
Implementing Explain

Denis Lynch
TRW Business Intelligence Systems

dml@bis.trw.com

Abstract

The Explain facility is the primary mechanism for Z39.50 
clients to discover servers’ capabilities. Explain-based cli-
ents can dynamically configure their user interface (or other 
search capabilities) to exactly match individual servers. 
This allows generic clients to access a wide range of Z39.50 
server, and allows any client to adjust to changes in server 
configuration.

The Explain facility is defined by an abstract record struc-
ture and attribute set, with no additional protocol mecha-
nisms. Still, effectively using Explain is a relatively large 
undertaking. This paper describes the most important issues 
to be considered, and suggests the most important features 
to implement first.

Introduction

The Z39.50 protocol allows clients and servers to work 
together to provide users with tailored access to informa-
tion. This flexibility presents a challenge to client develop-
ers: how will a client know how to deal with a specific 
server? The traditional choices have been:

• Make the client very general, but very simple, providing 
only “least common denominator” access.

• Build the client with specific knowledge of the server(s) 
it will access, providing tailored access to a limited set 
of information sources.

Early in the development of Z39.50 it became apparent that 
the least common denominator was not useful for most 
applications. On the other hand, building server knowledge 
into clients is cumbersome and dangerous: even the most 
stable environments change; a client with obsolete server 
knowledge will give its users nasty surprises. The Z39.50 
environment reveals this problem more than some others 

precisely because of the specificity that it supports. For 
example a user might have a request like “Return Canadian 
MARC records for all the items in this database with MESH 
subject starting with ‘symptom’”. But while such a specific 
request will get exactly what the user wants when the server 
supports the specific search access point and record syntax, 
few servers do so.

Collectively the Z39.50 Implementors’ Group (ZIG) deter-
mined that dynamic discovery of server capabilities was the 
most promising way to get good client behavior. The best 
way to communicate the dynamic data from servers to cli-
ents was seen to be the very search and retrieval facilities 
that are the core of the Z39.50 protocol. Server characteris-
tics were divided into categories, and database record struc-
tures were defined to contain the information in each 
category.

Explain records organize human-readable information as 
well as information to be used internally by client software. 
For example, the server description record (TargetInfo) 
includes separate human-readable items for an overall 
description, usage restrictions, and operating hours as well 
as items client software can use directly such as network 
addresses and the maximum number of result sets sup-
ported.

Capturing server information in a searchable database 
makes supporting Explain relatively easy, since both clients 
and servers will necessarily have most of the required capa-
bilities. It also meant that the ZIG’s energies could be 
devoted to defining the dynamic information requirements 
without concern for new protocol capabilities.

Implementation experience has proven that sophisticated 
clients can be built that use only Explain information to 
configure their user interface and key operating characteris-
tics.



General Server Information

TargetInfo Extended Svcs

TagsetInfoAttributeSetInfo

SchemaInfoRecordSyntaxInfo

DatabaseInfo

TermListInfo

ElementSetDetails RetrievalRecordD.AttributeDetails

SortDetails

Static Information

Database-specific Information

ProcessingInfo.

CategoryList

UnitInfo

VariantSettInfo

Overview of the Explain information structure

TermListDetails

• Static information that should not vary among servers, 
e.g. attribute set definitions

• Database-specific information, e.g. available record syn-
taxes

• Information that applies generally to the server, e.g. 
extended services available.

General server information

Four types of records apply across databases:

• The TargetInfo record describes the server as a whole

• The CategoryList lists the kinds of Explain records con-
tained in the database

• ExtendedServicesInfo records describe each Extended Ser-
vice supported by the server

• TermListDetails describe each term list supported in the 
target (term list names appear in TermListInfo records for 
specific databases; multiple databases can share the 
more detailed TermListDetails descriptions).

The remainder of this paper describes the Explain database 
structure and how clients and servers can use Explain infor-
mation effectively. The paper does not exhaustively cover 
the Explain database structure. Readers are referred to the 
1995 Z39.50 standard, in particular section 3.2.10, Appen-
dix 3 section ATR.2, and Appendix 5 section REC.1.

