
Z39.50 for Full-T ext Search and Retrieval
Margaret St. Pierre

Blue Angel Technologies
saint@bluangel.com

Abstract
For search and retrieval of full-text, image, and
multimedia information over a heterogeneous net-
work, a non-proprietary standards-based communi-
cations protocol is mandatory. In order for the proto-
col to achieve general acceptance and ubiquity
within the rapidly evolving world of distributed in-
formation access, it is imperative that the implemen-
tation of this protocol be simple and modular, yet
rich enough in functionality to meet the growing
demands of the information age.

This paper describes implementation experience
with the ANSI/NISO Z39.50-19951 information re-
trieval protocol as the communications protocol of
choice for distributed information access. The re-
quirement for simplicity is achieved with an imple-
mentation of a baseline set of Z39.50 services. The
described base-level functionality is sufficient to
demonstrate interoperable search and retrieval func-
tionality with a number of other Z39.50 implemen-
tations. The requirement for modularity and richness
in function is achieved through the incremental im-
plementation of features such as Generic Record
Syntax, Element Set Specification, and the Explain
Facility.

1 Introduction
The ANSI/NISO Z39.50-1995 Standard is the result
of a culmination of the many requirements of a large
number of contributing implementors. It was de-
signed to be a comprehensive information search and
retrieval protocol specification. The development of
a complete ANSI/NISO Z39.50-1995 implementa-
tion may at first appear to be a major undertaking. In
practice, most implementors begin with a simple
baseline implementation, verify interoperability
against other implementations, and then incremen-

1ANSI/NISO Z39.50-1995 -- Information Retrieval

(Z39.50): Application Service Definition and Protocol
Specification.

tally expand in functionality with additional Z39.50
features. This paper describes how such an approach
can be used to develop a Z39.50 implementation for
use in the search and retrieval of full-text, image,
and multi-media information.

Section 2 provides a description of a baseline client
and server implementation, and provides recommen-
dations for modular additions of Z39.50 features to
this baseline. Section 3 introduces the modular addi-
tion of Generic Record Syntax (GRS) for supplying
structured database records. Section 4 covers the
requesting of structured database records using the
Element Specification Format (ESPEC). An exten-
sion for providing additional server-specific infor-
mation using the Explain Facility is described in
Section 5. Finally, Section 6 provides guidance for
additional modular extensions of Z39.50 functional-
ity.

This paper is one of a series of implementation pa-
pers put together by NIST (National Institute of
Standards and Technology) and the Z39.50 Mainte-
nance Agency. This paper does not address data
communications nor implementation tools. These
topics are covered in other papers in this series.

2 Baseline
Implementation

A baseline implementation of Z39.50 is a confor-
mant implementation as described in the confor-
mance section of the Standard (refer to Section 4.4.1
“General Conformance Requirements”). The only
requirements for minimal conformance are the Init,
Search, and Present Services, and the Type-1 query.
The section below provides guidance for creating a
simple baseline implementation, complete with ex-
ample pseudo-application protocol data units. This
baseline implementation should prove to be interop-
erable with most full-text Z39.50 implementations.

The main components of the baseline implementa-
tion are the Init, Search, and Present Services. These
services provide the ability to negotiate initialization
information, perform a search on a database, create a
result set of database records that match the query,
and retrieve one or more records from the result set.
The query is a simple Type-1 query containing a
single term, and database records are returned in a
result set as ASCII text, called Simple Unstructured
Text Record Syntax (SUTRS). Although the Stan-
dard supports the ability to include more than one
database in a Search Request, a baseline server im-
plementation need only support searching a single
database at a time. And finally, a conformant im-
plementation provides support for creating and ac-
cessing a single result set of database records, called
the default result set; support for multiple result sets
is optional and may be added at a later time.

An example of a simple Init Request sent by the cli-
ent is as follows:

protocolVersion: Version 1 and 2

options: Search and Present

preferredMessageSize: 50000

exceptionalRecordSize: 50000

These comprise the mandatory components of the
Init Request. For simplicity, the optional components
have been omitted. It is desirable, however, for in-
teroperability testing and usage statistics gathering,
to include an Implementation Id, Name, and Ver-
sion.2 The Init Response returned by the server in-
cludes the negotiated values of the Init Request pa-
rameters, and a Boolean flag indicating whether or
not the server accepts the connection.

