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ABSTRACT

The Z39.50 protocol is a standard network
language for searching and retrieving records
from remote databases. The Z39.50 client/server
session model provides multiple abstract views
of records, depending on whether searching,
retrieval, or element selection is taking place.
The underlying network stream that carries user
queries, database records, diagnostics, and proto-
col control information is structured according to
the Basic Encoding Rules (BER) as applied to
human readable specifications written in the
Abstract Syntax Notation, ASN.1.

Several important decisions face creators of
Z39.50 servers. Building the BER transport
mechanism may be done from scratch or with
software tools compiled from ASN.1. Develop-
ing a model for managing result sets (records
resulting from a query) is required by the stateful
nature of Z39.50. A switch may need to be
designed to route a query to one of several data-
base engines for resolution, depending on which
engine or database management system adminis-
ters the database(s) being searched. In order to
respond to search cancel requests, a server’s
input system must be at least partially asynchro-
nous. Performance requirements may favor a
multi-threaded design over a simpler single-
threaded design.

Introduction

This paper leads network programmers through the
basic concepts and steps in setting up a networked
server that conforms to the Z39.50 standard for
searching and retrieving records from remote infor-
mation systems. Section 1 deals with concepts and
section 2 with creating the server.

The reader is presumed to be familiar with the
Z39.50-1992 specification [1] of the standard with
which we will be primarily concerned. Access to
the appendices of the Z39.50-1995 specification [2]
will also help round out some concepts that are used
but not made explicit in Z39.50-1992. This paper
supplements the standard with an eye to helping an
implementor build a simple server.

1. Z39.50 Concepts

1.1. The Main Parts of a Z39.50 System

A user interacts with a computer program, the
client , which exchanges network messages with a
remote computer program, the server . The client
acts on behalf of a user, which is often a person, but
is sometimes another program, for example, a CGI
script [3] that converts requests received by an
HTTP [4] server into requests suitable for a Z39.50
server (here the CGI script functions as a so-called
gateway). The server acts on behalf of one or more
information providers. So far this describes any
number of networked client/server systems, but a
critical distinguishing feature of a Z39.50 system is



the network messaging language, or protocol . In
this paper we will focus on the server of a Z39.50
protocol system.

A Z39.50 server program is itself a system of three
main parts. It contains a protocol engine which
manages the reading and writing of Z39.50 network
messages, known as PDUs (Protocol Data Units).
The server protocol engine is called to perform net-
work input or output by the control module , which
routes requests to and responses from one or more
database engines . A database engine executes
queries, creates search result sets, and stores them
for the purpose of returning records on demand,
often relying on a DBMS (database management
system) underneath it.

For some implementations it may be a goal to keep
the protocol engine, control module, and database
engine independent. In practice, however, this is
difficult because generalizing an access paradigm to
connect multiple communication styles up to multi-
ple search systems tends to require costly simplify-
ing assumptions or complex conversion mechanisms.
To the extent that independence is achieved, it
becomes easy to re-use the protocol engine with dif-
ferent DBMSs and to make a given database engine
accessible on the network via multiple protocols.

1.2. Basic Z39.50 Session Activities

A complete Z39.50 session may be anything from a
single request/response exchange of PDUs (network
messages) to a complex series of exchanges to refine
a set of search results before retrieval. The Z39.50
session itself is called an association , and it takes
place over a network connection whose set-up and
tear-down are described outside the standard in [5].
Note that this description ([5]) is not the one to
which the standard directs the reader, but it does
match the prevailing Internet implementation
environment. While Z39.50-1992 was conceived in
an OSI framework [6], current practice calls for a
TCP/IP transport [7]. This means that most imple-
mentors disregard Z39.50-1992 references to the OSI
concepts of Association Control Service Element
and Presentation Context (most of which have been
eliminated in Z39.50-1995). Important concepts
from OSI that remain valid for implementors are
ASN.1 [8] and BER [9], whose roles are described
below.

Once a TCP connection is set up, a Z39.50 session
is established with a client Init request followed by a
server response indicating that the session connec-
tion is accepted. A session may be terminated sim-
ply by closing the TCP connection.