The Explain Database

The Explain database operates within the Z39.50 protocol 
exactly like any other database. Each server’s primary 
Explain database is named IR-EXPLAIN-1; a server may have 
additional Explain databases as well (see the Surrogate 
Explain section below). Because predictable behavior and 
content are important to the internal workings of clients, 
Explain databases are searched using a dedicated attribute 
set, and records are retrieved in a dedicated ASN.1 syntax. 
(Other alternatives, such as the Generic Record Syntax, 
were considered, but the concreteness and specificity of 
ASN.1 and the Explain-1 attribute set were compelling.)

An Explain database contains three basic kinds of records:



Static Information

One of the sources of Z39.50’s power and flexibility is the 
degree to which important concepts are modularized into 
entities that may be defined externally to the standard. Two 
such entities—Attribute Sets and Record Syntaxes—are 
central to using Z39.50. Four additional entities play impor-
tant roles in Version 3: unit systems, database schemas, 
record tag sets and variant sets. Instances of all six of these 
entities are identified by an object identifier or a unique 
name.

Since the definition of each of these entities (for example a 
specific attribute set) is intended to be universal, clients and 
servers could have complete a priori knowledge of the defi-
nitions. In practice, though, clients can allow users to use 
servers without having built-in knowledge of the semantics 
of these entities. For example, a client can use information 
from a UnitInfo record to allow a user to enter a numeric term 
and specify that it is a length in furlongs, where the unit 
type and unit (i.e. “length” and “furlongs”) are transparent 
to the client.

The static information categories contain enough details 
about the entities to support this kind of transparent client 
behavior.

Like all Explain records these static descriptions can con-
tain human-readable text that clients simply display to 
users, allowing users to understand aspects of the server’s 
operation that the client software does not necessarily 
understand.

Database-specific Information

Most of the dynamic content of an Explain database relates 
to a specific database on a server. Each database is 
described by a DatabaseInfo record; additional records 
describe specific aspects of the database:

• AttributeDetails lists the attributes that can be used in a 
Type-1 or Type-101 query, and how those attributes can 
be used in combination.

• TermListInfo lists the term lists (“indexes”) that apply.

• ElementSetDetails and RetrievalRecordDetails describe 
record retrieval options.

• SortDetails lists the available sort options.

• ProcessingInformation allows a server to provide clients 
with specific instructions such as search forms and 
record formatting.

Surrogate Explain Databases

A single Explain database describes a single information 
service. There are many reasons that a Z39.50 server might 
wish to provide Explain data about a service other than 
itself (for example if the other service does not have an 
Explain database). We refer to such a server as a “surrogate 
Explain server,” and the corresponding database as a “surro-
gate Explain database.” The mechanism for this is straight-
forward:

• The surrogate Explain server provides its own Explain 
data in the standard place: database IR-EXPLAIN-1.

• The surrogate Explain server provides Explain data for 
additional servers as separate databases. By convention 
the names of surrogate Explain databases should be the 
URLs for the server they explain. (That is not a require-
ment, and there are times when other names must be 
used.)

• Each surrogate Explain database should naturally be 
described in the IR-EXPLAIN-1 database. Only the Data-

baseInfo record is required, and two of its elements are 
especially important to clients:

- explainDatabase (a Boolean flag) informs the client 
that the database is an Explain database

- lastUpdate gives clients an indication that cached data 
may be obsolete.

When a server follows these conventions a client can deter-
mine what surrogate Explain data is available by searching 
IR-EXPLAIN-1 for

ExplainCategory = “DatabaseInfo”

AND

ExplainDatabase AlwaysMatches (any term).

The client is likely to need the list of databases in any case, 
so it can simply search for ExplainCategory = “DatabaseInfo”; 
then Brief records will identify all the server’s “normal” 
databases and surrogate Explain databases.

Using Explain in a Client

Even the most basic Z39.50 client can use dynamic infor-
mation from Explain to great advantage. The most obvious 
application is search attributes, but the opportunities are 
much greater.

• Network addresses. If the Explain data is coming from a 
surrogate Explain server, the surrogate Explain server 
might recommend a network address different than the 
destination server name. It is possible that a non-surro-



gate server would provide alternative addresses—but 
these would only be discovered after a connection to the 
original address had succeeded!

• Target operation parameters. The TargetInfo record con-
tains more detail about the server than Init negotiation 
provides. A client can use the namedResultSets and multi-

pleDBsearch flags for named result sets and multi-data-
base searching to avoid sending searches that the server 
will f ail. (Clients can learn that named result sets are not 
supported during initialization if Version 3 is negotiated, 
but not if Version 2 is negotiated.)

• Searching.

- Whenever a TermListInfo record is available for a data-
base a client should use the listed termLists as the pri-
mary search access points. For each access point (or 
index) to a database, the TermListInfo record includes a 
title for each term list, intended for display to the 
user (possibly in multiple languages), an indication 
of the cost of using that access point, and whether the 
term list is scannable. The attributes in a term lists’s 
TermListDetails record specify which attribute combi-
nations address that term list.

A server administrator identifies term lists as specific 
ways to search a database, so distinct term lists can 
be presumed to be truly different. On the other hand, 
the same administrator will list as many attribute val-
ues as possible in AttributeDetails, even though some 
are treated identically.

- AttributeDetails lists all legal attributes for a database; 
its attributeCombinations lists how those attributes can 
be combined in a single operand. Attribute names 
and descriptions can be found in AttributeSetInfo 
records; database-specific descriptions may be 
included in the AttributeDetails.

- The associatedDbs element of a database’s Data-

baseInfo record lists the databases that can be 
searched in combination with that database. (Similar 
information may be available in the TargetInfo 
record’s dbCombinations element.)

• Retrieval. The ElementSetDetails and RetrievalRecordDetails 
records associated with a database identify the record 
syntaxes and element requests that are sensible for that 
database. Knowing the full list of alternatives allows a 
client to choose appropriate element set names, even if 
the standard “F” and “B” are not appropriate. (This could 
happen, for example, if “F” and “B” are supported only 
for a record syntax the client can’t accept.)

• Scan. Scan requests use attribute combinations to 
address term lists. A client may choose to attempt to 
scan with any supported attribute combination, but using 

only term lists with the scanable flag set will avoid 
unnecessary errors.

• Processing instructions. These are currently usable only 
by private agreement between the client and server. Gen-
eral purpose formats will be defined in the future.

• Extended Services. Each Extended Service supported by 
a server is described by an ExtendedServicesInfo record. 
Clients can use this record to learn whether ES packages 
will be retained in the ES database, and whether the 
request can be issued with the wait flag.

• Access requirements. Both the TargetInfo record and Data-

baseInfo records may contain AccessInfo elements. Clients 
can use this access information to determine if they can 
usefully access the server and specific databases. The 
most important element in this regard is restrictedAccess. 
If restrictedAccess indicates that access to a server or 
database is restricted, the client will be able to access the 
server or database successfully only if it supports one of 
the listed accessChallenges. In some cases a client might 
learn that a database doesn’t support any of the query 
types the client supports. (This is unlikely, since essen-
tially all clients and servers support Type-1 queries.)

• Human-readable descriptions. The various description 
fields—particularly in TargetInfo and DatabaseInfo 
records—should be available from a client’s Help sys-
tem. The information in these fields may explain to a 
user why operations behave as they do, as well as 
describing the contents of the databases.

Getting Explain records

Explain databases are accessed using the search and 
retrieval facilities of the Z39.50 service. The exp-1 attribute 
set includes USE attributes that are tailored for searching 
Explain databases. Each exp-1 attribute corresponds to a 
specific element in an Explain record. Some of the attributes 
correspond to elements that appear in more than one type of 
record (e.g. ExplainCategory and DatabaseName), while others 
correspond to elements that currently appear in only one 
type of record (e.g. ExtendedServiceOID).

