Eudora Extended Message Services API Version 4

September 8, 1998
QUALCOMM Inc.
Laurence Lundblade, Julia Blumin, Scott Manjourides, Joshua Stephens

For more information write to <eudora-emsapi @qual comm.com>

QUALCOMM Incorporated
6455 Lusk Blvd.
San Diego, CA 92121-2779

USA

Copyright © 1997, 1998 QUALCOMM Incorporated.

All rights reserved. Printed in the United States of America.

Eudora EMS API Page 1

Table of Contents

1. INTRODUCTION 4
1.1. TRANSLATORS 4
1.2. ATTACHERS 5
1.3. SPECIAL TOOLS 5
2. PLUG-INS, TRANSLATORS, ATTACHERS, SPECIAL TOOLS 6
2.1. PLUG-IN ENTRY POINTS 6
2.2. TRANSLATOR ENTRY POINTS 7
2.3. ATTACHER ENTRY POINTS 7
2.4. SPECIAL TOOLSENTRY POINTS 7
2.5. LINKING, LOADING AND I Ds 7
2.6. STORED STATE AND ACCESSTO OTHER FILES 8
2.7. VERSION NUMBERING 8
3. TRANSLATOR OBJECT TYPESAND FORMATS 9
3.1. TRANSLATED OBJECT TYPES 9
3.2. TRANSLATED OBJECT DATA FORMATS 9
3.3. TRANSLATED OBJECT DATA FORMATS- THE LOCAL NON-MIME FORMAT 10
3.4. TRANSLATED OBJECT FORMATS- THE MIME CANONICAL FORMAT 10
4. DISPLAY IN THE USER INTERFACE 12
5. THE TRANSLATION PROCESS 13
5.1. ON-ARRIVAL 13
5.2. ON-DISPLAY 14
5.3. ON-REQUEST 14
5.4. QUEUE AND CALL ON TRANSMISSION (Q4-TRANSMISSION) 15
5.5. PLANNED FOR FUTURE VERSION OF API - QUEUE AND CALL ON COMPLETION 16
6. ATTACHER PLUG-INS 17
7.SPECIAL TOOLSPLUG-INS 18

EudoraEMS API

Page 2

8. API REFERENCE

19

8.1. CONSTANTS 19
8.2. MACINTOSH DATA STRUCTURES 20
8.3. WINDOWSDATA STRUCTURES 23
8.4. BUILDING M ACINTOSH COMPONENTS 24
8.5. BUILDING WINDOWSDLLS 25
8.6. EFFICIENCY CONSIDERATIONS 26
8.7. GET THE APl VERSION NUMBER THAT THISPLUG-IN IMPLEMENTS 27
8.8. INITIALIZE PLUG-IN AND GET ITSBASIC INFO 28
8.9. GET BASIC TRANSLATOR INFO 30
8.10. CHECK TO SEE WHETHER A TRANSLATION CAN BE PERFORMED 32
8.11. PERFORMING TRANSLATIONS 34
8.12. FINISH USE OF A PLUG-IN 37
8.13. FREE API DATA STRUCTURES (WINDOWSONLY) 38
8.14. PLUG-IN SETTINGS DIALOG 39
8.15. QUEUED TRANSLATION PROPERTIES 40
8.16. ATTACHMENT MENU ITEMS 41
8.17. ATTACHMENT MENU HOOK 42
8.18. SPECIAL MENU ITEMS 44
8.19. SPECIAL MENU HOOK 45
9. CHANGESIN LATEST API DESCRIPTIONS 46
10. REFERENCES 48
APPENDIX A - A BRIEF INTRODUCTIONTO MIME 49
APPENDIX B - MIME TYPE MAPPINGS 51

EudoraEMS API

Page 3

1. Introduction

Note: sections one through seven of this document provide overview, background and
implementation guidelines for the EMS API. Detailed reference information for
implementation beginsin section eight.

The Eudora Extended Message Services APl (EMS API) is designed so that third party plug-ins can be
added to Eudora by the end user. Plug-ins may be supplied by QUALCOMM Incorporated, an independent
vendor, be available as shareware, or be authored by the end user. Plug-ins may perform transformations on
e-mail messages as they are received, as they are sent or on the command of the user. Additionally, they
can add attachments to messages as well as be simply a hook to another application. The APl is genera
enough to accommodate transformations ranging from compression/decompression, to file format
conversions, graphic format conversions, human language trandation, digital signing and others. U.S.
developer s of plug-inswhich perform encryption/decryption should contact the U.S. Department of
State’'s Office of Defense Trade Controlsin order to determine the licensing requirements applicable
to exportsof such trandator plug-insfrom the United States.

When Eudora starts up it will search for plug-ins on the user's system. It will look for Windows DLL'’s or
Macintosh Components in a set of specific places on the user's system. Once located, the plug-ins will show
up as menu items and check boxes in the Eudora user interface and/or be invoked automatically as messages
are sent and received. When invoked, plug-ins may interact directly with the user by putting up their own
dialogue boxes and menu items for attachments and tools.

Each plug-in may contaitnandators, attachers and special tool menusin it.

A trandator performs some transformation on a message. It is often convenient to put several translators in
one plug-in because they may share a lot of code or other resources. It is also possible for a translator to be
used simply as a hook for access to messages as they are received, viewed or sent. That is, a translator may
perform no translation at all.

1.1. Translators
The translators in a plug-in are executed in the followorgexts:

On-arrival — When the message arrives from the mail server non-interactive translations can occur. It
is also possible for a translator to indicate processing (MIME parsing and further translation) of the
message structure should be suspended until it can be done in an interactive context.

On-display — When the message is selected for display an interactive translator may be automatically
run. The result will be displayed to the user.

On-request — Translations for both received messages and messages under composition can be
selected from a menu item. The translation will be performed right away and the result shown to the
user.

Q4-transmission — More properly described as “queue and call on transmission," this translation is
selected by icon from the top bar of the message composition window. Then when the message is
actually being transmitted to the SMTP server the translation is performed.

Q4-completion — More properly described as “queue and call on completion," this translation is

selected by icon from the top bar of the message composition window. Then when the message is being
queued, the translation is performed. No more editing is allowed on the message. All translators
selected that have the Q4_transmission and Q4_completion flags will happen at this time.

EudoraEMS API Page 4

When aplug-in is loaded, it registers in which of the above contexts each of its trandators, attachers, and
special tools wishesto be called in. For example a plug-in which does digital signing may have two
trandatorsin it, one to add a signature to an outgoing message, and one to verify a signature on an incoming
message. The trandator which adds the signature may register to be queued and called on transmission, and
the signature verification translator may register to be called on-display.

The EMS APl makes heavy use of the MIME standard for describing and representing the data type of an e-
mail message and its sub-parts. The design of the API and the SDK is intended to make it possible to
implement plug-ins without an in-depth understanding of MIME and without having to implement large
parts of the MIME standard in the plug-ins.

Trandlators may operate on the whole message or only on any sub-part of the message. Eudora performs a
full traversal of the MIME structure of the message and calls trandlators on parts and sub-parts as they wish
to be called. Thiswill alow plug-insto work on individual parts of a multipart message without having to
implement any MIME parsing.

The data type of a translator’s input and output data is labeled using MIME. For example, the MIME typing
might include the text format and character set, the type of compression, or the type of graphic image (e.qg.,
GIF or JPEG).

Translators can create and access their own data files or make use of such files created by other
applications. They may also access and modify data that is shared with a companion application.

In the case where the incoming message has no MIME structure, the message is transformed into a valid
MIME structure with type text/plain. This is discussed in more detail within section 5.1.

1.2. Attachers

When a message is being composed in Eudora, Attachers can be selected from a menu item. The plug-
in will return file(s) that will be attached to the message.

1.3. Special Tools

Special Tools will be available for selection on the menu at any time. This simply provides a hook for
other utilities to be hooked into Eudora. Anything can be done here, launching another application,
calling a script, etc.

Eudora EMS API Page 5

2. Plug-ins, Translators, Attachers, Special Tools

Most individual trandations that are a candidate for implementation viathe EMS APl comein pairsor
groups. Examples are compression and decompression, Spanish to English and English to Spanish, digital
signing and authenticating, and certificate management. Other plug-ins may implement attaching several
kinds of items, or use several special tools, or some combination. An implementation of a group usually will
have alot of codein common and is most easily installed and configured by the user as asingle entity.
Thus, plug-ins are implemented as a collection of translators, attachers and special tools.

Plug-ins (DL L s/Components)

Multiple plug-ins can be
loaded simultaneously
within Eudora.

ACME Inc. Widgets-R-Us &~
Plug-in Plug-in

| Each plug-in can have
multiple translators,

attachers, or special tools.

/

EMS API R\ﬁﬁ The EMS API provides the

link between plug-ins and
Eudora.

EUDORA

Figure 1: Eudora and two plug-ins

Anindividua trangator in a plug-in performs one specific transformation on a trand atable object. For
example it authenticates the object, or converts a graphic from JPEG to GIF format. A plug-inisa
collection of related trandators. Plug-ins are implemented asa DLL for Windows and as a Component on
the Macintosh.

2.1. Plug-in entry points
Each plug-in has a set of entry points or functions that are called by Eudora:

enms_pl ugi n_ver si on Iscalled first to get the API version number the plug-in uses and
thereby the calling conventions for the other functions.
(Requi red)

ems_pl ugi n_init Is always called second and only once as the plug-in is loaded during

Eudora startup. (Requi r ed)

ens_plugin_finish Called when Eudora exits. (Requi r ed)

ens_free (Windows only) Called by Eudorato free data structures passed from
the plug-in to Eudora. (Opt i onal)

ens_plugin_config Used to configure user-defined settings, called when the “Settings...’
button is clicked while the plug-in is highlightgdpt i onal)

Eudora EMS API Page 6

2.2. Translator entry points

ems_translator_info Supplies basic information about individual trandators. Is called once
for each translator on start up and at other times when specific items
(like theicon) are needed for an individual tranglator. (Opt i onal *)

ens_can_transl ate Called to check whether atranslation can be performed on a
particular item, before the actual trandation is attempted.

ems_translate file Called to actually perform the translation.

ens_queued_properties For Q4-transmission translators, this allows user-defined propertiesto
be set on a per-message basis. This function is called when the user
clicks the trandator icon while composing a message. (Opt i onal)

2.3. Attacher entry points

ems_attacher _info Called once on startup. Thiswill add items to the Message->
Attachments sub-menu (Opt i onal *)

ens_at t acher _hook When the M essage->Attachments sub-menu item is called, this hook
will be called to allow afileto be attached to a message.

2.4. Special Tools entry points

ens_special _info Called once on startup. Thiswill add items to the Special -> sub
menu. (Optional *)

ens_speci al _hook When the Special-> sub menu item is called.

Some of these functions are optional, but every trandator must supply a minimal set of these functions. The
minimal set includesens_pl ugi n_ver si on, ens_pl ugi n_i ni t, enms_pl ugi n_fi ni sh. Except
ens_plugin_init,enms_plugin_finish,andens_pl ugi n_confi g al of these functions take an
argument which specifies which of the trandators, attachers or special toolsin the plug-in is being called.
For example, if a plug-in was loaded that performs compression/decompression and Eudora wanted to call
the data compression trandator, it would call ens_t ransl ate_fi | e with the ID of the compression
trandator. If it wanted to perform decompression it would also call ens_transl ate_fi | e, but it would
pass the ID of the decompression trandator instead.

* At least oneof ens_transl ator _info, enms_attacher_info or ens_special _i nfo must be
defined. In other words, this plug-in must have some actions associated with it.

2.5. Linking, loading and IDs

For Windows, a plug-inisimplemented asa DLL. The above entry points are implemented as a set of
functionsinthe DLL. A standard C calling convention is used, and the DLL islocated by searching a
specific set of directories (see section 8). The actual implementation may bein C, C++ or other, aslong as
the standard C calling convention is followed.

On the Macintosh, the EMS API makes use of the Component Manager to load and link the plug-in into
Eudora. The calling convention thus conforms with what the Component Manager specifies. It is basically
the stack-based Pascal calling convention. The details involved in implementing this can be skimmed over
by using glue code supplied in the SDK. Plug-ins can be written in any language as long as the calling

Eudora EMS API Page 7

convention is adhered to. Plug-ins may also be implemented from code fragments or shared libraries with
some small amount of glue code. Exact details of what is needed to build a component are given in section
SiX.

On the Macintosh it is also possible to statically link a plug-in with atest driver, the source for which is
included in the SDK. It may be easier to debug plug-ins with the test driver since some of the Macintosh
tools don’t work as well on components.

Each plug-in must have a distinct ID number. To ensure these ID numbers are unique they are allocated by
QUALCOMM. To obtain a unique ID, send a blank message to <emsapi-ids@qualcomm.com>. A list of
several IDs will be returned by an auto-responder. The auto-responder doesn’t actually track IDs by
individuals or organization, it just returns monotonically increasing integers, so it's OK to request a second
or third set if needed.

2.6. Stored State and access to other files

Plug-ins may permanently store configuration and other information as needed. Eudora provides no
mechanism for this, but does suggest the name of a directory so plug-in configuration can track Eudora
settings for users with multiple settings filBasically, plug-ins should store state like any other application
using a Preferences file orlaNl file. Shared configurations can be dealt with on a case-by-case basis
depending on what is appropriate for the plug-in.

Plug-ins may also freely access other data and files and may share data with other applications. An example
of this might be a set of dictionaries for language translation. Translators may also make accesses across the
network. An example of this might be to access to directory service to get certificates.

2.7. Version numbering

There are version numbers for three things related to the EMS API. As Eudora changes it will have different
version numbers. However every version of Eudora will not result in a change in the API definition so the
API has its own version number. It is a single integer. It is also possible that Eudora will support multiple
API versions for backward compatibility. The third version number is associated with the SDK. It may
change independent of the Eudora version humber. Both the Eudora version and the SDK version will
change when the API version number changes. The current status is:

API: Current version is 4

Eudora: Macintosh versions 4.0 and higher support »&kion 1, version 3, version 4
Windows versions 4.0 and higher support A&ision 2, version 3, version 4

SDK: We provide an SDK for both the Macintosh and Windows on our web site at

<http://www.eudora.com/developers/emsapi/>

Eudora EMS API Page 8

3. Translator Object Types and Formats

This section discusses the scheme used to describe the types and data formats of the input and output data
that is actually trandated. Most of the discussion centers on MIME, the Internet standard for encoding,
structuring and typing data in Internet email.

Therest of the section isrelated to MIME. The tranglators use MIME in two ways. The first use of MIME
is used to describe the type of the input and output data for atrandator. All objectsthat are operated on via
the EMS APl have aMIME type. A trandator usually determines what messages and message entities to
operate on by the MIME. A tranglator must always specify the MIME type of its output when it returns the
result to Eudora. These MIME types are passed to and from Eudora as parametersin the APl entry point
functions. Examples of typesaret ext / pl ai n for plaintext, i mage/ gi f for a GIF image, and

mul ti part/ si gned for an RFC-1847-style signed message. This pairing isreferred to asthe MIME type
(e.g. ‘text ") and the MIME subtype (e.gp! ai n”) when passed across the API.

The second use of MIME is for the format of the actual data. This is the data that is passed across the API
by referencing a file name. The translated data can be in one of two basic formats, the native local format
(e.g., plain text in the Macintosh character set or an unencoded GIF image), or in full MIME format (e.g.,
with MIME headers, canonicalization, and transfer encoding). It is expected that most translators need only
operate on data in the local format, and thus do not need to do any MIME processing assigning and
checking the MIME types as described above.

Plug-ins that operate on multipart MIME entities are the ones that will need to have their input and output
data in MIME format. That is, the API uses standard MIME format to represent multipart MIME entities.

One example of a plug-in that will require MIME format data is one that implements RFC-1847-style

signed messages, since that format uses a two-part entity. One part is the signed data, and a second part is
the signature. Another example is a plug-in that wishes to compress (or otherwise process) the full outgoing
message including attachments.

3.1. Translated object types

As mentioned above, each entity operated on by plug-ins is described by a MIME type, and this type is
passed across the API in parameters to the entry point functions. (The term entity is used to refer to a
message or a sub-part of a MIME message) The types are used by the translators to determine whether they
should run on some data or not.

The EMS API defines a C data structure for passing MIME type information across the API to describe the
data object being operated on. Source code for managing the data structure is available in the SDK.

When performing a translation, the plug-in will check the MIME type of the input data. This is usually the
main criteria for the translator to decide whether or not it will perform the translation. The type is passed in
by Eudora, so the translator doesn’t actually have to examine the data to be translated. When the translation
is complete, the translator must return the MIME type of the result to Eudora. Except for translators invoked
in the on-request context, the MIME types for the input and output must be different (even if just by a

MIME parameter) to avoid circular translations.

3.2. Translated object data formats

This document has referred to the taWhME entity. This term comes from the MIME standard. In the

simplest case a MIME entity is just an email message. The MIME standard assumes that a message with no
MIME headers at all is a simple MIME entity of typext / pl ai n with no transfer encoding or other

MIME features. A multipart MIME message is also considered a MIME entity, as are each of its sub-parts.

Eudora EMS API Page 9

If amessage has nested multiparts, then each multipart is also aMIME entity. Basically a nested multipart
MIME message can be viewed as having a tree structure, and every node in the tree (leaf or branch) is
considered aMIME entity.

Plug-ins have the ability in certain contexts to trandate any MIME entity in the structure of the message into
acompletely different MIME entity. A leaf node could be translated so that it is a multi-level, nested
multipart entity. A message that has deeply nested MIME structure can be translated into a single text part.

It is expected that most translations will work on simple leaf MIME entities, those that do not have atop

level type of mul ti part. In certain contexts, Eudora performs the traversal of the nested MIME structure

and makes the data in the leaves available for translation so the plug-in author doesn’t have to perform the
traversal.

As is described in more detail later, each translator may be offered each MIME entity in the MIME
structure to translate. It usually decides based on the MIME type whether or not it wishes to translate the
entity. If the entity being translated is a multipart entity, then the data must be in MIME format. If it decides
to translate the entity, the data is delivered in one of two formats as described in the next section.

3.3. Translated object data formats - the local non-MIME format

As mentioned earlier, data for a translator can be in one of two formats, one of which is the local or native
non-MIME format. The local format is just the plain data as it normally is for the particular platform.
Examples are Macintosh text (in Macintosh character set with CR line endings), DOS text, a JPEG file, or a
Word document. Data in MIME format has additional headers and encoding as described below.

The actual format for each MIME entity is described by the standard or description for that MIME type

(e.g., an image/gif entity will be described by the MIME standard for that type, which most likely

references the standard for GIF images). Text formats however pose an unusual problem because they vary
significantly between the Macintosh, Windows, etc. and there are no MIME documents describing local text
formats. To solve this problem the translation API defines a type tag for the local text format for each
platform.

On the Macintosh, the MIME type for text in the local formatgpl i cati on/ x- mac-t ext .
Appl i cation/ x-mac-text has CR as the end of line and is in the Macintosh character set. The MIME
type returned by an on-request text translator should be theagaimiecat i on/ x- mac-t ext .

For Windows, text in the local format is of typext / pl ai n, is in the ISO-8859-1 character set and has
lines ending in CRLF. Similarly, the text returned by a translator should be in the same format and the
MIME type should be ext / pl ai n.

At present, enriched text is removed before translation in the on-request context, but not other contexts.

The above is perhaps a complicated way of saying that on the Macintosh a simple text translator should
accept and generate data of tgp@! i cati on/ x- mac-t ext and it can operate on data in standard
Macintosh formats. Similarly for Windows it should accept and generate data of éxpé pl ai n.

3.4. Translated object formats - the MIME Canonical Format

MIME formatted data for translation is provided in all the translation contexts, except the on-request
context, where the data is limited to text. When MIME formatted data is provided, Eudora supplies the data
as follows:

Eudora EMS API Page 10

» Convertsthe base data objects to their canonical format as defined by its MIME type and subtype. The
most common canonicalization is to convert text so the line endings are CRLF and the character setto a
standard one like | SO-8859-1.

» It applies content transfer encoding so the result is 7-bit clean limited line length data. Thisis done
using Eudora’s usual algorithm for determining which transfer encoding is best. Eudora uses quoted-
printable transfer encoding for text data and base-64 for non-text data. Whether the data is text or not is
determined by the MIME type mapping settings in Eudora.

* Itassembles the MIME entity with the appropriate MIME headers. These consisibfvihe
Ver si on, Cont ent - t ype, andCont ent - t r ansf er - encodi ng headers with appropriate
parameters, message part boundaries, etc.

Translators that return full MIME should return similar entities. MhiE- ver si on header should always

be included with one exception. The MIME version header should not be output by a translator for
translations on outgoing messages on the Macintosh. Macintosh Eudora always assumes MIME version 1
and generates the header for its outgoing messagesCirthent - t ype is omittedt ext / pl ai n will be
assumed, and if theont ent - t r ansf er - encodi ng is omitted,7bi t will be assumed. Note that the

entities Eudora supplies will always be encoded for 7bit transport, however the translator can return the
entity with any standard transfer encoding as long as it is tagged correctly. Other MIME-related

Cont ent - * headers can be included.

Below is an example of text in the MIME format. The lines would end with CRLF and the data would be in
this format no matter if the translation is being done on the Macintosh or Windows. If it were not in MIME
format it would not have the extra header, nor the quoted printable transfer encoding, and the character set
might not be ISO-8859-1.

Content-type: text/plain; charset=iso-8859-1
Content -transfer-encodi ng: quoted-printable

This is the nmessage text and this =el is an a with an accent.

The API uses the tagext / pl ai n for the local format for Windows because the character set and end of
line character are the same as the Internet standard. The above entity in Windows local format would be as
follows and has no header or transfer encoding.

This is the message text and this is & an a with an accent.

Eudora EMS API Page 11

4. Display in the User Interface

Plug-ins and trandlators are displayed in the user interface in several places. Onthe Mac al plug-ins are
shown in the About Extended M essage Services dialog box found under the apple menu. On Windows the
Message Plug-in Settings dialog is accessible under the Special menu.

Trandlators that can operate in the ON_REQUEST context are displayed as menu items. They are enabled

for received messages, messages under composition, and most any editable text field found throughout

Eudora. When invoked they are performed immediately on the current text field (eg. a composition

message, a received message, etc.). These menu items are only active when the user’s focus is in an editable
text field and should not be used a general hook for adding menus to Eudora.

Translations that can be operated in the Q4-transmission and Q4-completion context are displayed as either
checkable icons (Macintosh) or as state icons(Windows) in the toolbar of the message composition window.
While the user is composing the message, they may be selected and deselected. Q4-completion icons will
have a light gray outline around them in Windows.