A client Search request contains a query that the
server executes to create a result set of records satis-
fying the query. A subsequent client Present request
asks the server to return some of the result set
records, selecting elements and structural layout
according to certain specifications. The server
returns records in a Present response. As an optimi-
zation, an initial subset of records may be returned
with the Search response, a feature informally called
‘‘piggybacking.’’

In formulating a response that includes records (such
as for Present), a server performs Element Selection,
which is a process of deciding, often under client
direction, how to constitute a record before returning
it. The full record contains all relevant information,
including potentially large elements, such as an
image or the full text of a document. Element selec-
tion allows a client to glance at many records
through relatively small summary element sets
before requesting the full element set for those
records only that the client user wants to look at
more thoroughly. The idea is to minimize network
transmission by keeping the summary records small
enough for bulk transfer while anticipating that the
user, basing decisions on perusal of summary infor-
mation, will request only a few fully constituted
records.

Init, Search, and Present are the only top level proto-
col features needed for the basic server. No
advanced features such as Access Control and
Resource Control are required here, nor are any
features specific to Z39.50-1995, such as Explain
and Segmentation. All features described here con-
form to Z39.50-1992 and should work in Z39.50-
1995 implementations as well.

1.3. The Abstract Record

The term record in Z39.50 always refers to an
abstraction of a record that a server makes visible to
the world via Z39.50. By never referring to the
internal database record structure, Z39.50 avoids
confining applicability to any one particular DBMS,
but this then requires that the server implementor



develop a map between it and the abstract record.
An element is a component of a record. There are
few restrictions on elements. For example, a record
may contain any number of elements, including
zero, and its elements may overlap or repeat.

Similarly, there are few restrictions on records.
There is, however, an important unstated assumption
that any two records from the same database have a
similar configuration of elements. While wildly dif-
ferent sets of elements between two records would
leave a Z39.50 server operational, it would under-
mine predictability for the client, particularly in the
area of element selection.

For the purpose of this discussion, a server database
record has three personas – for Search, Element
Selection, and Present – and each persona comes in
several choices. This complexity is needed to
accommodate the different ways that a record can or
might be broken down, indexed, re-arranged, and
displayed. Again, the data personalities that a server
chooses to show are purely abstractions for external
consumption via Z39.50; they imply nothing about
layout or composition of the internal database
records behind them.

1.3.1. The Search Persona

A specific choice of Search persona defines Query
semantics. This is a collection of traits, accessible
elements, and expected behaviors for a database
when running a Query. For our purposes, Query
semantics are given by a text describing (a) some
numbers to use in referring to each data element that
might be searched and (b) a description of those ele-
ments. The text may be seen as a table with one
row per element; each row lists a concept and the
number(s) that Z39.50 needs to transmit a reference
to that concept.

This kind of table is called an attribute set . Dif-
ferent attribute sets show different public search
points for the same data. An attribute set called
Bib-1 was originally designed for searching biblio-
graphic data. Another attribute set called STAS-1
[10] is used for technical and scientific data (it
imports Bib-1). For the basic server implementor,
designing a search point table for each database
using the Bib-1 attributes is completely adequate.
The Bib-1 attributes are listed in appendices of both
the Z39.50-1992 and Z39.50-1995 specifications.

1.3.2. The Element Selection Persona

The Element Selection persona assumes a particular
division of a record into tagged elements, from the
point of view of retrieval. It is a collection of traits,
accessible elements, and expected behaviors for a
database when building up a retrieval record from
elements of the abstract record. In its fullest form as
specified in Z39.50-1995, it is given by both a text
that dictates general structural rules (such as how
element hierarchies are formed) and, most impor-
tantly, a table listing each element tag next to a
description of it. Such a table is called a tag set .

Element selection takes place prior to laying out a
record for return. This is when a server, often under
client direction, decides which of the available ele-
ments to include. A client may request element
selection using an element specification that contains
either a named set (such as ‘‘F’’ for Full), a
sequence of element tags, or both. Whether to
include an element is ultimately up to the server and
depends on several factors, notably on delivery con-
straints dictated by the requested Present persona
(which is essentially the record syntax, described
below).