Several attributes require specific search terms, as described 
in the definition of exp-1.

Exp-1 only defines USE attributes; attributes of other classes 
are the same as Bib-1 attributes.

Explain databases can be accessed effectively using the Ver-
sion 2 present facility, in particular simple element set 
names. The Explain record syntax definition identifies the 



elements that must appear in brief records (element set 
name “B”), these include all of the identifying elements of 
the record. Full records (element set name “F”) must contain 
all elements present in the database. The element set names 
“description”, “ specificExplain” and “asn” are also defined in 
certain cases as detailed in the syntax definition.

Search

Finding desired records in an Explain database is generally 
very simple. The canonical search is:

ExplainCategory = category

AND

identifier = value

For example

ExplainCategory = “DatabaseInfo”

AND

DatabaseName = “CATALOG”

A few records have multi-field keys (e.g. ElementSetDetails 
and ProcessingInformation) which means that known-item 
searches require additional terms.

As with most things, it is best to keep the searches as simple 
as possible. TRW’s Explain software, for example, never 
sends attributes other than USE, and always uses the general 
choice for encoding search terms.

Retrieval

The safest policy is to assume that a server has 100% recall, 
but unknown precision. Clients should therefore be pre-
pared to accept records that weren’t asked for. In particular, 
the desired record may not be the first one in a result set. 
(Perhaps even more annoying: the search may return many 
records, but none is the desired record!) It is wise for the cli-
ent to remember the result set positions of these “unwanted” 
records in case they become wanted later (e.g. if a target 
returns many DatabaseInfo records when only one was 
wanted, the client can avoid later searches by retaining the 
positions of the “unwanted” records).

To minimize round-trip delays, all searches should request 
piggyback presents. In most cases the piggyback should 
only request brief records, but known-item searches 
(searches that expect to find no more than one record) could 
set a small-set size of one, and request full records for the 
small set.

Explain servers may not handle present requests exactly as 
issued. The two most obvious things clients should be pre-
pared to handle are:

• Piggyback present is not required, and some common 
servers do not honor it. Clients should be prepared to 
issue present requests if a search response contains no 
response records.

• Brief records are not required, so clients should examine 
the records they have received before issuing a redun-
dant present request. If any non-brief elements are 
present the record isn’t brief. It would be most irregular 
for a server that doesn’t provide brief records to make 
other element set distinctions, so in practice it is safe to 
assume that non-brief records received for “B” are full 
records.

Although it isn’t strictly necessary, specifying the preferred 
record syntax as Explain is a reasonable safety measure.

Handling errors

The most common error received from Explain searches is 
“Database does not exist.” This should be noted carefully—
there’s no reason to try again! A server may react in other 
less helpful ways, for example “Unsupported attribute set” 
or “No records syntaxes available.” It is simplest to assume 
that almost any error means that the server doesn’t support 
Explain at all. (Bib-1 error 27—Result set no longer 
exists—is one exception.)

Once connected, servers frequently time out idle connec-
tions. Since Explain is best handled “behind the scenes,” the 
connection should simply be re-established the next time it 
is needed.

Default configuration

The conventions described in this section are used by 
TRW’s software. They have been proposed to the ZIG as 
possible implementors’ agreements.

For servers that provide many similar databases it may be 
simpler to describe them only once. The easiest way to do 
this is to describe a database named “Default”. A client that 
finds no record of a particular type (e.g. AttributeDetails) for a 
specific database should try to find the same record for the 
database “Default”. In many cases that record will have 
already been retrieved as fallback for a different database.

A surrogate Explain server can provide default client con-
figuration information for specific destination servers, as 



well as providing fallback default behavior. To obtain infor-
mation about a destination server from a surrogate Explain 
server, a client searches a sequence of Explain databases. 
(An Explain database is searched only if the surrogate 
Explain server's IR-Explain-1 database has a DatabaseInfo 
record for that Explain database.)