Of the three services, the Search Service contains the
largest number of mandatory parameters. Some cli-
ent implementations expect to use the Search Re-
quest to obtain the first few of records in the result
set, commonly called a Piggybacked-Present, and
request additional records later using the Present
Service. Other client implementations request no
records during the Search Service, but instead use
the Present Service for the retrieval of all records.
The former approach may provide improved per-
formance, while the latter approach simplifies the
implementation.

2Some server implementors consider it anti-social if this

information is not included in an Init Request.

A simple Search Request example follows:

smallSetUpperBound: 0

largeSetLowerBound : 1

mediumSetPresentNumber: 0

replaceIndicator: true

resultSetName: “ default”

databaseName: database name

query: Type-1

 attributeSet: 1.2.840.10003.3.1

 rpn: Operand

 attrTerm: AttributesPlusTerm

 attributes: (empty list)

 term: octet string

For this Search Request, the client indicates that it
does not want any piggybacked records in the re-
sponse by setting the small set upper bound to 0 and
large set lower bound to 1. It requests that the server
perform a search on a database whose name is data-
base name, where the search term is supplied as an
octet string. The example query is the simplest query
to formulate consisting of a Type-1 query, using the
Bib-1 attribute set, and containing a single operand,
no attributes, and a term. Most implementations use
the Bib-1 attribute set for providing a well-known set
of search access points, such as a Title or Author
search. As described in Section 5 (see also the Lynch
article in this series), the Z39.50 Explain Facility
provides a means for clients to discover the search
access points available on a specific server.

An example of a Search Response that may have
resulted from the above Search Request is shown
below:

resultCount: 15

numberOfRecordsReturned: 0

nextResultSetPosition: 1

searchStatus: true (i.e. success)

presentStatus success

No records were returned since no records were re-
quested in the Search Request. The number of items
in the result set is 15, and the search completed suc-
cessfully. The next-result-set-position parameter is
not particularly useful, but is mandatory.

Finally, the Present Service provides a means for
retrieving records from the result set. The Present
Request optionally specifies an element set name and
preferred record syntax, which if not included, de-

fault to whatever the server selects. In a baseline
client implementation, it is best to explicitly specify
the preferred record syntax, since a server may select
a syntax not supported. The following sample Pres-
ent Request asks for the delivery of the first database
record in the result set as ASCII text by requesting a
preferred record syntax of SUTRS.

resultSetId: “default”

resultSetStartPoint: 1

numberOfRecordsRequested: 1

recordComposition: simple

 elementSetNames: “F”

preferredRecordSyntax: 1.2.840.10003.5.101

A full record is requested by specifying an element
set name of “F”. Alternatively, the element set name
may be specified as “B”, referring to a request for a
brief record. The information provided in a brief
database record is defined by the server. Typically a
brief record contains enough information for the user
to determine if the database record is of interest, and
if so, the client then requests the full database record.
Some server implementations treat a request for a
brief record as identical to a request for a full record,
and thus return the entire record. In any case, a
conformant server implementation must be able to
respond to requests for both the full and brief ele-
ment sets.

A Present Response to the above request follows:

numberOfRecordsRet: 1

nextResultSetPosition: 2

presentStatus: success

records: list of NamePlusRecord

 name: database name

 record: external

 direct-reference: 1.2.840.10003.5.101

 encoding: single-ASN1-type

 ANY: ASCII text of record

etc.

This example details the successful return of a single
database record, where the database name must be
included only with the first record. If a server does
not support the requested element set name or pre-
ferred record syntax, a well-behaved server should

return a failed present status and a non-surrogate
diagnostic.3

Once the baseline implementation is completed and
interoperability has been verified against one or
more other implementations, optional functionality
omitted from the baseline may be added as needed.
Support for Bib-1 attributes, Boolean and proximity
operators, multi-database search, piggybacked pres-
ent, and named result sets can all be incrementally
added. The addition of many of these features to a
server implementation often depends on the func-
tionality available in the underlying search engine.
The client, on the other hand, should not be designed
to rely on the availability at any given server of these
additional features.

3 Sending Structured Data

In practice, many databases contain records com-
posed of both structured and unstructured informa-
tion. Often it is useful to be able to convey both
structured and unstructured information in a data-
base record to a client. An intelligent client can then
make wise use of this structured information, par-
ticularly when there is a need to compare common
components of the structured information across
databases residing on disparate servers over a wide-
area network.