The on-request translators may return a text message. If this is returned it will be displayed as part of the
message.

Some translators operate without any user interface. These are translators that work in the on-arrival
context. They process messages as they are down-loaded from the mail server.

Attachers appear in the Message -> Attach sub-menu as menu items with the description on the menu. They
are always enabled when a new message is being composed, it simply attaches the returned files to the
message. When there is no new message in front, the Windows version will create a new message, then call
the attacher.

Special Tools appear in the Tool Menu on Windows and the Special Menu on Mac as menu items with the
description on the menu. They are always enabled.

ON_REQUEST, Attachers andSpecial Tool Translators can appear on the main toolbar by setting the flag
EMSF_TOOLBAR_PRESENCE which will automatically add them when Eudora starts up.

Eudora EMS API Page 12

5. The Translation Process

A transglator supplies two functions that are used in the trandation processitself, ens_can_t r ansl at e and
ens_translate file.

Trandlations may be performed in different contexts. These contexts are different events that happen to a
message, such asits arrival, display, or transmission. The details for each are described below. A given
tranglator can work in any number of these contexts. When atrandator is called by Eudorathe context it is
being called in is specified by a parameter so it may behave differently in different contexts.

When Eudora processes a message for trandlation the function ens_can_tr ansl at e is called for each
potentially translatable MIME entity before actual trandation is attempted. In some cases thisis for the sake
of efficiency sinceens_can_t r ansl at e is more efficient than the full trandation function. The function
ems_can_transl at e also has a special return code, namely EMSR_NOT_NOW to delay further processing
of amessage to alater time. The main purpose of EMSR_NOT_NOWis for atranslator to delay all further
MIME parsing and trandation. This may occur because the translator works on unparsed MIME entities. It
may also wish to preempt trandlation in a non-interactive context so the tranglation can be performed later in
a context where interaction with the user is allowed. Note that on-display translators are required to return
EMSR_NOT_NOWin the on-arrival context.

Thefunctionens_transl ate_fil e actually performsthe trandation. It is passed alarge number of
parameters, including the input MIME type, the location of the data to trand ate, the address of a progress
reporting function, and the e-mail addresses on the message. Exact details are given in Section 8.

5.1. On-arrival

The on-arrival context processes messages as they are down-loaded to Eudora from the mail server. That is,
when Eudorais talking to the POP server. In general, trandlators in this context should not interact with the
user or cause long delays (more than afew seconds) or they will disrupt the POP protocol session with the
mail server. This context is useful for automatically processing incoming messages. It is also hecessary to
use this context so that trandations can be performed in the on-display context.

The actual algorithm used by Eudora to call translators is integrated with Eudora’s MIME parsing. It
involves a pre-order traversal of the MIME structure of the message (intermediate nodes are processed
before the leaves). As each MIME entity is visiteddhe_can_t r ansl at e function of each translator is
called on it. If it return€VBR_CANT_TRANS, the next translator is tried. The list of translators that are tried
are the ones that indicate they work in the on-arrival context and are ordered by type as listed below. If
ems_can_transl at e returnsEMSR_NOW the translation is immediately performed and the output of the
translator replaces the MIME entity that was translated. After a translation is made, the entire process of
checking each translator in the list at each node in the pre-order traversal is started over for that MIME
entity. When a complete pass is made through all translators for an entity without performing any
translation, the MIME parse of the entity is made and its sub-parts are processed. Since most messages are
not multipart and most will not be translated, this usually amounts to a single pass through the potential
translators.

If theems_can_t ransl at e function return€VSR_NOT_NOW then all parsing stops and the MIME entity

as it stands is written out for later processing. The entity is written to a file and a link to the file is placed in
the original message. When the user clicks on the link, the translation process is resumed in the on-display
context for the same translator.

Eudora EMS API Page 13

In general, the order of the trandationsin the on-arrival context is driven by the MIME typesin the received
message. When there are ambiguities, the order is by type asfollows:

EVMST_CERT_MANAGEMENT (first)
EMST_PREPROCESS

EMST_SI GNATURE

EMST_COALESCED

EMST_COVPRESSI ON

EMST_GRAPHI C_FORNAT

EMST_TEXT_FORVAT

ENVBT_LANGUAGE (I ast)

Trandations in the on-arrival context should not interact with the user. If they need to interact with the user
they should delay processing until the on-display context by returning EMSR_NOT_NOW A translator may
also vary the function it performs based on the context in which it is called. For example a signature
verification trandator called in the on-arrival context may find it useful to fail silently if it does not have the
certificate needed for verification rather than interrupt the message down-load to prompt for a certificate.

Trandatorsin this context must accept MIME and generate MIME. That is, the EMSF_REQUI RES_M ME and
EMSR_GENERATES_M ME flags are ignored and Eudora treats the trandator asif they were set. Thus these
trandators must be prepared to remove content transfer encoding, and parse and generate basic MIME
structure.

In the case where the received message is not MIME (missing the “MIME-Version” header), Eudora will

convert the message to MIME. This is done by adding the MIME-Version and Content-Type headers, using
the type text/plain. This transformation happens before any translation is done to the message, which means
your translator cannot distinguish between non-MIME messages which have been coerced into MIME and
messages originally MIME.

5.2. On-display

Translations in the on-display context are performed when a user clicks on a translator icon that appears in a
message body. The translator icon is put in the message body as a resutref tha_t r ansl at e

function called in the on-arrival context returnifgSR_NOT_NOW When the user clicks on the icon, the

parsing, recursion, and translation on the MIME structure that was begun in the on-arrival context is
resumed. When the traversal is complete the resulting MIME entity is parsed and text parts are displayed to
the user, in the message window. This includes icons for attachments that were part of the original message
or attachments that were generated as part of the translation process. Attachments can also be removed as
part of the translation process.

Important differences between this context and the on-arrival context aegghatin_t r ansl at e must
never returreMSR_NOT_NOwand that translations may interact with the user. The on-display context has the
same restriction as the on-arrival context that the input and the output must be MIME format.

When Eudora messages are stored in MIME format, trandations in this context may be performed
automatically when the message is displayed - that is when the user clicks on the message index to display a
particular message. There will be no need for the user to click on a translator icon in the message body.

5.3. On-request

On-request translations are those that are performed on the currently displayed message. Translations in this
context are usually the simplest to create.

Translators that work in this context are displayed in a menu item in a sub-menu of the Edit menu. When

the user selects one, the translation is performed on the current message whether it is a received message or
a message under composition. If a section of the message is selected, then only the selection is processed.

Eudora EMS API Page 14

When complete, the translated data replaces the original data and the message is marked as changed.
Translations in this context may be fully interactive. If there is no open current message or the user’s focus
is not in an editable text field, then the menu items for these translations are disabled.

Under Windows, Eudora determines which translators are placed in the Edit menu by calling
ems_can_transl at e with the MIME typet ext/ pl ai n, and text/htnl. for each on-request
translator. If the result iBMSR_NOW the translator will be placed in the menu. On the Macintosh, all on-
request translators are placed in the Edit menu, no MIME type checking is done.

Under Windows, an on-request translators may seiNBR REQUI RES_M ME and
EMSR_GENERATES M ME flags or not — they are ignored. Regardless of these flags the data type will be
t ext / pl ai n and the line endings will be CRLF and the translator should return the same to Eudora.

On the Macintosh, on-request translators can use the local format (described in section 3.3) if the
EVMSR_REQUI RES_M ME or EMSR_GENERATES M ME flags are set.

If the message is text/html, it will first be offered to the translator as text/html. It can either accept it with
EMSR_NOwor decline it withEMSR_CANT_TRANSLATE. If it is declined, Eudora will convert the message to
text/plain and offer it that way. Either text/plain or text/html can be returned and Eudora will put it back in
the message appropriately. This is not the case for other translation contexts.

5.4. Queue and call on transmission (Q4-transmission)

Translators that work in this context are displayed in the toolbar of the composition windows and may be
selected by the user. They are toggled on and off by clicking a button with the translator’s icon on it
(Macintosh) or by selecting the translation from a drop-down menu (Windows). The translation is actually
performed later when the message is being transmitted to the mail server via SMTP. If a message under
composition is saved and resumed later, the toggled state of all translators working in the Q4-transmission
context will be retained.

Translation in this context must operate on the full MIME structure and must work on the whole message
(must seEMSF_GENERATES M ME, EMSF_REQUI RES_M ME andEMSF_WHOLE_MESSAGE). Translations

are performed in the reverse of the order listed above for on-arrival translations. This ordering does prevent
certain useful chains of translations from being performed (e.qg., first a language translation, then a text
format translation), but this disadvantage is out weighed by it being simpler to implement, and simpler for
the user.

The EMSF_WHOLE_MESSAGE flag indicates a Q4-transmission translator wishes to operate on the whole
message, thus it will not be offered the intermediate nodes for transké@aifc: Thisflagis required for
all Q4-transmission trandators.

Theens_can_transl at e function for this context is called after the user clicks the Send/Queue button.

This allows the translator to perform a quick check that the translation will be possible later when the
message is transmitted.elfrs_can_t r ansl at e returnsEMSR_CANT_TRANS and an error string, the string

will be displayed to the user, and the message will not be sent or queued. The user has the option of toggling
the translation off or adjusting the condition that caused the translation to fail.

It is possible for the user to queue an incompatible set of translations (e.g., the MIME type output by one
translation is not acceptable input to the next).When this happens the user will receive an error and can then
go back and deselect translations.

Translations in this context may be fully interactive.

Eudora EMS API Page 15

5.5. Queue and call on completion (Q4-completion)

Trandators that work in this context are displayed in the toolbar of the composition windows and may be

selected by the user. They are toggled turned on and off by clicking a button with the translator’s icon on it.
The translation is actually performed when the Queue/Send button is clicked on. All Q4-transmission and
Q4-completion translations will occur and the message will become a MIME message attached to the
outgoing message. It will no longer be editable.

Translation in this context must operate on the full MIME structure and must work on the whole message
(must seEMSF_GENERATES M ME, EMSF_REQUI RES_M ME andEMSF_WHOLE _MESSAGE). Translations

are performed in the reverse of the order listed above for on-arrival translations. This ordering does prevent
certain useful chains of translations from being performed (e.qg., first a language translation, then a text
format translation), but this disadvantage is out weighed by it being simpler to implement, and simpler for
the user.

Theens_can_transl at e function for this context is called after the user clicks the Send/Queue button.

This allows the translator to perform a quick check that the translation will be possible later when the
message is transmitted.elfrs_can_t r ansl at e returnsEMSR_CANT_TRANS and an error string, the string

will be displayed to the user, and the message will not be sent or queued. The user has the option of toggling
the translation off or adjusting the condition that caused the translation for fail.

It is possible for the user to queue an incompatible set of translations (e.g., the MIME type output by one

translation is not acceptable input to the next).When this happens the user will receive an error and can then
go back and deselect translations.

Eudora EMS API Page 16

6. Attacher Plug-ins

When aplug-in includes any attachers, there will be a menu item in the Message = Attach sub-menu for
each attacher. Thetotal number of attachers in the plug-inisreturned inens_pl ugi n_i ni t. For each
attacher, ens_at t acher _i nf o iscalled. When auser in composing a message, these items will be
enabled. If an attacher menu item is selected, ens_at t acher _hook is called, and the plug-in can provide
a Ul for selecting or creating file(s) or any special mediatypes.

When Eudora sends an attachment, it determines the MIME type/subtype by either looking up the file
extension in a MIME mapping table (Windows) or looking for specific resources inside Eudora
(Macintosh); see Appendix B for more information. Eudorawill handle al processing of making the
attachment a MIME message so it can be sent out over the Internet.

To insure a specific MIME structure of the message, an attacher can create afile that is a fully-formatted

MIME part, and identify it with the .MSG suffix on Windows, or the ‘MIME’ type with ‘CSOm’ creator on
the Mac. These files must bemplete MIME parts, all encoding, canonicalization, MIME headers, etc.
must be present in the file. Eudora will not do any further processing on the file, it will simply put it on the
wire as it's sending out the message. This allows the user to create any MIME format, including complex,
nested multipart MIME structure. Having this control also allows the attacher to specify the disposition as
inline versus attachment via the ‘Content-Disposition’ header [DISP].

Eudora EMS API Page 17

7. Special Tools Plug-ins

When Specia Tools exist within a plug-in, they will be placed on the Tools menu in Windows and on the
Specia Menu onthe Mac. These items will aways be enabled and available to the user. The number of
Specia Toolswithin aplug-inisreturned inenms_pl ugi n_i ni t. For each Special Toal,

enms_speci al _i nfoiscalled. If aSpecial Tool itemisselected, ens_speci al _hook iscalled, and the
plug-in can do asit likes. Eudorawill wait until the ens_speci al _hook function returns.

Eudora EMS API Page 18

8. APl Reference

This section describesin full detail the calling interface, constants and related data structures. These
definitions are the same as found in the include ensapi - mac. h and ens- wi n. h. The basic dataitems and
their semantics for the API do not vary between the Macintosh and Windows platforms, but the function
declarations and data formats do vary. Having this variance between platforms makes the APl ssimpler and
less abstract for each platform, and also increases its efficiency. In the following sections both the
Macintosh and Windows declarations are shown.

For both the Mac and Windows platforms, header files, skeleton source code, and samples are part of the
SDK. In particular, this should help with some of the complexity in working with the Macintosh Component
manager. The author should be able to create a plug-in by creating the necessary C functions and some
associated resources.

8.1. Constants

Thefirst three letters, EMS, identify EMS API-related constants. The fourth letter groups related constants.
All constants should be stored asal ong (32 hits). The constants are identical on al platforms.

Return codes report the general success or failure of atrangation and are not intended to express al possible
results of atranglation. Plug-ins can also pass text messages back to Eudorato be displayed to the user.

[* —---- Return codes --- store as along --------------------- */

#defi ne EMBR_OK (oL) /* The transl ation operation succeeded /

#def i ne EMSR_UNKNOWN_FAI L (1L) /* Failed for unspecified reason */

#def i ne EMSR_CANT_TRANS (2L) /* Don’t know how to translate this */

#define EMSR | NVALI D TRANS (3L) /* The translator ID given was invalid /

#def i ne EMSR_NO_ENTRY (4L) /* The val ue requested doesn’t exist */

#define EMBR_NO I NPUT_FILE (5L) /* Couldn't find input file */

#def i ne EMSR_CANT_CREATE (6L) /* Couldn’t create the output file */

#def i ne EMSR_TRANS_FAI LED (7L) /* The translation failed. */

#defi ne EMSR | NVALI D (8L) /* Invalid argurment(s) given */

#def i ne EMSR_NOT_NOW (9L) /* Transl ation can be done not in current
context */

#def i ne EMSR_NOW (10L) /* Indicates translation can be perforned
ri ght away */

#def i ne EMSR_ABORTED (11L) /* Transl ation was aborted by user */

#def i ne EMSR_DATA_UNCHANGED (12L) /* Trans OK, data was not changed */

Every trandator (not attachers, nor specia tools) must be one of the following types. The typeis used to
determine the ordering of translationsin certain contexts when ambiguities arise (see the previous section on
The Trandation Process). When, in a particular plug-in, trandators of type EMST_SI GNATURE and
EMST_PREPROCESS are selected together in the EMSF_Q4_TRANSM SSI ON or EMSF_Q4_COVPLETI ON
context, and atrandator of type EMST_COALESCED is available it will be called instead of the two
trandators. Translators of type EMST_COALESCED should not supply an iconiif it is desired that they not be
displayed and selectable on the composition window. Basically the trand ation types are used for ordering
and grouping the trandations and for nothing else.

[* -eme- Translator types --- store as a long ------------mmmmmmmmmonnn */
#defi ne EMST_NO_TYPE (-1L)

#def i ne EMST_LANGUAGE (0x10L)

#def i ne EMST_TEXT_FORVAT (0x20L)

#defi ne EMST_GRAPHI C_FORMAT (0x30L)

#def i ne EMST_COWVPRESSI ON (0x40L)

#def i ne EMST_CQOALESCED (0x50L)

#def i ne EMST_SI GNATURE (0x60L)

#def i ne EMST_PREPROCESS (0x70L)

#define EMST_CERT_MANAGEMENT (0x80L)

The following flags specify critical information about atrandator. They specify which context it may
operate in, whether or not it can be called on the whole message or not, and the format of the input and

Eudora EMS API Page 19

output data. Eudora uses these flags to decide when to call the trandator, and how to format and process the
input and output data from the trandlator.

[* --a-- Transl ator info flags and contexts --- store as along ---------- */
/* Used both as bit flags and as constants */

#def i ne EMSF_ON_ARRI VAL (0x0001L) /* Call on nessage arrivial */

#defi ne EMSF_ON_DI SPLAY (0x0002L) /* Call when user views message */
#defi ne EMSF_ON_REQUEST (0x0004L) /* Call when selected fromnmenu */

#defi ne EMSF_Q4_COWPLETION (0x0008L) /* Queue and call on conplete
conposition of a nmessage */
#defi ne EMSF_Q4_TRANSM SSI ON (0x0010L) /* Queue and call on transm ssion
of a message */
#defi ne EMSF_WHOLE_MESSAGE (0x0200L) /* Wrks on the whol e nessage even if
it has sub-parts. (e.g. signature) */
#define EMSF_REQUI RES_M ME (0x0400L) /* Itens presented for translation
shoul d be MME entities with
canoni cal end of line representation,
proper transfer encoding
and headers */
#def i ne EMSF_GENERATES_M ME (0x0800L) /* Data produced will be MME fornat */
#def i ne EMSF_ALL_HEADERS (0x1000L) /* Al headers in & out of trans when
M ME format is used */
#defi ne EMSF_BASI C_ HEADERS (0x2000L) /* Just the basic headers */

#defi ne EMSF_DEFAULT_Q ON (0x4000L) /* Causes queued translation to be on
for a new nmessage by default */

#def i ne EMSF_TOOLBAR PRESENCE(0x8000L) /* Autonattically appear on the Tool bar when
Eudora starts up*/

#defi ne EMSF_ALL_TEXT (0x10000L)/* ON_REQUEST WANTS WHOLE MESSAGE */

/* all other flag bits in the long are RESERVED and may not be used */
The fina following constants define the API version number, the component type used on the Macintosh,

and the out _codes that should be returned from ens_t r ansl at e when called on a trangdator of type
EMST_SI GNATURE. The component type goesin thet hng resource of the component.

[* -eme- The version of the APl defined by this include file ------------- */
#defi ne EMS_VERSI ON (4) /* Used in plug-ininit */
#def i ne EMS_COVPONENT " EuTL’ /* Maci ntosh conponent type */

8.2. Macintosh data structures

[* -e--- MME Params ------------mmmmmmmmea oo */
typedef struct emsM MEparanS *ensM MEPar anP, **ensM MEpar anH;
typedef struct enmsM Meparant {

| ong si ze;

Str63 nane; /* M ME paraneter name */

Handl e val ue; /* handl e size determines string length */
emsM MeEpar anH next ; /* Handl e for next paramin list */

} enmsM MEpar am

[* ----- MM Data ----------------"------------- */
typedef struct emsM MetypeS *ensM MetypeP, **ensM MEt ypeH;
typedef struct emsM MEtypeS {

| ong si ze;

Str63 m meVer si on; /* M ME- Version: header */

Str63 m neType,; /* Top-level MME type: text, nmessage...*/
Str63 subType; /* sub-type */

emsM MeEpar anH par ans; /* Handle to first parameter in list */
Str63 content Di sp; /* Content-Disposition */

emsM MeEpar anH contentParams; /* Handle to first parameter in |ist */

} enmsM MEt ype;

[* -e--- User Address -----------cmmmmmomnnnon */
typedef struct ensAddressS *ensAddressP, **ensAddressH;
typedef struct enmsAddressS {

| ong si ze; /* Size of this data structure */
StringHandl e addr ess; /* Optional directory for config file */
StringHandl e r eal nane; /* Users full nane from Eudora config */
enmsAddr essH next ; /* Linked list of addresses */

} ensAddress;

[* ----- Header Data ---------------"------------- */
typedef struct emsHeader DataS *ensHeader Dat aP, **ensHeader Dat aH;

Eudora EMS API Page 20

typedef struct ensHeader DataS {

| ong
ensAddr essH
ensAddr essH
StringPtr
ensAddr essH
ensAddr essH
Handl e

} ensHeader Dat a;

/*

How Eudora is configured
typedef struct emsMail ConfigS *ensMail Confi gP,

si ze;

to;

from

*subj ect ;
cc;

bcc;
rawHeaders;

typedef struct emsMail ConfigS {

| ong

FSSpec

ensAddr ess
} emsMai |l Config;

[* enen

Plugin Info

typedef struct emsPl ugi nl nf oS *ensPl ugi nl nf oP,

si ze;
configDir;
user Addr ;

typedef struct ensPl ugi nlnfoS {

| ong

| ong

| ong

| ong

| ong
StringHandl e
Handl e

} ensPl ugi nl nfo;

/* Translator Info

typedef struct emsTranslatorS *ensTransl at or

si ze;

id;

numlr ans;
numAt t achers;
nunBpeci al s;
desc;

i con;

typedef struct emsTranslatorS {

| ong

| ong

| ong

unsi gned | ong

StringHandl e

Handl e

StringHandl e
} emsTransl ator;

/* Menu Item I nfo

typedef struct emsMenuS *ensMenuP,

typedef struct emsMenuS {
| ong
| ong
StringHandl e
Handl e
| ong
} emsMenu;

/* Transl ati on Data

~——————
E o I

typedef struct ensDataFil eS *ensDat aFil eP,
typedef struct ensDataFileS {

| ong
| ong
emsM MEt ypeH
enmsHeader Dat aP
FSSpec

} emsDataFil e;

[* ----- Resul ting Status

typedef struct emsResultStatusS *ensResul t St atusP,

si ze;
cont ext ;
m nel nf o;
header ;
file;

Dat a

typedef struct emsResul t StatusS {

| ong
StringHandl e
StringHandl e

| ong
} emsResul t St at us;

[* enen

Progress Data

typedef struct emsProgressDataS *enmsProgressbDat aP,

EudoraEMS API

si ze;
desc;
error;
code;

/*

Size of this data structure */

To Header

*/

From Header */

Subj ect

Header

*/

cc Header */

bcc Header

*/

The 822 headers */

*/

**emsMai | Confi gH;

Size of this data structure */

Opt i onal

Current users address */

*/

**emsPl| ugi nl nf oH;

Size of this data structure */

Pl ace to return unique pluginid */

directory for config file */

Place to return numof translators */
Place to return num of attach hooks */

Pl ace to return num of speci al

hooks */

Return for string description of plugin */

Return for

*/
P,

*/

plugin icon

**ensTransl| at or H;

data */

info for */

EMST_xxx */

i ption */

for queued translations */

**ensDat aFi | eH;

info for */

si ze; /* Size of this data structure */

id; /* ID of translator to get

type; /* translator type, e.g.,

flags; /* translator flags */

desc; /* translator string descr

i con; /* translator icon data */

properties; /* Properties
_____________________ *

**emsMenuH;

si ze; /* Size of this data structure */

id; /* 1D of nenu itemto get

desc; /* translator string description */

i con; /* translator icon data */

flags; /* any special flags*/

Size of this data structure */

/* MME type of data to check */

/* The input file nane */

*/

*/

Size of this data structure */
Returned string for display with the result */
Place to return string with error
Return for translator-specific result code */

**ansResul t St at usH;

**emsPr ogr essDat aH,

nessage */

Page 21

typedef struct emsProgressDataS {

| ong si ze; /* Size of this data structure */
| ong val ue; /* Range of Progress, percent conplete */
StringPtr nmessage,; /* Progress Message */

} ensProgressDhat a;

On the Macintosh, strings passed from a translator to Eudora (such as descriptions, error messages and
email addresses) are Pascal strings. Eudora will pass a pointer to the location where the Handl e to the
string should be returned. The translator must allocate this Handl e with NewHandl e() so that Eudora can
freeit with Di sposeHandl e() .