This discussion assumes the simplified element
selection mechanism described in Z39.50-1992,
which allows only named element sets but not indi-
vidual element tags. In particular, the basic server
need only define for each database its own element
sets corresponding to the names

F (Full) all available record elements, and
B (Brief) restricted set summarizing record.

1.3.3. The Present Persona

A specific choice of Present persona defines Infor-
mation semantics. This is a collection of traits,
accessible elements, and expected behaviors for a
database when requesting delivery of records. For
our purposes, Information semantics are given by (a)
a table describing the kind of information within
each data element that may be included in a returned
record and (b) a text describing the actual bit-level,
serialized layout (that is, in a network data stream,
not in memory) of those data elements. They are
called, respectively, (a) an Abstract Syntax and (b) a
Transfer Syntax.



A particular combination of these two is called a
record syntax . Different combinations provide dif-
ferent retrieved views of the same data. Note that
data elements that are searched may bear little rela-
tionship to elements that are returned.

The potential complexity in all this generality is
mitigated by the small number of abstract syntaxes
and the common practice of employing only one
transfer syntax per abstract syntax. The simplest is
SUTRS (Simple Unstructured Text Record Syntax),
which consists of one string designed to hold multi-
ple lines of text formatted by the server, thereby
greatly easing the display burden for the client
software. Another common syntax is USMARC
(United States MAchine Readable Catalog) [11],
used in many bibliographic systems. Basic servers
that deliver either or both of unstructured text and
bibliographic records need only consider supporting
these two syntaxes.

1.3.4. Merging Personas

One consequence of the abstract record having mul-
tiple personas is a powerful separation of Search,
Present, and Element Selection functions that
enables the kind of task-specific semantic mapping
among elements that large scale systems require.
Another consequence, however, is that the split per-
sonas define no sense of element equivalence
between personas unless the attribute sets and tag
sets are defined to draw an explicit relationship.

For example, in some systems a query on an Author
(Search persona) might return records with an
Author element (Present persona) containing data
that appears unrelated to the query term. This may
be because the match succeeded on other elements
that the server deemed related to Author, or because
the user’s term was mapped to a synonym that
matched (e.g., Mark Twain may return Samuel Cle-
mens). In some information domains exact element
equivalence across personas would be useful.

One goal of STAS-1, which names both an attribute
set and a tag set, is to maintain element identity
between personas. While it does not require every
search, selection, and retrieval element to carry the
same tag for each database, it does allow the data-
base provider to preserve the correspondence when-
ever that may be meaningful.

1.4. The Roles of ASN.1 and BER

The text describing the Abstract Syntax (section
1.3.3a above) may include an abstract record struc-
ture specified in ASN.1 (Abstract Syntax Notation 1)
[8]. ASN.1 is not much more than a scheme for
writing down the kind of data structuring and typing
information afforded by most programming
languages, but it is abstract in that it is independent
of programming language and machine architecture.

The text describing how the Transfer Syntax (section
1.3.3b above) is used to represent the abstract syntax
may not be needed because as long as there is an
ASN.1 specification, the bit-level serialized layout
can be derived from it. The rules for deriving the
layout in Z39.50 are called BER (Basic Encoding
Rules) [9]. The abstract syntax for SUTRS, simple
as it is, consists of exactly one ASN.1 International-
String, which is a kind of character string that holds
any number of text lines. One particular abstract
syntax that does not include an ASN.1 specification,
but instead relies on a separate text to describe the
transfer syntax, is USMARC [11].

From the point of view of the programmer, ASN.1
is not directly used by a running system, but instead
primarily affects the system under construction. It
influences decisions as to what real data structures
will hold the elements coming from and going to the
serialized network data stream. Of particular impor-
tance is the core Z39.50 ASN.1 protocol
specification as a set of PDUs, since they contain all
other structures, including Queries and Records.
Programmers study these abstract PDUs closely
when writing the protocol engine that interprets and
builds the corresponding real PDUs.

Encoding and decoding subroutines have to be writ-
ten that convert data between real structures and the
serialized stream format dictated by BER. In some
implementations, an ASN.1 compiler generates pro-
gram code for both the data structures and the
conversion routines. More discussion of this subject
appears in section 2.2.