Suppose, for example, each state in the U.S. is re-
sponsible for maintaining and serving its own data-
base of criminal records, where each criminal record
is made up of structured information such as the
criminal’s name, birthdate, eye and hair color, date
of last offense, and some images such as a finger-
print and a photograph. In addition, the criminal
record may also contain less structured information,
such as a list of prior criminal offenses, police re-
ports, psychological history, etc. An investigator
researching a particular crime can then search across
any number of these databases and obtain a uniform
view of the structured data even though the data is
obtained from one more separately maintained serv-
ers.

3In general, a diagnostic message may appear in place of a

record as a surrogate diagnostic, or in place of all rec-
ords as a non-surrogate diagnostic.

As another example, consider a storefront database
whose records contain items such as product name,
product description, cost, and cost unit (e.g. U.S.
Dollar, Japanese Yen). A bargain shopper client can
be designed to search any number of storefront data-
bases and to locate the top three suppliers providing
the best price.

Generic Record Syntax (GRS) is a Z39.50 record
syntax used to transfer database records containing
any amount of structured or unstructured informa-
tion from a server to a client. This section provides a
brief overview the various components of a generic
record, and provides a detailed example of how to
extend the baseline implementation to include GRS
records. For completeness, refer to Appendix “RET:
Z39.50 Retrieval” of the Standard for a more thor-
ough examination of this topic.

Elements and Tags
A Generic Record is made up of one or more hierar-
chically organized elements, where an element is a
component of a database record. Each element is
tagged, where the tag acts as an identifier for the
element.

The tag associated with each element may be a nu-
meric or a string tag. When a numeric tag is used, it
reflects a common understanding between the server
and client regarding the meaning of the element as-
sociated with the numeric tag. The Standard pro-
vides two sets of numeric tags: a set of tags used for
meta-information about the record, called tagSet-M,
and a set of tags used for generic information called
tagSet-G. Examples of tags from the tagSet-M in-
clude Score and Date of Last Modification, whose
numeric values are 18 and 16, respectively. Exam-
ples of tags from the tagSet-G include Title and
Author, with numeric values of 1 and 2, respectively.
See Appendix “TAG: TagSet Definitions and Sche-
mas” of the Standard for a complete definition of the
tag sets.

In contrast to a numeric tag whose meaning is in-
trinsically understood by both the client and the
server, a string tag conveys meaningful information
to the user (not to the client though) regarding the
associated element. In practice, a string tag is used
for tagging elements that may be only locally known
to a particular database or database record. String
tags provide an extensible means for including addi-
tional structured elements in a database record where
the elements are not commonly recognized or well-
known. For example, in an encyclopedia database

composed of a number of volumes of information,
each database record may contain an element with
string tag of “volume”.

Database Schema
Each database is associated with a schema which
defines the collection of tags used in the database
records. Numeric tags may be selected from tagSet-
M or tagSet-G, or alternatively, they may be defined
specifically for a given database or set of databases.
When databases are designed to share a common
schema, even though the databases reside on differ-
ent servers over a wide-area network, the common
structured elements can be meaningfully compared.
A database schema for a criminal record or a store-
front could easily be defined using tags from tagSet-
M and tagSet-G, where applicable, and defining a
new set of tags where necessary.

At the time of this writing, there are two published
schemas, WAIS (Wide Area Information Servers)
and GILS (Government Information Locator Serv-
ice), that are well-known in practice and are used in
a number of databases today. The WAIS schema
makes use of tags from the tagSet-M and tagSet-G:
title, name, date, rank, score, local control number4,
and URx5. It also makes provisions for database-
specific tags by allowing arbitrary string tags to be
used to define any additional elements of the data-
base record. A client searching across multiple data-
bases that use the WAIS schema can expect to obtain
the tags defined in the WAIS Schema, and thus the
client can present database records uniformly to the
user regardless of which server delivered the data-
base records. The WAIS schema was designed to be
general enough for use in most full-text databases.

For the GILS schema, a large number of government
agencies have agreed upon a set of data elements and
corresponding tags common to government infor-
mation locator records. A GILS record contains in-
formation about a specific source of government in-

4The local control number, or record identifier, is an

opaque string defined by the server that identifies the
record on that local server.

5A client may want to use the Uniform Resource Identifier
(URx) to identify and remove duplicate records, particu-
larly when a search is performed over multiple data-
bases residing on different servers. For example, if a
client is searching two databases containing records
gathered from a WebCrawler, there is a greater chance
of duplicated records.

formation. The WAIS and GILS schemas share
many of the same tags from tagSet-M and tagSet-G,
such as title, local control number, and URx. In ad-
dition, the GILS schema includes a GILS tagSet,
which contains tags such as the originating govern-
ment agency and government information distributor
name, organization and address.