File path names are not used. Instead Eudora passes a pointer to an FSSpec on the stack. (Trandators never
return file names to Eudora).

The structures representing a MIME type are al'so Handl es allocated with NewHandl e() . Limited-length
Pascal strings are used for all components of the MIME type, except for parameter values. The parameter
valueisaHandl e to a string the length of which is determined by the size of the Handl e. The parameter
value isnot aPascal string because its length can potentially exceed that of a Pascal string. It is also not
NUL L-terminated as the length comes from the handle size.

When Eudora passes a pointer to alocation in which it expects data to be returned by atrandator, it may
pass NULL. Translators must check that the pointer to the location is not NULL before placing avalueinit.

Eudora EMS API Page 22

8.3. Windows data structures

[* ----- MME Params ---------------------------- */
typedef struct emsM MeparanS FAR*enmsM MEPar anP;
typedef struct enmsM MEparanS {

M ne paraneter nane (e.g.,

param val ue (e.g. us-ascii) */
L

inked list of paraneters */

| ong si ze;
LPSTR nane; /*
LPSTR val ue; /*
ensM MEPar anP next ; /*
} emsM MEepar am
[* ----- MME INfO ----------mmee oo */

typedef struct enmsM MetypeS FAR*ensM MEt ypeP;
typedef struct emsM MEtypeS {

| ong

LPSTR

LPSTR

LPSTR

ensM MeEPar anP
LPSTR

ensM MeEPar anP

} enmsM MEt ype;

si ze;

ver si on;

type;

subType;

par ans;
content Di sp;
cont ent Par ans;

/*

The M ME- Versi on header */
/* Top-1|evel

M ME type */
/* sub-type */

/* MME paraneter |ist */
/* Content-Disposition */
Handl e to first paranmeter in |ist

/*

[* -e--- User Address -----------mmmmmmia oo */

typedef struct ensAddressS FAR*ensAddressP;

typedef struct enmsAddressS {

Size of this data structure */

| ong si ze; I*
LPSTR addr ess; /* Optional
LPSTR r eal nane; /* Users full
enmsAddr essP next ;

} ensAddress;

[* -eme- Header Data ---------------“------------ */

typedef struct ensHeader DataS FAR*ensHeader Dat aP;
typedef struct ensHeaderDataS {

| ong si ze;
ensAddr essP to;
ensAddr essP from
LPSTR subj ect ;
ensAddr essP CC;
ensAddr essP bcc;
LPSTR r awHeader s;
} emsHeader Dat a;
[* - How Eudora is configured

/*
/*

/* Subj ect

charset) */

*/

directory for config file */

nane from Eudora config */
/* Linked list of addresses */

Size of this data structure */
To Header */
/* From Header */

Header */

/* cc Header */
/* bcc Header */
The 822 headers */

/*

typedef struct emsMail ConfigS FAR*enmsMai | Confi gP;
typedef struct enmsMail ConfigS {

Size of this data structure */
/* Eudora’s mai n wi ndow */

| ong si ze; /*
HW\D FAR* eudor aWhd;
LPSTR configDir; /* Optional
ensAddr ess user Addr; /* Users full
} emsMai |l Config;
[* ----- Plugin Info --------------mmoomeo oo */

typedef struct emsPl ugi nl nf oS FAR*ensPl ugi nl nf oP;
typedef struct ensPl ugi nlnfoS {

| ong si ze;

| ong nunir ans;

| ong numAt t achers;
| ong nunfpeci al s;
LPSTR desc;

| ong id;

HI CON FAR*i con;

} ensPl ugi nl nfo;

[* ----- Translator Info

/

/* Place to return num of speci al

*

directory for config file */

nane from Eudora config */

Size of this data structure */
/* Place to return numof translators */
/* Place to return num of attach hooks */

hooks */

/* Return for string description of plugin */

/* Place to return unique pluginid */

/

*

Return for

typedef struct emsTranslatorS FAR*ensTransl ator P;
typedef struct emsTranslatorS {

| ong
| ong
| ong
ULONG
LPSTR
HI CON

EudoraEMS API

si ze;

id;

type;
flags;
desc;
FAR*i con;

~————

R

plugin icon data */

Size of this data structure */

ID of translator to get

transl at or
transl at or
transl at or
transl at or

type, e.g., EMST_xxx */
flags */

string description */

i con data */

info for */

Page 23

LPSTR properties; /* Properties for queued translations */
} emsTransl ator;

[* ----- Menu ItemInfo ------------------------- */
typedef struct emsMenuS FAR*ensMenuP;
typedef struct emsMenuS {

| ong si ze; /* Size of this data structure */
| ong id; /* 1D of translator to get info for */
LPSTR desc; /* translator string description */
HI CON FAR*i con; /* Return for plugin icon data */
| ong flags; /* any special flags*/
} emsMenu;

[* ----- Translation Data ---------------------------- */
typedef struct enmsDataFil eS FAR*ensDat aFi | eP;
typedef struct ensDataFileS {

| ong si ze; /* Size of this data structure */
| ong cont ext ;

emsM MEt ypeP i nfo; /* MM type of data to check */
ensHeader Dat aP header ;

LPSTR fil eName; /* The input file name */

} ensDataFil e;

[* -e--- Resulting Status Data --------------------“------- */
typedef struct emsResult StatusS FAR*ensResul t St at usP;
typedef struct emsResultStatusS {

| ong size; [/* Size of this data structure */

LPSTR desc; /* Returned string for display with the result */
LPSTR error; /* Place to return string with error nessage */

| ong code; /* Return for translator-specific result code */

} enmsResul t St at us;

[* -e--- Progress Data ------------------mmmmmn */
typedef struct emsProgressDataS FAR* ensProgressDat aP;
typedef struct emsProgressDataS {

| ong si ze; /* Size of this data structure */
| ong val ue; /* Range of Progress, percent conplete */
LPSTR nessage; /* Progress Message */

} emsProgressbDat a;

For Windows, ASCI| strings for descriptions, error messages, file names, addresses and components of the
MIME type structure are all NULL-terminated strings. They may be allocated any way the plug-in author
wishes and is referred to as the plug-in’s internal allocator. Eudora will cadlhs_f r ee as supplied by the
plug-in to free the storage when it is finished with the data.

The icons returned byns_pl ugi n_i ni t for the whole plug-in should be a 32x32CON. The icons for

the individual translators should be a 16xL&ON (creating the 16x181 CON may involve creating a

HI CON and deleting the 32x32 part). All the icons should be allocated with the plug-ins internal allocator so
Eudora can free them by calliegs_f r ee.

When Eudora passes a pointer to a location in which it expects data to be returned by a translator, it may
pass NULL. Translators must check that the pointer is not NULL before placing a value in it.

8.4. Building Macintosh components

As mentioned previously, plug-ins on the Macintosh are implemented as Components. Components are
used, rather than other mechanisms such as Code Fragments, because they work on all Macintosh hardware
from the 68000 to the PowerPC, and on MacOS system 7.0 through current versions. It is also expected
they will be supported in future versions of MacOS. Though creating a component can be complicated, the
SDK provides most of the needed glue source code, and the job should be easier.

In general the plug-in author needs to implement a minimal set of the entry point functions. When the
Component is built thehng resource of the component must have typdL’. The version number

Eudora EMS API Page 24

specified in thet hng resource must be avalid trandation APl version number. The upper 16 bits can be set
to the value of the constant EMS_VERSI ON from the API include files. The sub-type resourceis not used,
but it must be unique or the tranglator will not be loaded by the Component Manager. There is currently no
registry for sub-types to guarantee their being unique, but this not expected to be a problem. The author
should make one up of their own. It must not be all lower case |etters as those are reserved by Apple. Other
fields of the component resource such as flags, icon, and descriptions are ignored.

The SDK includes two files for building a plug-in. Thefirst, ensapi - mac. h, includes the constants and
data structures listed here. It includes prototypes for the eight functions that are needed. For building the
trandator as a component, the file ens- conponent . ¢ can be used as the component main. It includes the
necessary component manager glue to accept the standard component manager calls as well asthe AP

calls. When it receives the API calls, it sets up the calling stack frame and then calls the functions which are
proto-typed in ensapi - mac. h. Thusens- conponent . ¢ should be compiled as anormal C file and linked
into the component.

In order to compileens- conponent . ¢, thetemplate fileusert r ans. h must be modified for the plug-in
being authored. A sampleisincluded. It containstwo sections. One isthe definition of the structure

t1 User d obal s. Thisisastructurethat is passed as the first argument for all the API calls. The translator
can define data it wants to be carried between calls to the APl and store it here. Thisstructureis
automatically allocated and managed by the component manager glue in ens- conponent . ¢c. Alsoin
usertrans. h are C pre-processor definitions for eight constants that indicate whether an API call is
implemented by the particular plug-in. Each constant should be defined to either t r ue or f al se.

Eudoralooksin a pre-defined set of directories for the Components that are EMS API plug-ins. Thisis done
at start-up time. Each plug-in discovered is loaded and becomes active. The plug-ins must have at hng
resource as described above or they will not be loaded. For the Macintosh, the paths are:

the folder the Eudora application is in
the sub folder Eudora Stuff of the folder the application is in
the extensions folder in the active system fol der

Note that the Eudora folder (where Eudora stores mailboxes and related files, but not the application file) is
not searched for plug-ins!

8.5. Building Windows DLLs

Building atranglation DLL is straightforward because all that is needed isaDLL that implements a minimal
subset of the API entry point functions using the standard “C” calling convention.

Eudora looks in a pre-defined set of directories for Windows DLLs that are EMS API plug-ins. This is done
at start-up time. Each plug-in discovered is loaded and becomes active. For Windows the directories are:

The sub-directory “ plugins” of the directory the Eudora .exe file is in
The sub-directory “ plugins” of the nmail directory

The fact that aparticular DLL isan EMS API DLL is determined by checking that it implements the
ems_plugin_version , ems_plugin_init and one of ems_translator_info,
ems_attacher_info or ems_special_info functions.

When creating icons, Eudora supports a 256 color palette which can be found in the file safety.bomp. Most
paint programs, including Paint Shop Pro and Adobe Photoshop, can use this file to extract the palette. The
reserve entries that shouldn't be used are indexes 11,12,13, and 14 (first color isindex 0). An image may use

a different palette, but its colors will be mapped into Eudora’s regardless if shown in Eudora with the
screen mode set to 256 colors (8 bit color).