A strength of ASN.1 is that it provides a clear,
machine independent way to express structuring and
ordering of protocol elements. The BER algorithms
ensure that arbitrary hierarchical data structures in
text or binary will be transmitted over a serial byte
stream without loss of information. On the other
hand, because the encoded stream itself is binary, it



cannot easily be entered from a keyboard or output
directly onto a display device. This makes it harder
to tinker with Z39.50 servers than with some other
servers. For example, much of an HTTP [4] server
can be tested by simply establishing a terminal ses-
sion with the server and typing in HTTP protocol
client requests (which are text-based) from the key-
board.

1.5. The Z39.50 Query

The protocol allows for several different query types,
but for a basic server it is adequate to support only
the Type-1 query, which we refer to as the Query.
Accompanying the Query in a Search request is a
list of database names. Inside the Query is an attri-
bute set name plus a boolean expression tree, each
leaf of which is either a result set name or an actual
search term list. Often the tree received consists of
just one leaf that contains a single term list
corresponding to a straightforward search, one that
might, for example, be expressed by a traditional-
looking command sequence such as find
author="Mark Twain". Non-leaf tree nodes
(branches) indicate one of the boolean operations
AND, OR, or AND-NOT, where the three children
are, respectively, the left operand, right operand, and
operator. For historical reasons the Type-1 query is
also known as the Reverse Polish Notation Query, or
RPNQuery.

The heart of the Query is the search term list, which
is a Term (one or more words) and an indefinite-
length list of attributes that the client bundles with
the Term. Each attribute consists of two numbers:
a type and a value. They identify, respectively, an
attribute category and subcategory. In the Bib-1
attribute set, for example, the attribute 1,30 associ-
ates the Term with a Use(1) category of Date(30).
In another attribute set the attribute 1,30 might mean
something other than Date. Here is a sample search
term list.

Mark Twain
1,1003 4,1 5,100 3,1 6,1 2,3

For completeness, this particular list includes one
attribute from each of the six categories, though
often a client omits several categories. Taken left to
right, the attributes (integer pairs) identify a search
access point (search index) for which a string of
words, ‘‘Mark Twain’’, submitted in a Query will be

treated, respectively, as an

author,
with words structured as a phrase,
no truncation,
occurring at beginning of a field,
not needing an entire subfield,
and compared for equality.

1.6. Statefulness, Complexity, and Z39.50

Z39.50 is one of several protocols that allows a
client program to transmit user queries to a remote
server program and to receive server responses, the
ultimate aim being to display results to the user.
Unlike several well-known stateless protocols, such
as HTTP and Gopher [12], Z39.50 is stateful , in the
following sense. A server using a stateless protocol
(such as HTTP) treats each request as if from a
client with which it has never communicated before;
in other words, it maintains no memory, or state ,
regarding the client. In contrast, a stateful protocol
(such as Z39.50) is conducted over a session for
which the server keeps track of things like user
identification and search results as they accumulate
over the course of the session.

One obstacle facing every implementor is the per-
ceived complexity of the standard. Z39.50 probably
owes this perception to three factors: (a) it is a for-
mal national and international standard [13], (b) it
grew out of the library automation community,
whose highly methodical approach to storing and
indexing information might not be immediately
appreciated by the non-library-oriented implementor,
and (c) it contains references to the stunningly
comprehensive ISO OSI [6] layered network model.

Experience with the standard usually reveals the
essential simplicity beneath its densely detailed
specification. Z39.50 is stateful and it is complex.
These two facts may be viewed as weaknesses or
strengths. Without promoting either view it may be
said that Z39.50 was designed to solve a complex
problem and that stateless protocols were designed
to solve simpler problems.