Variants
Database information is often available in a number
of display formats, languages, character sets, etc.
Using GRS, element data can be made available in
one or more variants, where a variant is an alternate
representation of the same element data. For exam-
ple, in the criminal database, the police report ele-
ment may be available in both plain text, MS-Word,
and PDF formats. In a multilingual storefront data-
base, the product description element may be avail-
able in English, Spanish, and French. Variants pro-
vide a mechanism for capturing additional meta-
information about the available representations of
the element.

For a given element, each variant provided by a
server contains a variant identifier. The variant
identifier serves to distinguish a specific variant
from other variants of an element. The variant
identifier can be used by the client within a Present
Request to specify which variant of an element is
requested. The implementation example described
below demonstrates the use of the variant identifier
to obtain a specific variant of an element of a data-
base record.

Implementation Example

A natural extension to the baseline implementation
is the inclusion of a GRS module for delivery of
structured and unstructured information associated
with a database record. In practice, the delivery of
GRS records usually occurs in two main steps. In the
first step, the client requests a number of database
records, where each record contains only a small set
of primary elements, such as the title or author, and
a skeleton of the remainder of the record, which de-
scribes any additional elements that are available for
retrieval, but does not include the actual data. The
primary elements contain enough information about
the database record to allow the user to determine if
the other elements (described by the skeleton) of the
database record are of interest. If a specific element
of a database record is of interest, the second step is

the retrieval of a variant of an element of a database
record. Variations on this basic two-step process are
explored further in the next section.

Suppose, for example, a search resulted in a result
set of 100 database records. The first step might be
to request all the primary elements, a skeleton of the
remaining elements, and any available variant in-
formation. This is embodied in a request for the
“VARIANT” element set (that is, the element set
name “VARIANT” is statically defined to mean
“primary elements, skeleton of remaining elements,
and variant information”). An example of a Present
Request follows:

resultSetId: “default”

resultsetStartPoint: 1

numberOfRecordsRequested: 100

recordComposition: simple

 elementSetNames: “VARIANT”

preferredRecordSyntax: 1.2.840.10003.5.105

where the preferred record syntax is now GRS. If a
server does not support GRS or the “VARIANT”
element set, it should return a present status of fail-
ure and a non-surrogate diagnostic. If the Bib-1 di-
agnostic code 227 is returned, meaning no data
available in requested record syntax, the client may
wish to revert to a Present Request with a preferred
record syntax of SUTRS. If the Bib-1 diagnostic code
25 is returned signifying that the specified element
set name is not valid for the specified database, the
client may instead try the “B” element set name.

Suppose that all 100 records are delivered in the
Present Response. An example of a Present Response
is shown below:

numberOfRecordsRet: 100

nextResultSetPosition: 0

PresentStatus: success

records: list of NamePlusRecord

 name: database name

 record: external

 direct-reference: 1.2.840.10003.6.105

 encoding: single-ASN1-type

 ANY: generic record

 record: external

etc.

A simple example generic record obtained from a
criminal database is provided below.

Tag

Type

Tag

Value

Content

2

generic

1

(title)

“John Doe”

1

meta

16

(dateOfLastMod)

“19950507080559”

3

local

“Fingerprint” noDataRequested

(NULL)

3

local

“Police Report” noDataRequested

(NULL)

3

local

“Photograph” noDataRequested

(NULL)

Other tagged elements could have also been supplied
depending on what information was stored in the
database. The title and dateOfLastMod contain con-
tent, whereas the skeleton elements, the fingerprint,
police report, and photograph do not. Instead, the
skeleton elements contain meta-data indicating sup-
ported variants. The main reason for not returning
the content associated with the skeleton elements is
that these elements tend to be large, and are often
available in more than one variant. Furthermore, the
user usually is initially interested in browsing the
brief data associated with the descriptive elements of
each record, and not the data associated with the
content elements of all records.

Suppose the police report is a 705,051-byte MS-
Word document. The meta-data for this element
would contain a supported variant given as follows:

Variant: triples

 Triple 1:

 Class: 1 (variantId)

 Type: 2 (variantId)

 Value: variant identifier

 Triple 2

 Class: 2 (BodyPartType)

 Type: 1 (ianaType/subType)

 Value: “application/ms-word”

 Triple 3:

 Class: 7 (Meta-data returned)

 Type: 2 (size)

 Value: 705051 bytes

where variant identifier uniquely identifies the vari-
ant for this element. It is useful to supply the client
with the size of the variant, particularly if the ele-
ment is large, as is often the case with multimedia
data.