Eudora EMS API Page 25

8.6. Efficiency considerations

Most of the functionsin a plug-in, except the actual translation, can usually be implemented with avery
small amount of code. These functions are also called much more frequently than the actual trandation
functions. Thus in some cases it may be advantageous to implement a trandator in two parts, the smaller
part which isloaded in memory all the time, and the larger part which is only loaded when trandlations are
to be performed.

On the Macintosh, this second part can be another component, a shared library or a code fragment. Nothing
about the API precludes any of these, and it is up to the translator author to decide which isto be used based
on which platforms are to be supported.

A similar strategy may be adopted with Windows where the bulk of the trandation function isimplemented
asasecond DLL that isloaded only when atranslation is being performed.

Eudora EMS API Page 26

8.7. Get the APl version number that this plug-in implements

M acintosh:

pascal |ong ens_pl ugi n_version(

short *api _version

Windows;
extern "C'

| ong W NAPI

short FAR* api _version

Place to return api version */

ens_pl ugi n_ver si on(

Place to return api version */

Eudora calls this function once when it is loading the plug-in to determine what version of the API it
implements. The API version that should be returned is defined in the API include files as EMS_VERSI ON.

Macintosh Eudora

EMS-API Version

v3.0 vl
v3.1-> v3.x vl, v3
v4.X vl, v3, v4

Windows Eudora

EMS-API Version

v3.0 V2
v3.1-> v3.x v2, v3
v4.X v2, v3, v4

On the Macintosh, Eudora checksthe ver si on string in thet hng resource asit isloading the plug-in.

Parameters

€ apiVersion

Put the version of the Plug-in’s API.

Return Value

EMSR_OK: All is OK, Eudora will continue loading plug-in.

Anything else: Eudora will unload the plug-in and not call any of its functions.

EudoraEMS API

Page 27

8.8. Initialize plug-in and get its basic info

Macintosh:
pascal |ong ens_pl ugin_init(
Handl e gl obal s,

/* t: Return for allocated instance structure */
short eudor aAPI Ver si on, /*

*

.

Qu

In: the Version of the APl Eudora is using */
I'n: Eudora mail configuration */

Qut: Return Plugin Information */

emsMai | Confi gP mail Confi g,
ensPl ugi nl nf oP pl ugi nl nfo

Windows:
extern "C' long WNAPI ens_plugin_init(
void FAR * gl obal s, /* Qut: Return for allocated instance structure */
short eudor aAPI Versi on, /* In: the Version of the APl Eudora is using */
emsMai | Confi gP mail Confi g, /* In: Eudoras mail configuration */
ensPl ugi nl nf oP pl ugi nl nfo /* Qut: Return Plugin Infornation */

Thisfunction is called once by Eudora as the plug-in is loaded. It is a good place to do plug-in specific
initiaizations.

Parameters

€ globals

Return here the pointer to globals that will be passed back in the rest of the functions. This
should be used for global datain the plug-in scope.

For the Macintosh, the globals argument is a handle to a data structure holding the plug-in’s

global state. It is passed to all functions. The Component Manager takes care of carrying this
between calls. If the plug-in is authored using SDK component m@nconponent . ¢, then

this structure should be defineduser t r ans. h.

For Windows, thens_pl ugi n_i ni t function must allocate this storage and return a pointer

to it in the location pointed to by the globals parameter. Eudora will then pass this pointer into
all other translation API calls for that plug-in-in. It should be de-allocated in the

ens_pl ug_i n_finish function.

= eudoraAPIVersion
The version of the API Eudora is using.

mailConfig
= size sizeof(emsMailConfig)

= eudoraWnd [Windows only]
A pointer to Eudora’s main application window.

= configDir

The path of a folder in which is the suggested location for a plug-ins own configuration data.
This will be the users mail directory + the plug-ins directory. This path varies as the Eudora
folder and setting path varies, thus a plug-in’s settings will vary with the Eudora settings if
the user has multiple Eudora set ups on the system.

Eudora EMS API Page 28

= userAdadr

The userAddr -> realname is the user's human name as entered in the “Real Name” setting of
the dominant personality. TheerAddr -> address is the rfc-822 address the user has

configured as their return address, or if no return address has been configured, it is the POP
account of the dominant personality.

plugininfo
= size Si zeof (emsPlugininfo)

€ numTrans
The total number of translators in this plug-in. Translator IDs range fromurttrans.

€ numAttachers
The total number of special menu items in this plug-in. IDs range fromuntattachers.

€ numSpecials
The total number of special menu items in this plug-in. IDs range fromuriSoecials.

€ desc
A short string suitable for a splash or about screen and should include the plug-in version

number. As with all strings returned to Eudora, on the Mac it must be allocated with
NewHandl e() and on Windows with the plug-ins internal memory allocator.

€ id
Each plug-in must have a unique ID number and return it iplthgi n_i d parameter.

These are available from an email auto-responder by sending a message to
<emsapi-ids@qualcomm.com>. See section 2.3 for more details on the auto-responder.

€ icon
The icon is shown in the plug-ins about box. On the Macintosh it should be an icon suite

allocated withNewHand! e() . For Windows it should be a 32xB®CON allocated with the
plug-ins own allocator function.

€ mem_rgmnt
The memory footprint required to run this plugin (Mac).

Return Value

EMSR_OX: All is OK, Eudora will continue loading plug-in.

Anything else: Eudora will unload the plug-in and not call anymore of its functions.

Eudora EMS API Page 29

8.9. Get basic translator info

Macintosh:
pascal |ong ens_translator_info(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
ensTransl atorP translnfo /* In/Qut: Return Translator Infornation */

)

Windows:
extern "C' long WNAPI ems_translator_info(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
emsTransl atorP translnfo /* InfQut: Return Translator Information */

Thisfunction is called for each translator ID by Eudora asit buildsitsinternal lists of translators while it
starts up. Note that any of the pointers to places to return data may be NULL so Eudora does not have to
request all the details at once. Some items like the flags and types will be loaded once initialy, while others
such as the icon may be retrieved each time it is needed.

Parameters

€ globals
The pointer to the globals is passed back for the trandlator to use.

transinfo
= size sizeof (ensTransl ator)
2 id
Thei d selects the particular translator in the plug-in for which the datais to be returned.

€ type

This describes what type of trandlator thisis (e.g., EMST_LANGUAGE), it must be one of
the types that start asEMST_ .

€ flags
The contextsin which atrandator can be called. Multiple flags are bitwise or-ed together.

If EMSF_Q4_ COVPLETI ONisset, EMBF_DEFAULT_Q ONwill default the trandlator to on. Set
EVMSF_TOOLBAR_PRESENCE to have this on the main toolbar by default. Set

EVMSF_ALL_TEXT in conjunction with EMSF_ON_REQUEST so you'll get the whole message
instead of just the selection.

€ desc
The description is a short string that is used for pull-down menu items. It is the only thing

that identifies a translator on the menu so it should include something that indicates which
plug-in it belongs to. An example might be “AcmeTrans Spanish-English.”

€ icon
The icon is used for presentation to the user in several places. On the Macintosh an icon

suite should be returned and should be allocated tisinigandl e() . For Windows, the
icon should be a 16x1# CON allocated with the plug-in’s memory allocator.

Eudora EMS API Page 30

Return Value
EMSR_OK: All isOK, Eudorawill continue load up the tranglator.

Anything else: Error will be logged.

Eudora EMS API Page 31

8.10. Check to see whether a translation can be performed

M acintosh:
pascal long ens_can_translate_file
Handl e gl obal s, /
ensTransl atorP trans, /
ensDat aFi | eP i nTransDat a, /
enmsResul t Stat usP transStatus /

(
* In: Pointer to plugin instance structure */
* In: Translator Info */

* In: What to translate */

* Qut: Translations Status information */

)

Windows:
extern "C' long WNAPI ems_can_transl ate(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
ensTransl atorP trans, /* In: Translator Info */
ensDat aFi | eP i nTransDat a, /* In: What to translate */

ensResul t StatusP transStatus /* Qut: Translations Status information */

)

This function checks to see whether a data item can be trandated. It is called by Eudora before every
trandation is attempted and in some cases to determine whether atranslation can be performed in a later
context on some data. The t r ans- >i d specifies which trandator from the plug-in isbeing called. The

i nTr ansDat a- >cont ext parameter isal ong with only one hit set to indicate the context (e.g., :
EMSF_ON_ARRI VAL, or EMSF_Q4_TRANSM SSI ON). The MIME type of the input datais aways provided
inthei nTransDat a parameter.

Parameters

€= globals
The pointer to the globalsis passed back for the translator to use.

trans
=2 size sizeof (ensTrans! ator)
2 id
Thei d selects the particular tranglator in the plug-in for which the dataiis to be returned.

= properties

Only used when in the EMBF_Q4_TRANSM SSI ON context. ens_queued_pr operti es can
set this.

inTransData
> size sizeof (ensTrans! ator)
= context

Thisisalong with only one bit set that represents the current context (e.g.,:
EVMSF_ON_ARRI VAL, or EMSF_Q4_TRANSM SSI ON)

= info

The MIME type of the input data. Thisiswhat should be checked to seeif the translator
wants to trang ate this message.

Eudora EMS API Page 32

header

= size Si zeof (emsHeaderData)
2> to

= from

= subject

=2 cc

= bce

These fields will be populated when EMSF_BASI C_HEADERS is set for the trandator. They
areread only.

=drawHeaders
Thisfield will be populated with the message headers when EMSF_ALL_HEADERS is set for
the translator. The header isin canonical MIME format, so each lineis delimited by a
carriage return-linefeed pair. Thisis read-only information.

transStatus
= size Si zeof (emsResultStatus)

€ error

If error isreturned, Eudorawill display thisin aerror dialog. If there was no error, set to
NULL.

€ code
Return for trand ator-specific result code

Return Value

EMSR_NOW Thetranslator will translate this message. ens_t ransl ate_fi | e will be called
next.

EMSR_NOT_NOW The trandlator will trandate this message, but not now. When writing an
ON_DISPLAY trandator, when receiving the message ON_ARRIVAL, check to seeif thisisa
message that this plug-in can trandate later, then return EMSR_NOT_NOW so it will be called
inthe ON_DISPLAY context.

EMSR_CANT_TRANS: Thisisnot amessage that this trandlator can trandlate.
Anything else: Failure. Thiswill cause Eudorato put up an error message associated with the

return. Fill intransSt at us- >err or if you want Eudorato display an error. EMSR_ (K is
considered afailure return.

Eudora EMS API Page 33

8.11. Performing translations

Macintosh:
pascal long ens_translate_fil e(
Handl e gl obal s,
ensTransl atorP trans,

/* In: Pointer to plugin instance structure */

/
emsDataFil eP inFile, /

/

/

/

In: Translator Info */

In: Wiat to translate */

Func to report progress/check for abort */
Qut: Result of the translation */

Qut: Translations Status information */

ensProgress progress,
ensDat aFil eP outFil e,
ensResul t St at usP transSt at us

EE I

)

Windows:
extern "C' long WNAPI ems_translate_file(
void FAR * gl obal s, Pointer to plugin instance structure */
ensTransl atorP trans, Transl ator Info */
ensDataFil eP inFile, What to translate */
emsProgress progress, nc to report progress/check for abort */
ensDat aFi | eP outFil e, t: Result of the translation */
ensResul t StatusP transStatus /* Qut: Translations Status information */

~——
EE
QTI___I

C 333535

)

This function performs the actual trandation. Note that ens_can_t r ansl at e isalways called by Eudora
before this function is called so the trandator author need not make the same checks here. This function will
only becaled if ens_can_t r ansl at e returns EMSR_NOW

The trandator may behave different ways in different contexts. For example when verifying a signaturein
the automatic on-display context, it may choose to fail if the certificate necessary to verify is unavailable,
but in the on-request context it may prompt the user to locate the certificate.