2. Creating a Z39.50 Server

2.1. Before Starting

You need to ask yourself whether you want to build
a server from scratch or on top of an available
software base. At the time of writing, server pack-
ages were freely available from the Clearinghouse
for Networked Information Discovery and Retrieval
(CNIDR) the National Library of Canada, and the
University of California at Berkeley. For informa-
tion on how to obtain them, you may access the
World-Wide Web ‘‘Z39.50 Pointer Page’’ [14]:

http://ds.internic.net/z3950/z3950.html

Whatever you decide in creating your own server, it
is recommended that you track protocol development
and establish contact with other implementors. One
way to start becoming involved is to subscribe to the
Z39.50 Implementors Group (ZIG) mailing list,
z3950iw@nervm.nerdc.ufl.edu. To do so
send an e-mail message to listserv@nervm
.nerdc.ufl.edu with the body of the message
containing

sub z3950iw your_first_name your_last_name

An official register of Z39.50 implementors [15] is
available and you may wish to have your
organization’s name listed in it.

2.2. Whether to Use an ASN.1 Compiler

An important decision is whether to build your own
BER encoding and decoding routines or to have an
ASN.1 compiler build them for you. It would do so
by translating the ASN.1 specification for PDUs,
record syntaxes, queries, etc. into program source
code. You may wish to consider the following
issues in reaching this decision.

The problem to be solved is translating Z39.50
PDUs, which encapsulate all other data, between
their network format and the form in which the
server programmer can make use of them via pro-
gram variables. This amounts to making the coded
byte stream conveniently available to the internal
memory of a running server program, a process
called decoding. Most of what follows about decod-
ing applies in a straightforward way to the inverse
process, called encoding.

Decoding is generally done in three steps (as is
encoding). First, a PDU originally encoded by the
client is read into a server buffer as a contiguous
sequence of bytes that includes a header from which
the decoder can deduce when the last byte of the
PDU has been received. Second, this flat form of
the PDU drives construction of a generalized tree
that reveals the hierarchical structure inside the PDU
buffer. Finally, the leaves of the tree are explored to
discover which actual PDU elements have been
received.

ASN.1 compilers generate data structure definitions
and source code for high level programming
languages (such as C or PL/1). Generally each
abstract structure definition produces both a real data
structure definition (e.g., an ASN.1 SEQUENCE
becomes a C struct) to contain the corresponding
PDU element and a decoding routine (plus another
for encoding).

To perform the last step above, the programmer calls
a compiler-generated, top level general PDU decod-
ing routine, which in turn calls the appropriate
specific PDU decoding routine, which calls other
routines, and so forth depending on what is found at
each branch and leaf of the tree. At the end of this
process, what is left is (a) a PDU buffer, (b) a tree
whose leaves point to individual PDU elements, and
(c) another tree of structures corresponding closely
to the ASN.1 specification and containing fully
decoded leaf elements. (With a clever compiler the
leaves of both trees will point back into the buffer
since it is expensive to make and keep copies.)

An advantage of using an ASN.1 compiler is that
each PDU is rigorously checked for syntactic
correctness and the PDU is fully decoded in one fell
swoop. Another possible advantage is that the
decoding routines can be re-created automatically
when the ASN.1 specification changes. Since the
programmer must still alter by hand the server code
that references the changed structures, this advantage
would be certain if routines built by hand used a
second tree of structures just as the compiler-
generated routines do (c, above). In practice, how-
ever, hand-generated routines only use the one gen-
eralized tree (b, above), so the amount of code that
needs changing in either case is roughly equivalent.

A disadvantage of using an ASN.1 compiler is that
it can be very inflexible with regard to experimental



elements or element sequences not given by one
unified ASN.1 specification (such as when a server
supports Z39.50-1992 and Z39.50-1995 simultane-
ously). It may be hard to make your compiler
ignore unknown PDU elements, and when it rejects
a PDU sometimes recovery is impossible. Another
situation in which recovery can be difficult using
compiler-generated code is when an ASN.1 structure
(such as a record in the Generic Record Syntax)
spans more than one record, which will likely hap-
pen one day if you support full Z39.50-1995 Seg-
mentation.

The advantage of rigorous syntax checking becomes
less significant in mature interoperation environ-
ments where the majority of errors will be semantic.
Besides the time and space used to build and main-
tain a second tree (c, above), there is also a potential
inefficiency in decoding everything at once because
received elements often go unused.

