bifrost

= NIC'S (Recommended)
= 10g Intel 82598 chips fixed 10GBASE-SR
= SUN neptune 10g/1g, XFP modules

Intel 82576. GIGE. TP

XFP-LR can drive fibre 40km or more
= Tested at KTH/CSD
10GBASE-T not seen yet

Hot-Lava SFP board?

Kernel/Hardware for bifrost

= Drivers

= Critical. Drivers and Kernel support

= Almost critital. Open chip documentation

Multiqueue. RSS a la MS NDIS 6.0 and later
Ixgbe, niu, igb (e1000, e1000e, tulip)
Issues: Optical Statistics, DOM etc

Kernel/Hardware for bifrost

= Kernel selection
= Long time monitor and test. Code Freeze.

= Now 2.6.29-rc2 from DaveM git with many
pathes

do {
modify _and_patch();
happy = test();

} while(! happy);

Kernel/Hardware for bifrost

= Multiqueue efforts landed.
= Needs: NIC, Driver, Affinity, Understanding

Linux Network
framework for MO
Thanks, DaveM

eth-affinity

cat /proc/interrups
IRQ/DMA
consistant naming
driver patches.
ixgbe, niu, igb

Kernel/Hardware for bifrost

= Multiqueue efforts landed.

= HW classifier splits incoming based on hash etc to
different MSI-X IRQ vectors (For RX)

= We set IRQ affinity so:

= RXQ1 -» CPU"

= RXQ2 —» CPU2 etc. This done automaticly by eth-affinity
It can be done due the consistent naming in
/proc/interrupts

Kernel/Hardware for bifrost

= Multiqueue efforts landed.
= At RX the driver records the RX queue in the skb

@@ -3815,6 +3824,8 @@ static void igb_receive_skb(struct igb_ring *ring, u8 status,
struct igb_adapter * adapter = ring->adapter;
bool vlan_extracted = (adapter->vigrp && (status & E1000_RXD_STAT _VP));

+ skb_record_rx_queue(skb, rp->rx_channel);
+

Kernel/Hardware for bifrost

= Multiqueue efforts landed.

= At TX the driver selects the TX queue according to

RX
+static u16 select_queue(struct net_device *dev, struct sk_buff *skb)
+
+ if(dev->real_num_tx_queues && skb_rx_queue_recorded(skb))
+ return skb_get rx_queue(skb) % dev->real num_tx_queues;
+
+ return smp_processor_id() % dev->real num_tx_queues;
+}

+

Kernel/Hardware for bifrost

= Multiqueue efforts landed

Of course we have also set IRQ affinity so:
TXQ1 - CPU1
TXQ2 —» CPU2 etc. This done automaticly by eth-affinity it can be done due the
consistent naming in /proc/interrupts

Kernel/Hardware for bifrost

= Multiqueue efforts landed

= This OK for fowarding...

= Packets Per Sec scales with No CPU Cores
= Detailed numbers in the |IS report

= [xia measued roughly 2.8Mpps Duplex 3.5
Mpps simplex.

= 8.6 Gbits/s (1.8 Mpps) with Internet traffic load
with simplex forwarding.

Kernel/Hardware for bifrost

= Known issues

= Intel new 82599 chip not supported.
= quagga netlink. 32 vs 64 bit kernel

= Do we need quagga for 64 bit? No real problem

Kernel/Hardware for bifrost

= New directions for development & research?

= Explore advanced classifier benefits

= Control Plane, Route w/o dst cache etc?

= Energy

= Low-Power routing and networking

Time for Questions!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