For tranglations on message text, the temporary files are deleted immediately after the tranglation is
complete. Attachments, however are not deleted until the user removes them. Thiswill change when Eudora
switches to using MIME storage internally.

Parameters

€2 globals
The pointer to the globalsis passed back for the translator to use.

trans
=2 size sizeof (ensTrans! ator)
2 id
Thei d selects the particular tranglator in the plug-in for which the dataiis to be returned.

= properties
Only used when in the EMBF_Q4_TRANSM SSI ON and EMSF_Q4_CQOVPLETI ON context.
ens_queued_properties can set this.

inFile
=2 size sizeof (ensTransl ator)

= context

Thisisalong with only one bit set that represents the current context (e.g.,:
EMSF_ON_ARRI VAL, or EMSF_Q4_TRANSM SSI ON)

Eudora EMS API Page 34

= info

The MIME type of theinput data. Thisiswhat should be checked to see if the translator
wants to tranglate this message.

header

= size Si zeof (emsHeaderData)
2> to

= from

= subject

=2 cc

= bee
These fields will be populated when EMSF_BASI C_HEADERS is set for the trand ator.

= rawHeaders

Thisfield will be populated with the message headers when EMSF_ALL_HEADERS is set for
the trand ator.

= fileName

Thefileto betrandated. If EMBF_REQUI RES M ME issettransl nf o->fl ag

enms_transl ator _i nf o iscalled, al the headerswill be supplied in thefile. If thisisthe

top most part, all the top most headers will be there, if this is a part, only the part’'s headers
will be there.

progress
The translator should call the function periodically with an argument between 0 (just begun)
and 100 (complete) to indicate its progress. The translator should check the return value from
the function. If the value is 1 it should abort the translation, and if O it should continue. A
translator may display its own progress status and not make use of the one which Eudora
supplies. It should still call the progress function periodically with an argument of -1 to check
for an abort. If the call to the progress function returns 1 indicating abort at any time, the
translation must be aborted. In other words, the abort indication must never be ignored.

outFile
=2 size sizeof (ensTransl ator)

€ info

The translator must always return the correct MIME type of the translation output in this
parameter even if the translator generates MIME. Thus, if the translator is unwrapping a
MIME object it must parse theont ent - Type: header and return its valuedat _ni ne.

This also implies that translators that generate MIME will return the resulting output MIME
type in two places, in the actual data and inotite_ni ne parameter.

Except for translations in the on-request context, the input and output MIME types must be
different in order to avoid an infinite translation loop. This can be done by adding a MIME
parameter to the MIME type to indicate a translation has been performed. A good parameter
name i- eudor a- t r ansl at ed, and a good value is the name of the translator and the
context (e.g.,spani sh-engl i sh-on-arrival). Such a parameter will be ignored by all

other MIME parsing. The translator should check for this parameter in its

ens_can_t ransl at e function.

Eudora EMS API Page 35

= fileName
An empty output fileis created by Eudora, and the name of thisfileis passed into the
trandator. The translator should write its output datainto the file. If the trandation is
aborted Eudora will clean up and remove thisfile.

transStatus
= size Si zeof (emsResultStatus)

€ desc
If desc isreturned it will be displayed in the message window adjacent to the entity just
translated along with some visual indication that it istied to the entity.

€ error
If error isreturned, Eudorawill display thisin aerror dialog. If there was no error, set to
NULL.

€ code
For most trandations the out _code isignored, but for translations of type
EMST_SI GNATURE it should be one of the constants EMSC_SI GOK, EMSC_SI GBAD, or
EMSC_SI GUNKNOWN to indicate the status of the signature. Eudora displays the bar that ties
theicon and status message to the translated text differently, depending on the result of the
signature verification.

Return Value

EMSR_OK: The trandator will translate this message. ens_transl ate_fil e will be called
next.

EMSR_DATA UNCHANGED: Eudorawill leave the original text in the message and ignore the
returned outFile data. Only applicable in the on-request state. In other states, thiswill be

treated as an error.

Anything else: Failure. Thiswill cause Eudorato put up an error message associated with the
return. Fill int ransSt at us- >err or if you want Eudorato display an error.

Eudora EMS API Page 36

8.12. Finish use of a plug-in

Macintosh:
pascal |ong ens_pl ugi n_fini sh(
Handl e gl obal s /* In: Pointer to plugin instance structure */
)i
Windows:

extern "C' long WNAPI ens_plugin_fin
voi d FAR* gl obal s /*

i sh(
In: Pointer to plugin instance structure */

This gives the plug-in a chance to free allocated memory, save state information, etc. Windows trandators
should de-all ocate the globals memory, but Macintosh translators should not.

Parameters

= globals
The pointer to the globalsis passed for clean up.

Return Value

EMSR_OK: All isOK.

Anything Else: Eudorawill log an error.

Eudora EMS API Page 37

8.13. Free API data structures (Windows only)

extern "C' long WNAPI ens_free(
voi d FAR* nem /* Mermory to free */
)

Thisis called by Eudorato free data structures passed from a plug-in to Eudora. This data includes strings,
addresses, and the MIME type data structure. Thisis not used on the Macintosh since all dataon it are
Handles allocated with standard functions.

Parameters

=2 mem
The pointer to the memory is passed for clean up.

Return Value
EMSR_OK: All isOK.

Anything Else: Eudorawill log.

Eudora EMS API Page 38

8.14. Plug-in Settings Dialog

Maci nt osh:

pascal |ong ens_pl ugi n_confi g(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMai | ConfigP mail Config /* In: Eudora mail info */

)i

W ndows:
extern "C' long WNAPI ems_pl ugi n_config(
void FAR gl obals, /* In: Pointer to plugin instance structure */

emsMai | Confi gP mail Config /* In: Eudora mail info */

The icon and name of the plug-in will appear in a plug-ins “Installed Message Plug-ins” dialog selected
from the “Message Plug-ins Settings” item under the “Special” menu. When the user selects a plug-in and
clicks the “Settings...” button, this function will be called. The plug-in should put up its settings panel,
interact with the user and store the result.

After this function is called, Eudora will cahs_t r ans_i nf o for each translator to see if flags have
changed.

Parameters

= globals
The pointer to the globals is passed back for the trandlator to use.

mailConfig

= configDir
The path of afolder in which is the suggested location for a plug-ins own configuration data.
Thiswill be the users mail directory + the plug-ins directory. This path varies as the Eudora
folder and setting path varies, thus a plug-in’s settings will vary with the Eudora settings if
the user has multiple Eudora set ups on the system.

= userAddr

The userAddr -> realname is the user's human name as entered in the “Real Name” setting of
the dominant personality. Th&erAddr -> address is the rfc-822 address the user has

configured as their return address, or if no return address has been configured, it is the POP
account of the dominant personality.

Return Value
EVMSR_OK: All is OK.

Anything Else: Eudora will log.

Eudora EMS API Page 39

8.15. Queued translation properties

Maci nt osh:

pascal |ong ens_queued_properties(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsTransl ator trans /* In/fCQut: The translator */
I ong *sel ected /* In/fCQut: state of this translator */

W ndows:

extern "C' long WNAPI ens_queued_properties(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
ensTransl ator trans /* In/CQut: The translator */
I ong *sel ected /* InfCQut: state of this translator */

For queued trandations the user selects the trandlation possibly including some parameters about it, at a
different time than the tranglation is performed. This function allows the parameters to be stored with the
message whileit isin the queue.

Thisfunctionis optional. If it is not supplied, queued trandations will be toggled on and off automatically
by Eudora. If thisisfunction is present it will be called when the user clicks the icon in the composition bar.
The function is passed the usua parametersto identify the translator and context. When called, this function
may put up a dialogue and interact with the user.

If the user has selected EMST_PREPROCESS and EMST_SI GNATURE trand ations, and an EMST_COALESCED
trandation isavailable, it will be called instead as described previously. The properties of the two transators
will be passed to the EMST_COAL ESCED translator concatenated and separated by a comma. The

EMST_SI GNATURE translator’s parameters will be first. This way nothing special need be done by the
translators a queue time. They each set their parameters as they wish.

Parameters

= globals
The pointer to the globals is passed back for the trandlator to use.

trans
= size sizeof (ensTransl ator)
2 id
Theid selects the particular translator in the plug-in for which the datais to be returned.

€ properties
These properties will get stored with the message only if sel ect ed isset. It will be passed
back the actual trandation is performed intheens_t ransl ate_fi | e function. The string
must be printable ASCII characters from “I” (0x21) to “~” (Ox7e) and must not contain any
commas (0x2c). The string must also be less than 100 bytes.

€ selected
Eudora will pass the current selection state. Return whether is should be selected or not.

Return Value
EVMSR_OK: All is OK

Anything Else: Eudora will log.

Eudora EMS API Page 40

8.16. Attachment Menu Items

Maci nt osh:

pascal |ong ens_attacher_info(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP attachMenu /* Qut: The menu */

)i

W ndows:

extern "C' long WNAPI ens_attacher_info(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP attachMenu /* Qut: The menu */

)

Eudorawill place these menus in the Message =» Attach sub-menu. When a user selects an attachment
plug-in, theens_at t acher _hook function will be called.

Parameters

= globals
The pointer to the globalsis passed back for the translator to use.

attachMenu
= size sizeof (ensMenu)
2id
ID of trandlator to get information for.

€ desc
The text that will go in the Message->Attachment-> sub-menu.

€ icon

A 16x16 icon that will show up in the menu and in the custom toolbar selection. NULL will
display adefault icon

€ flags
Set EMSF_TOOLBAR_PRESENCE s0 this will show up on the main toolbar on startup.

Return Value

EMSR_OK: All isOK.

Anything Else: Eudorawill not load up the item.

Eudora EMS API Page 41

8.17. Attachment Menu Hook

Maci nt osh:
pascal |ong ens_attacher_hook(

Handl e gl obal s, In: Pointer to plugin instance structure */
emsMenuP attachMenu, /* In: The menu */

FSSpec *attachDir, /* In: Location to put attachnents */

I ong *numAttach, /* Qut: Nunber of files attached */

ensDat aFi | eH *attachFil es /* Qut: Nanme of files witten */

)

W ndows:

extern "C' long WNAPI ens_attacher_hook(
voi d FAR * gl obal s, /* I'n: Pointer to plugin instance structure */
ensMenuP attachMenu, /* In: The menu */
LPSTR attachDir, /* I'n: Location to put attachnents */
long * numAttach, /* Qut: Nunber of files attached */
emsDataFi |l eP ** attachFiles /* Qut: Name of files witten */

)

When a user selects an attacher, theens_at t acher _hook function will be called. The plug-in can create a
user interface to select or create afile. The path to thisfile should be returned.

Parameters

= globals
The pointer to the globalsis passed back for the translator to use.

attachMenu
= size sizeof (ensMenu)
2id
ID of trandlator to get information for.

€ desc
The text that will go in the Message->Attachment-> sub-menu.