Even if you use an ASN.1 compiler, becoming fami-
liar with the rudiments of BER can help you under-
stand how to use your internal data structures best
and how to read PDU log files when debugging. An
excellent package of low-level BER routines is
freely available from OCLC [16] for implementors
writing their own encoding and decoding routines.
Two ASN.1 compilers that are freely available are
SNACC [17] and ISODE’s pepsy [18].

2.3. Getting Started Online

Before you can bring up a server on the network,
you will need to locate a set of TCP tools. On
many platforms they are already provided with your
operating system (e.g., the UNIX socket library).

It is also imperative to locate a Z39.50 client with
which to test your server as you build it. Unless
you build your own client as well, you may wish to
read [14] for information about freely available
clients. Existing servers that are known to be func-
tioning correctly can be valuable for gaining com-
parison experience and simple reality checks.

Once you have any sort of server program ready to
test (e.g., just to test Init), you will need to make it
ready to accept incoming client connections. One
way is to have the server code itself listen on a par-
ticular TCP port, and then have your client try to
make the network connection to that port from either
the same computer or a different computer. Another

way is to use an existing ‘‘super-server’’ that listens
on a number of ports and starts up your server upon
sensing an incoming connection to a port that you
will have specified in advance.

This second way is particularly useful in the UNIX
environment because it allows the server code to be
written without having to know whether its input
and output are to a socket, a file, or a terminal; this
can be useful for debugging, when you may want to
start your server by hand without reconfiguring the
super-server. Under UNIX the super-server is called
the inetd daemon and the way to make your server
known to it is to add an entry such as

z39.50 stream tcp nowait nobody
/usr/local/irserver irserver

(all on one long line) into the system file
/etc/inetd.conf . The standard TCP port for Z39.50
is 210, so under UNIX, for example, you can make
this fact known to the system by adding the line

z39.50 210/tcp ir

to the file /etc/services . Setting up the underlying
TCP connection involves straightforward coding
consistent with widely available HTTP servers.

2.4. Design the Control Module

Two main issues to resolve early are (a) to what
degree the server’s input will need to be asynchro-
nous and (b) whether the server will be single-
threaded or multi-threaded. A server is asynchro-
nous if it can detect and act upon the arrival of a
new request before it finishes processing the current
request. A server is single-threaded if at most one
client connection is active at a time.

For a basic server without Access Control or
Resource Control, the easiest design is purely syn-
chronous and single-threaded. Highlights of the
simple synchronous server control scheme are:

1. Block program until request PDU arrives.
2. Execute request and formulate response.
3. Send response PDU and go back to step 1.

In a basic server program the scheme will probably
be fleshed out with a simple timeout and checks for
termination and errors. The following somewhat
over-simplified C program fragment illustrates this.
It uses the UNIX select(2) system call [19] to
wait no more than a specified timeout period for



input to arrive.

. . .
for (;;) {

/* for select, clear bit mask for read */
/* file descriptors; set our input bit */
FD_ZERO(&rfds); FD_SET(input, &rfds);
maxd = input + 1; /* last bit to check */
if (!select(maxd, &rfds, 0, 0, timeout)) {

printlog("read timed out");
exit(1);

}
/* beware: timeout only guaranteed we */
/* would get one byte of the PDU */
switch (getPDU(input, &request)) {

case END_OF_INPUT:
printlog("end of session");
exit(0); /* normal termination */

default:
case NOT_A_PDU:
case UNSUPPORTED_PDU:

printlog("garbage or unsupported PDU");
exit(1); /* session abort */

case INIT_REQUEST:
printlog("init");
status = init(request, &response);
break;

case SEARCH_REQUEST:
printlog("search");
status = search(request, &response);
break;

case PRESENT_REQUEST:
printlog("present");
status = present(request, &response);
break;

}
if (status != OK) {

printlog("internal error");
exit(1);

}
putPDU(output, response);

}
. . .