A variant may also contain an optionally specified
variant set identifier (not to be confused with a vari-
ant identifier), which defines the classes, types, and
values that make up the variant. Refer to Appendix
“Var: Variant Sets” for the definition of the Variant-
1 variant set, identified by the object identifier
1.2.840.10003.12.1. In practice, it is assumed that
the variant set is Variant-1, and thus the variant set
identifier is omitted from the variant.

If the client wishes to retrieve the variant associated
with this element, an example of a Present Request is
specified as follows:

resultSetId: “default”

resultsetStartPoint: record number

numberOfRecordsRequested: 1

recordComposition: simple

 elementSetNames: variant identifier

preferredRecordSyntax: 1.2.840.10003.5.105

For this example, record number is the position of
the requested record in the result set, and variant
identifier is the variant identifier string for the
“application/ms-word” variant of the “Police Rec-
ord” element. A Present Response to this request
would contain one GRS record, where the record
contains one tagged element. The content for the
element would contain the MS-Word version of the
“Police Record” element.

Tag

Type

Tag

Value

Content

3

local

“Police Report” MS-Word Document

(octet string)

Suppose an element larger than the negotiated ex-
ceptional record size is requested. In this case, the
server returns as much of the element as will fit into
the Present Response without exceeding the negoti-
ated exceptional record size. The server also in-
cludes, with the element meta-data, a target token: a
string created by the server to refer to the next piece
of the element. It is specified in GRS using Variant
Class 5 Piece, Type 7: target token.

For the client to retrieve the next piece of the ele-
ment, the element set name of the above Present Re-
quest is modified to use the target token.

resultSetId: “default”

resultsetStartPoint: record number

numberOfRecordsRequested: 1

recordComposition: simple

 elementSetNames: target token

preferredRecordSyntax: 1.2.840.10003.5.105

The GRS functionality presented in this section de-
scribes a simple set of features useful for extending
the baseline implementation to send structured data.
In addition to the described functionality, GRS in-
cludes a rich set of additional features that could be
incrementally added to enhance the quality of the
structured data, including hierarchically structured
records, usage restrictions, and search term high-
lighting.

4 Requesting Structured Data

There may be times when a client requires greater
control over requesting elements of a database rec-
ord. Suppose for example the client wishes to request
the title, author, and date of last modification from a
set of database records. This section describes
Z39.50 extensions enabling a client to request spe-
cific elements of a structured database record.

A constraint imposed by Version 2 is that the record
composition in the Present Request must be a simple
element set name. One way to allow the client to
request multiple elements in a Version 2 implemen-
tation would be for the server to define a new simple
element set name for the client to use in the Present
Request. For example, the server could define a new
element set name called “modzilla” that returns the
title, author, and date of last modification. Unfortu-
nately, this is not a generally extensible mechanism
for obtaining any arbitrary set of elements from a
database.

Another possibility is to define an element set name
that is made up of a list of requested elements sepa-
rated by spaces. The new element set name would
then be called “title author date”. This approach is
also unacceptable since the element set name now
contains implicit structure, which is in violation of
the primitive nature required of the element set
name.

The ultimate solution is to upgrade the baseline im-
plementation to Version 3, and to use a record com-
position of complex in concert with Element Set
Specification (ESPEC). This enables the client to

explicitly request any number of elements from one
or more database records.

Upgrading the baseline implementation to Version 3
requires a modification to the Protocol Version pa-
rameter of the Init Request and Response. There are
a few other minor differences between Version 2 and
3, for example, in the specification of the query and
diagnostic record. For the most part, these differ-
ences are small and can be easily accommodated.