= attachDir
The suggested directory to put the attached file. If the fileis put into this directory, Eudora will
manage when the file is del eted.

= numAttach
The number of files that will be attached.

AttachFiles (this is an array of Attached files, so ‘'n’ files can be attached)
€size sizeof (ensTransl ator)

€ fileName
Thefile to be attached

Return Value
EMBR_OK: All isOK. AttachFi | e must contain a path to afile as well.

Eudora EMS API Page 42

Anything Else: Eudorawill log an error.

EudoraEMS API

Page 43

8.18. Special Menu Items

Maci nt osh:

pascal |ong ens_special _i nfo(
Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* Qut: The menu */

)i

W ndows:

extern "C' long WNAPI ens_special _i nfo(
void FAR * gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* Qut: The menu */

)
Eudorawill place these menus in the Tools (Windows) or Special (Macintosh) menu. When a user selects
an attacher menu item, theens_speci al _hook function will be called.

Parameters

= globals
The pointer to the globals is passed back for the trandlator to use.

attachMenu
=2 size sizeof (ensMenu)
2id
ID of trandlator to get information for.

€ desc
The text that will go in the menu item.

€ icon
A 16x16 icon that will show up in the menu and in the custom toolbar selection. NULL will
display a default icon.

€ flags
Set EMSF_TOOLBAR PRESENCE so thiswill show up on the main toolbar on startup.

Return Value
EMSR_OK: All isOK.

Anything Else: Eudorawill not load up the item.

Eudora EMS API Page 44

8.19. Special Menu Hook

Maci nt osh:
pascal |ong ens_speci al _hook(

Handl e gl obal s, /* In: Pointer to plugin instance structure */
emsMenuP speci al Menu /* In: The menu */

)i

W ndows:

extern "C' long WNAPI ens_speci al _hook(
void FAR * gl obal s,

/ Pointer to plugin instance structure */
emsMenuP speci al Menu /

I'n
In: The menu */

* k|

)
Thiswill be called the special menu item is selected by the user.

Parameters
= globals
The pointer to the globals is passed back for the trandlator to use.

attachMenu
= size sizeof(emsMenu)
2id
ID of trandlator to get information for.

Return Value
EVMSR_OK: All isOK.

Anything Else: Eudorawill log an error.

Eudora EMS API Page 45

9. Changes in latest APl descriptions

December 1997

Updated to V4

EVMSF_Q4_COVPLETI ON supported for outgoing messages

Trandator Iconswill be displayed for Attachers, Special Tools, struct emsMenu now includes
icon and flags fields.

EMSF_TOOLBAR_PRESENCE will default translator icons on main toolbar

Non-Mime messages will be sent to trandators as text/plain for the ON_ARRI VAL context.
ON_REQUEST trandators will now get the option of handling text/html or text/plain
EVMSF_ALL_TEXT will give al the text to ON_REQUEST translators

August 1997

Finalized v3

Complete format overhaul to elliminate unwanted fonts and styles
Removed discussion of future features which do not apply to v4
Revised figure 1

Appendix B - MIME Type Mappings added

Section 6: Attacher Plug-insrevised

December 1996

Updated to V3

Parameter Blocks passed into functions instead of parameter lists
ems_attacher_info, ems_attacher_hook

ems_special_info, ems_special _hook

removed trandlator subtype

access to al headers

EMSR_UNCHANGED allows for translators that don’t change data
access to content-disposition

August 20, 1996

I ncremented API version number to 2

Implemented the settings dialogue

Implemented queued_properties

Added properties parameterdos_can_transl ate(),ens_transl ate_fil e() and
ems_transl ate_buf ()

Added user name, address and configuration foldemgopl ugi n_i ni t () call

Changed name @is_can_transl ate_fil e() toens_can_transl at e() and removed a
couple of parameters.

July 19, 1996

Clarified features in version 1 vs. future versions
Completed name change from tlapi to ems api
Added description of ID allocating auto responder
Major clarifications to use of MIME format and type
Added about box to list loaded plug-ins
Clarifications on the translation process

More consistent terminology and notation
Specifies Windows icon format

Eudora EMS API Page 46

» Specifies Windows plug-in search directories

e Abort return code added, plug-ins required to abort when told to do so
* Moved MIME background to an appendix

« Dropped the buffer version of ems can_trandate

May 22, 1996

* Removed DOES_M ME_LEAVES since it was unused and meaningless

e Progress function now works.

» Described some future additions

e on-request tranglators now checks MIME types

* More documentation clarifications and rewording (MIME-related stuff)

e Described planned implementation of buffer-based trandlation

» Significant support for Windows added (but Windows SDK isn't available yet)
* Windows allocator function added

e Switch to separate Macintosh and Windows API definitions
« Removed OP code and lookup function

« Added calling interface details for Mac and Windows

e Added export warning for translation authors

* Page numbering and minor wording changes

e Major clarifications

e Added module_version function

* Removed de-allocator and version arguments frotul e_i ni t
e Added module icon argumentitodul e_i ni t

Eudora EMS API Page 47

10. References

[Component]
[DLL]

[Crocker]

[DISP|

[MIME]

[FREED]

[Lang]

[Enriched]

Inside Macintosh: More Macintosh Toolbox. Addison Wesley 1993.
Windows SDK that describes DLL’s

CROCKER, D. Standard for the format of ARPA Internet Text Messdgtsnet
Engineering Task Force, RFC 822. 1982.

DORNER, S. AND TROOST, R. Commuinicating Presentation Information in Internet
Messages: The Content-Disposition Headlsternet Engineering Task Force, RFC 1806.

BORENSTEIN, N., FREED, N., KLENSIN, J., MOORE, K., AND POSTEL, J. MIME: Multipart
Internet Mail Extensiongnternet Engineering Task Force, RFC 2045, 2046, 2047, 2048

FREED, NED, ET AL. Security Multipart for MIME: multipart/signed and
multipart/encryptedinternet Engineering Task Force, RFC 1847. 1995

ALVESTRAND, HARALD. Tags for Identifcation of Langagdsiternet Engineering Task
Force, RFC 1766. 1995

RESNICK, PETE AND WALKER, AMANDA. RFC-1896, The text/enriched content type.
Internet Engineering Task Force, RFC 1896. 1996

Eudora EMS API Page 48

Appendix A - A brief introduction to MIME

MIME (Multipart Internet Mail Extensions) [MIME] is the Internet standard for describing objectsin
Internet e-mail. It is also used in other applications on the Internet such as the World-Wide Web. The
MIME standard has three main functions. It provides type tagging information for e-mail messages and
their parts. It provides aformat for representing object types and message structure, and it provides transfer
encoding for safely passing 8bit text and binary data through 7hit text-only data paths.

Cont ent - Type: MJLTI PART/ M XED; BOUNDARY="-559023410- 851401618-831602781=: 25682"

---559023410- 851401618- 831602781=: 25682
Cont ent - Type: TEXT/ PLAI N, charset =US- ASCl |

This is a little text part of the nessage

---559023410- 851401618- 831602781=: 25682

Content - Type: | MAGE/ G F; charset =US- ASCl |

Cont ent - Tr ansf er - Encodi ng: BASE64

Content - Di sposition: attachnment; nane="apipict.gif"

I C8ql DO9PTO9PTO9PTOIPTO9PTOIPTOIPTO9PTOIPTOIPTO9PTOIPTOIPTO9
eHRI bRl ZCBNZXNz YWl | FNI cnZpY2Vz| EFQSSBTRESgMBAWY]j | gKELhe SB4
eCAXOTk2KQOKI CAgl FRoaXMyUORLI HNLcHBvcnRz | EFQSSB2ZXJzaV@ul DEN
Gi Agl CBDb3B5cm naHQIMIk5NSwgMTk5Ni BRVUFMQDONTSBI bmviDQogl CAg

---559023410-851401618-831602781=: 25682- -

A small example of a MIME e-mail message is shown above. It is atwo-part message with the first part
being some text and the second part being an attachment. The second part is a GIF image with base64
encoding so the binary GIF image can be passed through 7-bit channels.

Each MIME type has atop level type, a sub-type and optional parameters. The top-level content types are
relatively fixed and currently number seven: text, application, multipart, message, image, audio and video.
The multipart type is of particular importance because it is a container for any number of MIME objects,
thus MIME allows nested structuring of message objects. There are many sub-types for each top-level type.
New sub-types can be registered as long as there is a document giving a basic description of them. The
actual type information is usually expressed as ASCI| text in the form t ype/ sub- t ype. The type may aso
include parameters which allow specification of further details about the types. The set of parametersis
completely dependent on the sub-type, though some are common to more than one sub-type. Two common
parameters are character-set and language.

In addition to defining a typing scheme, MIME very precisely specifies data formats for representing the
type data and for creating a data object that combines the actual content data and the type information.

Because MIME objects are commonly transferred via Internet e-mail, often a 7bit text-only path, the MIME
standard also includes an encoding scheme for expressing arbitrary data as 7hit text with limited line
lengths. This is known as “content transfer encoding”.

Because MIME is used to pass objects over the network between unlike computing platforms (e.g.,
Macintosh and Windows), it defines a notion of a canonical format for data objects. This is a format for a
data object of a specific type that is either common to the platforms it is used on, or is defined to be the
interchange format for the object across platforms. The most important canonical format is for text objects
because the end-of-line delimiter for text files varies between major computing platforms. Canonical text in
MIME messages has lines separated by the CRLF (carriage return and line feed) pair and does not include
CR or LF except at the end of a line.

A canonical on-the-wire formatted MIME entity is an octet stream (which may be in the process of being

transmitted, in a file on disk, or in a memory buffer) representing message objects in their canonical format
tagged with MIME types.

Eudora EMS API Page 49

It possible to define proprietary MIME types for specific translator applications. It is also possible to go
through the standards process to define new MIME types to be used widely on the Internet. The types
enable translators to easily and efficiently recognize data on which they wish to operate.

The reader isreferred to the MIME standards documents [MIME] for further details.

Eudora EMS API Page 50

Appendix B - MIME type mappings

When afileis attached either manually or viaan EMS API attacher plug-in, Eudoratriesto find the correct
MIME type/subtype for the attachment. If the MIME type/subtype cannot be found, the default
“application/octet-stream” is used.

Each platform has its own method for determining the MIME type of a file.
Windows

Under Windows, the MIME type of the file is determined by the file extension. There is a section of the
EUDORA.INI file which maps many common file extensions to their MIME type/subtype. Within the
EUDORA.INI file, the “MAPPINGS” section contains all the extension to MIME mappings.

Each line in the MAPPINGS section has the following format:

<di recti on>=<ext ensi on>, <Mac creat or >, <Mac type>, <M ME type>, <M ME subt ype>

An example section:

[Mappi ngs] _

out =t xt, ttxt, TEXT, text, plain

bot h=doc, MSWD, , appl i cat i on, nsword
i n=xl s, XCEL, , ,

The direction specifies when the given mapping should be applied. This field can be either “in”, “out”,
or “both.” Messages received by Eudora are processed by the “in” and “both” mappings. Composed
messages being sent are processed by the “out” and “both” mappings.

Note that every mapping line has exactly four commas, regardless of how much information is
provided.

Macintosh
On the Macintosh, MIME mappings for attachments are controlled by resources inside the Eudora
application of type 'EulM' and 'EUOM'. These resources relate the MIME format's content type and

sub-type with file extensions and Macintosh type and creator codes. These resources also contain flags
which specify whether the attachment is text, a basic type, and other properties.

Eudora EMS API Page 51