If you are strictly interested in the basic server you
may skip to the next section. If you intend to
enhance your server beyond the simple synchronous
scheme it makes sense to plan early. Some asyn-
chronous ability will be needed if you intend to
allow canceling a search in progress, as this requires
acting on a TriggerResourceReport request from the
client while the database engine is toiling away.
Detecting the arrival of a byte of input is easy, but
detecting that what arrived was a triggering PDU is
harder. It requires that the server be able to set

aside a PDU that turns out to be a non-triggering
PDU, in other words, to put it in a queue. This
could be the case if two or more request PDUs
arrive back-to-back (a feature allowed in Z39.50-
1995).

Also, a complex subsystem such as a database
engine cannot simply be interrupted and made to
return from an arbitrary program instruction. It can,
however, return from various states in the subsystem
where the programmer is willing to insert a check
(such as testing a global variable set by the control
module upon arrival of a relevant PDU) for a cancel
so that the cleanup and retreat, if necessary, may be
orderly.

Keeping a queue for PDUs is indispensable in the
multi-threaded case. The main reason for imple-
menting a multi-threaded server on computers where
a single-threaded design is also an option is to
improve performance. It is relatively easy to design
and run a single-threaded server: the process starts
up when a client attempts a connection, is used
exclusively by that client, and is then terminated
when that client releases the connection. This car-
ries with it the cost of creating and destroying each
server process, which becomes more significant as
the frequency of connections rises. At such times
having only one server process that is multi-threaded
to handle many connections becomes appealing.

The drawback is that careful error monitoring, strict
memory usage accounting, and general programming
quality become critical, because a program abort
now affects many users, not just the user whose
request caused the abort.

2.5. Design the Protocol Engine

The protocol engine’s job is to read and write PDUs
under direction from the control module. It needs to
keep track of the evolving protocol state as PDUs
are sent and received. For example, it might provide
a check on the control module to prevent a Present
response from being attempted when a Search
response is called for. It might also look for sundry
protocol violations, such as inconsistent or illegal
parameters (such as conflicting values for
smallSetUpperBound, largeSetLowerBound, and
mediumSetPresentNumber).



Session tear-down can seem anti-climactic to the
implementor since there is nothing for the protocol
engine to do but return. Because the basic Z39.50-
1992 system has no access to the Z39.50-1995 Close
request, normal and abnormal termination may be
indistinguishable. If the server drops the TCP con-
nection before the client drops it, that is a server
abort. If the client drops the connection when it is
waiting for a server response, that is a client abort.
But if the client drops it when the server is waiting
for a request PDU, it is impossible to know if that
was a client close or client abort.

2.6. Design the Database Engine

A database engine, possibly one of several, is called
by the control module to create the result set for a
Query and to retrieve records from result sets. It is
the ultimate arbiter of all questions regarding what is
and is not supported by the server for a given data-
base, mostly dependent on the DBMS underneath it.
This means that while the protocol engine can screen
out client protocol errors on a syntactic and
superficial semantic level, all other interpretive
actions, including most error situations, are rightly
the domain of the database engine. Because each
database engine will have different capabilities, too
much protocol engine error checking could pre-empt
DBMS functionality.

The database engine is responsible for implementing
all aspects of the record personas mentioned earlier.
It defines which attribute sets, tag sets, element sets,
abstract syntaxes, and transfer syntaxes will be sup-
ported for each database. It must therefore keep
tables that map actual database elements to

(a) search access points – to build indexes and
recognize incoming attribute combinations,

(b) element selection tags – to choose the ele-
ments for the element sets Full and Brief, and

(c) element return tags – to identify elements
returned in records (such as field tags for
USMARC).

One tricky question is whether the server will handle
more than one database per search, and as before the
answer must be left up to the database engine in
question. Which engine to ask can itself be a prob-
lem when two databases in the search are managed
by different engines, but in all probability the com-

bination will not be supported. If only one database
engine is involved, all databases in the requested
combination will need to support the particular per-
sona (as specified via PDU parameters) that the
client is approaching. This may be easy when
searching a set of related archives, for example, but
difficult when searching a personnel directory in
combination with a chemical database.

2.7. Process Init

When an Init request PDU arrives, the server must
follow up by sending an Init response indicating
either acceptance or rejection. For many servers,
this is a formality because not much useful feature
or buffer information is gained in the process.
Many servers and clients currently interoperate well
only with Z39.50-1992 Search and Present, regard-
less of what other features are negotiated. Those
that are able to allocate I/O buffers dynamically
have little need for negotiated buffer sizes.