• The URL for the destination server is used as a database 
name (e.g. the database name “z39.50s://rlg.stanford.edu” is 
used when looking for information about RLG’s server)

• A similar string is used to find a database of default 
information to be used for the specific access (e.g. 
“z39.50s://default” for Z39.50 access)

• A fallback database is used for generic default informa-
tion (“default://default”)

The default Explain databases are structured exactly like 
other surrogate databases.

Minimizing impact on servers

Explain searches require roughly the same amount of server 
attention as real information searches. This makes it impor-
tant that clients behave reasonably! Here are a few tech-
niques:

• Cache explain records, and don’t ask the server for 
information that has already been retrieved. Generally 
it’s not a good idea to “download” a server’s whole 
Explain database—just cache the records that are 
retrieved in the normal course of operation.

The biggest problem with cached records is knowing 
when to throw them away. The strategy TRW adopted is 
to delete all cached information about a database when-
ever the CommonInfo in a DatabaseInfo record has an 
update (or creation) date more recent than the corre-
sponding DatabaseInfo record in the cache. This works 
well because the DatabaseInfo records are retrieved from 
the server on a regular basis (see the next item), and the 
CommonInfo is in brief records.

• Keep lists, and check the appropriate list before asking 
the server a question. This technique applies especially 
to DatabaseInfo records. A client can avoid searches by 
noticing that there is no DatabaseInfo record for the rele-
vant database (e.g. when looking for AttributeDetails for a 
specific database, or for surrogate Explain information 
about a specific server). One scheme for managing these 
lists is as follows:

- Initialize the list before any records are retrieved 
from the cache. (Each cache will have several lists.)

- As records are retrieved from the cache, add them to 
the appropriate list.

- When a specific record is needed, retrieve records 
from the cache until either the record is found or the 
whole cache has been retrieved.

- When all the records have been retrieved from the 
cache and the needed record hasn’t been found, ask 
the server. But instead of asking the server for a spe-
cific record, ask for the list (e.g. “all DatabaseInfo 
records”). As the records from this list are retrieved 
the local cache can be checked for out-of-date infor-
mation.

- After the server’s list has been completely retrieved a 
record that isn’t in the list doesn’t exist—there is no 
need for additional searches.

• If a surrogate server is supplying the Explain data, check 
for the destination server’s surrogate Explain database in 
the list of Explain databases before accessing the surro-
gate database.

• Remember result set positions of records to avoid redun-
dant searches. As Explain records are encountered in 
Present responses, the client should retain the result set 
name, result set position, and identifying information 
(ExplainCategory plus, for example, DatabaseName). When 
the client needs a record that was incidentally received, 
this retained information lets the record be Presented 
from the existing result set without another Search.

Building an Explain Database

“Using Explain in a Client”, above, points out most of the 
issues with populating an Explain database. This section 
points out a few additional considerations for server admin-
istrators.

• Make use of default configurations wherever possible. In 
a surrogate Explain system it makes sense to provide 
default TargetInfo records, for example to make clients 
presume that multiple database searching is not sup-
ported.

• Consider carefully what attributes to include in Explain. 
There is no reason to list attributes that are treated as 
synonyms just for compatibility. Clients that rely on 
dynamic configuration will be misled by these attribute 
aliases; clients that don’t use the dynamic configuration 
won’t notice that the aliases are missing.

• Provide term list information if at all possible.

• Include AttributeCombinations to let clients filter out illegal 
search requests. The AttributeCombinations structure is 
designed to avoid combinatorial explosion by specifying 
patterns that describe a set of similar combinations, for 
example:



- With USE attributes 4, 20, 21, 62 and 1000 the RELA-

TION attribute may be omitted or value 3 may be sup-
plied, and the STRUCTURE attribute may be omitted 
or values 1, 2 or 6 may be supplied

- For USE attributes 30, 31, 32, 1011 and 1012 the 
RELATION attribute may be omitted or values 1, 2, 3, 
4 or 5 may be supplied, and the STRUCTURE attribute 
may be omitted or values 5 or 100 may be supplied.

