
OpenFlow with Intel 82599

Voravit Tanyingyong, Markus Hidell, Peter Sjödin

Outline

•Background
•Goal
•Design
• Experiment and Evaluation
• Conclusion

OpenFlow

•Open up commercial network hardware for experiment
• Access to flow table without exposing internal workings
• Flow-based switching technology

- Multiple fields in packet header
- Wildcards on any fields

Secure
Channel

Flow
Table

OpenFlow
Switch

Controller

OpenFlow Protocol

SSL
SW

HW

In
Port

VLAN
ID

Ethernet IP TCP
Action

S D Type S D Proto S D

OpenFlow Software Lookup

•2 lookup tables:
- Hash: Exact match lookup
- Linear: Wildcards lookup

OpenFlow Kernel Module

input

drop

actions

forwardForwarding Lookup

Found?

Hash
table

search

yes

no
Found?

yes

Rx packet header

X

Forward to
Controllerno

Linear
table

search

Main goal

• Improve PC-based OpenFlow switching
- OpenFlow lookup process
- Open Source Software
- Standard commodity hardware

• PC-based OpenFlow switch
- OpenFlow kernel module

• Commodity NIC
- Offload lookup from software

Offload Software Lookup to Hardware

•NIC with Intel 82599 10 GbE controller
- Flow Director filters
- Multiple receive queues
- Receive-Side Scaling (RSS)

• Flow Director filters
- Direct received packets to queues based on their flows
- Filter covers:
• VLAN header

• IP: Source, Destination, IPv4/IPv6 protocol match

• L4: Source, Destination, TCP/UDP/SCTP protocol match

• Flexible 2-byte tuple anywhere in the first 64-byte of the
packet header

Architectural Design

Port-mapping Table

Map queue to output port

Input
Port

Input
Queue

Output
Port

Output
Queue

eth0 1 eth1 1

eth0 2 eth2 1

Offload lookup to NIC

Classifies packet to queue

Packet header Queue

VLAN L2 IP TCP

Flow1 (src 1.1.1.1 dst 2.2.2.2) 1

Flow2 (src 2.2.2.1 dst 3.3.3.3) 2

Hardware Classification
(Flow Director)

OpenFlow lookup

Port-mapping Table

Linux Kernel (Software)

Network Interface Card (NIC)

Matched flows

Unmatched flows

Fast path Slow pathRX TX

Caching flows

Architectural Design (cont’d)

•Multi-queue and multi-core mappings

CPU
1

CPU
2

Receive Interface 1 Output Interface 1

CPU
3

CPU
4

1 2 3 45 6 7 8 1 2 3 45 6 7 8

Queue for packets match a
Flow Director filter

Queue for unmatched packets
(load-balance among CPU cores via RSS)

Experiment Setup

•Conformance with RFC 2544
• PC1: Traffic generator (Source)

- Pktgen

• PC2: Device-Under-Test (DUT)
- OpenFlow 0.8.9-rev4 kernel module

- Intel NIC with Flow Director
• PC3: Traffic receiver (Sink)

- Pktgen with receiver patch

PC1
Pktgen sender

(Source)

PC2
OpenFlow switch

(DUT)

PC3
Pktgen receiver

(Sink)

10
GbE

10
GbE

•OS: Bifrost 6.1 with kernel
net-next 2.6.34-rc2
• Hardware: standard components

- Motherboard: TYAN S7002
- CPU: Intel Xeon Quad Core 5520,

2.26 GHz
- RAM: 3x1GB REG ECC
- PSU: 460 watt power
- NIC: Intel Ethernet Server Adapter

X520-SR2

Experiment Scenarios

•Baseline Performance Test
•Modification Overhead
• Flow Caching
•Multi-core Scaling

Baseline Performance Test

• Performance increases 41.50% on average
• Independent of table size

#
Entries

Linear
(in kpps)

Hash
(in kpps)

Port-mapping
(in kpps)

1 523 - 814
100 360 581 816
1100 82 578 817
2100 45 577 816
3100 31 577 816
4100 24 576 816
5100 20 576 817
6100 16 576 818
7100 14 576 816
8100 13 575 815

Modification Overhead

•Overhead: no match found in Port-mapping table
•Negilible overhead (on average 0.40%)

Hardware Classification
(Flow Director)

OpenFlow lookup

Port-mapping Table

Linux Kernel (Software)

Network Interface Card (NIC)

Matched flows

Unmatched flows

Fast path Slow pathRX TX

Caching flows

Flow Caching

•How flow length affects the performance

Multi-core Scaling

•Hyper-Threading has adverse effects on throughput

Tau Leng et al. - An empirical study of hyper-threading in high performance computing clusters

Conclusions and Future Work

•Our architecture significantly improves lookup
performance of PC-based OpenFlow switch
•Negligible overhead
• The cost to cache a flow need to be amortized over

- 100 packets in randomized flows case
- 10000 packets in the worst case.

• Scale with multicore system
•Adverse effects from Hyper-Threading

Conclusions and Future Work (cont’d)

• Flow Director has promising potential for flow caching
• Tweaking different parameters on the NIC such as

traffic classes, packet buffer size can enhance our
architecture
• Adding physical CPU, memory together with NUMA-

friendly configuration can enhance our architecture
• Further study on more advanced caching scheme

suitable for actual network characteristic

Thank You for Listening!