The idAuthentication Init parameter, however, is of
particular interest to servers that need authentication
without using Access Control. If it is received,
tagged as an ASN.1 VisibleString and containing
two text substrings separated by a slash character
(‘/’), the first substring is taken to be a userid and
the second to be a password.

2.8. Process Search

When a Search request PDU arrives, the control
module finds the database engine that administers
the databases in the database list and hands the
Query over to it. The database engine then decides
if it supports the requested database combination.

A model for result sets must be developed. This
includes the concept of intermediate result set, which
is the set of records matching a subexpression within
the Query. Intermediate result sets are needed dur-
ing Query evaluation, which culminates in the crea-
tion of the top level result set named in the search
request. As a service, the server may wish to make
them available after Query completion (a feature
supported in Z39.50-1995), which means that they
must occupy the same name space as the client-
named sets. It is also helpful to keep track of which
top level set caused the creation of which intermedi-
ate sets. For the basic server there is probably no
need to support intermediate result sets.



You will have to decide how result set existence will
be communicated among the various server modules
that require it (e.g., a global linked list might be
used). Some servers may support result sets that
persist between sessions (the Extended Services of
Z39.50-1995 support this) in order to allow connec-
tions from stateless gateways (such as from HTTP)
to retrieve records resulting from a search in a prior
session.

Finally, the server must be prepared to handle a
Search request that returns some result set records
piggybacked onto the Search response. It makes
sense to structure this record-retrieving function so
that it may be re-used when processing a Present
request.

2.9. Process Present

A Present request arrives designating a range of
records to retrieve. Obtaining records from a result
set is usually done through the intermediary of the
DBMS that created it. For even though the search
that created it is over, the DBMS cannot relinquish
control since the set might be referenced in a subse-
quent boolean search expression. Besides, it is usu-
ally too expensive to externalize DBMS records
except on client demand. If other program modules
(such as other DBMSs) need to know whether a
result set exists, the DBMS that created it will have
to externalize that fact somehow.

Most of the problems with Present will already have
been solved if you implemented piggybacked records
for the Search response. This includes handling ele-
ment sets and record syntaxes.

To support retrieval of SUTRS, the server need only
render a set of record elements as text with a max-
imum line length of approximately 72 characters.
The maximum is approximate in order to give
clients an idea of what length to plan for, but not to
preclude the possibility of the occasional long line
for which the server has decided that preserving data
integrity outweighs aesthetics (e.g., not breaking a
long row of a formatted table). To support the
USMARC record syntax, you will need to refer to
the various standards comprising USMARC [11].

2.10. Did You Get It Right?

Your server is essentially ‘‘right’’ if it interoperates
with three independently developed clients. If you
do not have access to as many clients as you would
like to test, you may wish to invite connections from
implementors by sending a message to the ZIG
mailing list (section 2.1).

To prepare for test or public access to your server,
you will want to write a server description document
defining server parameters such as Internet host-
name, port number, and listing available databases.
For each database, describe the attributes, element
sets, and record syntaxes supported. Once in the
hands of client users, that description opens up your
Z39.50 server to the Internet.

3. Conclusion

This paper has covered a number of key ideas
behind the Z39.50 international standard protocol for
searching and retrieving records from networked
information systems. These include the way that
Z39.50 allows database records to adopt many dif-
ferent personas depending on whether the current
operation involves search, retrieval, or element selec-
tion. The abstract form of each Z39.50 PDU is
given by an ASN.1 description that the implementor
uses to write software converting PDUs between
internal memory and the serialized byte stream
encoding dictated by BER.

Implementors of Z39.50 servers need to consider
several issues carefully. One of these is whether to
implement from scratch or on top of existing
software packages for ASN.1 and for BER, if not for
Z39.50 itself. The server control module will have
to be conceived with models in mind for result set
management and database engine switching. A
server may be synchronous or asynchronous, or
single- or multi-threaded. These are among the
many decisions that will have an impact on server
functionality and performance.
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