• There is no need to include individual attributes in an 
AttributeSetInfo record if no databases on the server use 
those attributes.

• If a CategoryList record is provided, it should list only 
categories for which at least one record is available. The 
primary purpose of the CategoryList is to allow clients to 
learn about Explain extensions supported by the server, 
but it can also allow clients to skip searches for records 
that the server doesn’t have.

Serving Explain Records

Any fairly capable Z39.50 server should be able to process 
Explain requests. Unlike user-initiated requests, Explain 
requests are generated from low-level client code. They will 
generally be fairly simple, and will not take advantage of 
Explain information themselves. Servers should therefore 
make every attempt to process Explain requests without 
returning the kind of diagnostics that might help a human 
user refine a request.

There are a few specific requirements:

• The Explain records syntax and attribute set must be 
supported.

• Since Explain searches will be generated automatically 
by the client software, support for named result sets is 
nearly mandatory. The cost of retaining the result sets 
will surely be less than the cost of re-executing searches.

• If Version 3 is negotiated, the search engine must be pre-
pared to process search terms sent in the OBJECT IDENTI-

FIER choice.

• In Version 2 or Version 3, the search engine must be pre-
pared to deal with object identifier terms sent as charac-
ter strings as specified is Appendix ATR.2, note (4).

• Support of element sets other than “F” is not required. 
But a Brief record should never contain any non-brief 
elements: clients need to be able to look at a received 
record and determine whether it is Full. As described 
above, clients will reasonably presume that records with 
non-brief elements are non-brief records.

• Support for piggyback present is not required.

• Unlike processing user-requested searches, a server 
should simply ignore Explain search operands with 
unsupported attributes. If the server fails the search 
instead, the client will (at best) reformulate a broader 
query without the offending attribute. Ignoring the 
unsupported operand avoids this inevitable round trip.

• A useful Explain service can be provided with only a 
few attributes. The minimal set of attributes is very 
short:
- ExplainCategory

- DatabaseName

- TermListName (if term lists are provided)

The next attributes to add are the identifiers from other 
records supported by the server:
- AttributeSetOID

- RecordSyntaxOID

- TagSetOID

- SchemaOID

- ExtendedServiceOID

- VariantSetOID

- UnitSystem

The next tier of attributes is:

- HumanStringLanguage (if there is more than one)
- DateChanged

- DateAdded

- DateExpires

Only a very simple search engine and no specialized data-
base are required. The Explain records can simply be stored 
as BER-encoded files. The TRW Explain Editor and server 
add some small twists to this:

• Each Explain database is stored as a separate directory.

• Within an Explain Database directory, subdirectories are 
created to store records pertaining to specific databases.

• Records that are not specific to a single database are 
stored in the top-level Explain Database directory.

• Two special files are created in every directory:

- title.trw contains the title of the database. Our software 
makes no use of directory names because of charac-
ter set and length restrictions.

- contents.trw contains a list of all the files in the direc-
tory along with the values of the searchable fields 
(including creation/update dates). This isn’t much 
data, but it allows the directory to be indexed or 
searched without accessing the actual Explain 
records.



Conclusion

The Explain database structure appears daunting to new 
readers in size and complexity: its ASN.1 definition is 
slightly larger than the definition of the body of the Z39.50 
protocol, and the records are closely interrelated (like the 
protocol itself, the Explain database was designed for econ-
omy and modularity).

This paper has described how the most general parts of the 
Explain database are used in practice, and how software can 
be designed to provide and access Explain databases effi-
ciently. The paper is based on experience gained in building 
a reasonably complete end-to-end Explain system: a graphi-
cal editor for creating and maintaining the data, server 
extensions to provide the data, and a client that relies exclu-
sively on Explain records for configuration.

The author can be reached at dml@bis.trw.com.