During the Present Request, the client can explicitly
request various components of a database record. An
example of a Present Request containing a complex
record composition is given below.

resultSetId: “default”

resultsetStartPoint: record number

numberOfRecordsRequested: 1

recordComposition: complex

 selectAlternativeSyntax:true

 generic:

 elementSpec: externalEspec

 direct-reference: 1.2.840.10003.11.1

 encoding: single-ASN1-type

 ANY: element spec

preferredRecordSyntax: 1.2.840.10003.5.105

A simple example of an element spec used to request
the title, author, and date of last modification fol-
lows:

Espec-1: elements

 elementRequest: simpleElement

 simpleElement: TagPath

 tag:

 tagType: 2 (generic)

 tagValue: 1 (title)

 simpleElement: TagPath

 tag:

 tagType: 2 (generic)

 tagType: 2 (author)

 simpleElement: TagPath

 tag:

 tagType: 1 (meta)

 tagValue: 16 (dateOfLastMod)

As with the baseline and GRS modules, the imple-
mentation of the ESPEC module could later be ex-
tended to include support for additional features of
ESPEC, such as requests for specific variants of an
element, hierarchical elements, wild things, and wild
paths.

5 Explaining the Server

When a client encounters a new server for the first
time, it is useful to be able to probe the server, for
example, to obtain a list of available databases, or a
list of search attributes or retrieval elements avail-
able for particular database. These capabilities are
particularly important for full-text databases where
search attributes and record structure may differ
from database to database. This section describes
how the Z39.50 Explain Facility can be used to ob-
tain information from a server. It describes how an
implementation of the Explain Facility can be devel-
oped on top of the baseline implementation and in-
crementally extended as needed.

The implementation of the Explain Facility is a logi-
cal extension of the existing search and present
services of the baseline implementation. It requires
the addition of a new database, called “IR-Explain-
1”, a new set of search attributes (Exp-1), and a new
record syntax (Explain). Obtaining server informa-
tion amounts to formulating a Type-1 query using
the Exp-1 attributes, searching the IR-Explain-1
database, and retrieving Explain records.

Explain is made up of 15 categories, each of which
provides different information about the server. The
TargetInfo category, for example, supplies general
information about the server, and the DatabaseInfo
category supplies database-specific information. Be-
cause each category can be implemented independ-
ently, there is no need to provide support for all
categories, and new categories can be added as
needed. For interoperability, the CategoryList cate-
gory provides a convenient mechanism for a client to
determine what categories are supported by a server.

Below is an example of a non-piggybacked Search
Request of the IR-Explain-1 database. The query
uses the Exp-1 attribute set, and requests the Catego-
ryList category from the Explain database.

smallSetUpperBound: 0

largeSetLowerBound : 1

mediumSetPresentNumber: 0

replaceIndicator: true

resultSetName: “ default”

databaseName: IR-Explain-1

query: Type-1

 attributeSet: 1.2.840.10003.3.2

 rpn: Operand

 attrTerm: AttributesPlusTerm

 attributes:

 attributeElement:

 attributeType: 1 (Use)

 attributeValue: 1 (ExplainCategory)

 term: “CategoryList”

The above Search Request should result in at most a
single database record. An example of a Present Re-
quest for this record follows, where the preferred
record syntax is Explain.

resultSetId: “default”

resultsetStartPoint: 1

numberOfRecordsRequested: 1

recordComposition: simple

 elementSetNames: “B”

preferredRecordSyntax: 1.2.840.10003.5.100

A Present Response to the above request is:

numberOfRecordsRet: 1

nextResultSetPosition: 0

PresentStatus: success

records: list of NamePlusRecord

 name: database name

 record: external

 direct-reference: 1.2.840.10003.5.100

 encoding: single-ASN1-type

 ANY: explain record

 record: external

etc.

where explain record is composed of a list of the
categories supported for this server.

An example of an Explain record containing the
CategoryList category is shown below.

explain record: category list

 category list:

 category info:

 category: “CategoryList”

 category info:

 category: “TargetInfo”

 category info:

 category: “AttributeDetails”

 category info:

 category: “ElementSetDetails”

From the information obtained in the CategoryList, a
client can determine what other categories are sup-
ported by the server. In the example shown, the Tar-
getInfo, AttributeDetails, and ElementSetDetails
categories can now be obtained from the server. If
the server were to add support for additional catego-
ries at a later time, the client would be able to de-
termine this the next time it retrieves the Catego-
ryList category.

6 Additional Extensions

In summary, this paper has described a baseline im-
plementation of Z39.50 and how to incrementally
extend this baseline. Other features of Z39.50 can
also be implemented as modular extensions. For ex-
ample, if database security is a concern, the Access
Control Facility can be added without the need to
modify the original baseline (other than updating the
Options in the Init Service). Similarly, if sorting a
result set is a requirement, the Sort Facility can be
implemented and included as a separate module.
Because the capabilities are negotiated during the
Init, if a client or server does not support a particular
capability, interoperability is still guaranteed.

