

PKCS #11: Cryptographic Token Interface Standard (Cryptoki)

An RSA Laboratories Seminar

Revised September 12, 1995

�

Copyright (1995 RSA Laboratories, a division of RSA Data Security, Inc. All rights reserved. 901-903008-132-000-000

�Introduction

Portable devices ideal for public-key cryptography

store private keys securely

cryptographic operations performed by device

Standard programming interface increasingly important

PKCS #11 (Cryptoki) offered as candidate

Status

Announced in January 1994

First draft in February

Review meeting May 19–20

Second draft released October 19

Third draft released March 22, 1995

Pre-release of final document April 22, 1995

Final document released April 28, 1995

Design goals

1. Technology independence

any kind of cryptographic device

any operating system

2. Resource sharing

more than one application per device, or device per application

General model

Cryptoki is a programming interface that gives a common logical view to all kinds of cryptographic device

a cryptographic token

“software” devices also supported

A given Cryptoki implementation supports certain classes of device

initially, each class expected to have its own Cryptoki implementation

eventually, a single implementation for all classes?

General model (cont’d)

� EMBED ShapewareVISIO20 ���

“Other Security Layers” might include:

Generic Security Services Application Programming Interface (RFCs 1508 and 1509)

Generic Cryptographic Service API (X/Open)

Cryptographic API (CAPI) (Microsoft)

Programming model

Cryptoki maintains a list of slots that interface to tokens, and a list of tokens “in the system”

Application opens a session with a token, and a user “logs in”

Token stores collection of objects

Application data, certificates, and keys

Tokens and slots

Application can obtain information about each slot, such as:

description (e.g., “PCMCIA”)

if the device is removable

if the slot is a “hardware” or “software” slot

if a token is present

Tokens and slots (cont'd)

Application can obtain a list of tokens in the system and information about each one, such as:

a label

description (manufacturer, model)

serial number

status (read-only, random number generator)

maximum of sessions

maximum and minimum length of PIN

amount of total and free memory on the token

Sessions

Application opens a session with a token

read-only session

read/write session

For greater access, application user logs in

requires PIN

Security Officer or normal user access

Objects

Classes

Application data objects hold information defined by an application

Certificate objects hold public-key certificates

Key objects hold public, private, and secret keys

Lifetime

Token objects exist on token and remain after session is closed

Session objects exist only for the duration of the session

Objects

Visibility

Public objects are visible to all sessions

Private objects are visible only after a user has logged in

Objects consist of attributes

An application can create or destroy objects, and manipulate attributes

An application can also search for objects based on attributes

Attributes supported depends on application profile

Object types

Application data

Certificate

Public key

RSA

DSA

Diffie-Hellman

Private key

RSA

DSA

Diffie-Hellman

Secret key

RC2

RC4

DES (single, double, or triple length)

Cryptographic operations

An application can perform cryptographic operations on objects and data supplied by the application

operation may run in parallel with application

Cryptographic operations supported depends on mechanisms supported by device

Functions

C_Initialize: initializes Cryptoki

C_GetInfo: obtains general information about Cryptoki

C_GetSlotList: obtains a list of slots in the system

C_GetSlotInfo: obtains information about a particular slot

C_GetTokenInfo: obtains information about a particular token

C_GetMechanismList: obtains a list of mechanisms supported by a token

C_GetMechanismInfo: obtains information about a particular mechanism supported by a token

Functions (cont’d)

C_InitToken: initializes a token

C_InitPIN: initializes the normal user’s PIN

C_SetPIN: modifies the PIN of the current user

C_OpenSession: opens a connection or “session” between an application and a particular token

C_CloseSession: closes a session

C_CloseAllSessions: closes all sessions with a token

C_GetSessionInfo: obtains information about the session

Functions (cont’d)

C_Login: logs into a token

C_Logout: logs out from a token

C_CreateObject: creates an object

C_CopyObject: creates a copy of an object

C_DestroyObject: destroys an object

C_GetObjectSize: obtains the size of an object in bytes

C_GetAttributeValue: obtains an attribute value of an object

C_SetAttributeValue: modifies an attribute value of an object

C_FindObjectsInit: initializes an object search operation

C_FindObjects: continues an object search operation

Functions (cont’d)

C_EncryptInit: initializes an encryption operation

C_Encrypt: encrypts single-part data

C_EncryptUpdate: continues a multiple-part encryption operation

C_EncryptFinal: finishes a multiple-part encryption operation

Functions (cont’d)

C_DecryptInit: initializes a decryption operation

C_Decrypt: decrypts single-part encrypted data

C_DecryptUpdate: continues a multiple-part decryption operation

C_DecryptFinal: finishes a multiple-part decryption operation

Functions (cont’d)

C_DigestInit: initializes a message-digesting operation

C_Digest: digests single-part data

C_DigestUpdate: continues a multiple-part digesting operation

C_DigestFinal: finishes a multiple-part digesting operation

Functions (cont’d)

C_SignInit: initializes a signature operation

C_Sign: signs single-part data

C_SignUpdate: continues a multiple-part signature operation

C_SignFinal: finishes a multiple-part signature operation

C_SignRecoverInit: initializes a signature operation, where the data can be recovered from the signature

C_SignRecover: signs single-part data, where the data can be recovered from the signature

Functions (cont’d)

C_VerifyInit: initializes a verification operation

C_Verify: verifies a signature on single-part data

C_VerifyUpdate: continues a multiple-part verification operation

C_VerifyFinal: finishes a multiple-part verification operation

C_VerifyRecoverInit: initializes a verification operation where the data is recovered from the signature

C_VerifyRecover: verifies a signature on single-part data, where the data is recovered from the signature

Functions (cont’d)

C_GenerateKey: generates a secret key

C_GenerateKeyPair: generates a public-key/private-key pair

C_WrapKey: wraps (encrypts) a key

C_UnwrapKey: unwraps (decrypts) a key

C_DeriveKey: derives a key from a base key

C_SeedRandom: mixes in additional seed material to the random number generator

C_GenerateRandom: generates random data

Functions (cont’d)

C_GetFunctionStatus: obtains updated status of a function running in parallel with the application

C_CancelFunction: cancels a function running in parallel with the application

Notify: callback function to process notifications from Cryptoki

Example: Signing a message

1.	Find token

C_GetSlotList, C_GetTokenInfo (one or more times)

2.	Open session, and log in

C_OpenSession, C_Login

3.	Find key that supports signatures

C_FindObjects

4.	Run signature functions

C_SignInit, C_Sign

5.	Log out and close session

C_Logout, C_CloseSession

Example application profiles

Privacy-Enhanced Mail (PEM)

RSA, DES, MD2, MD5

Government authentication-only

DSA, SHA

Cellular Digital Packet Data (CDPD)

Diffie-Hellman, RC4

More to be defined

Conclusions

Cryptoki is a standard programming interface for portable cryptographic devices

More application profiles to be defined

First libraries demonstrated at 1995 RSA Data Security conference, more to come

RSA has a software-only implementation of Cryptoki called “SofToken”

RSA also has a Cryptoki test program for Windows 3.1x Cryptoki DLL’s

Obtaining copies

E-mail responder: pkcs@rsa.com

FTP: rsa.com, pub/pkcs/pkcs-11 directory

Mailing list: pkcs-11-dev@rsa.com

to subscribe: pkcs-11-dev-request

�PAGE �

� PAGE �3�

� PAGE �1�

