1 Mechanisms

Table 1, Mechanisms vs. Functions

	
	Functions

	Mechanism
	Encrypt

&

Decrypt
	Sign

&

Verify
	SR

&

VR1
	Digest
	Gen.

 Key/

Key

Pair
	Wrap

&

Unwrap
	Derive

	CKM_CAMELLIA_KEY_GEN
	
	
	
	
	(
	
	

	CKM_CAMELLIA_ECB
	(
	
	
	
	
	(
	

	CKM_CAMELLIA_CBC
	(
	
	
	
	
	(
	

	CKM_CAMELLIA_CBC_PAD
	(
	
	
	
	
	(
	

	CKM_CAMELLIA_MAC_GENERAL
	
	(
	
	
	
	
	

	CKM_CAMELLIA_MAC
	
	(
	
	
	
	
	

	CKM_CAMELLIA_ECB_ENCRYPT_DATA
	
	
	
	
	
	
	(

	CKM_CAMELLIA_CBC_ENCRYPT_DATA
	
	
	
	
	
	
	(

1 SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

3 Mechanism can only be used for wrapping, not unwrapping.

1.1 CAMELLIA

 Camellia was developed in 2000, and we presented Camellia at various international cryptographic conferences, such as Fast Software Encryption (FSE) and Selected Areas in Cryptography (SAC).
 Camellia has attracted attention of world wide cryptographers after the presentation, and, as the result, more than 40 papers besides NTT has been reported on the security and implementation evaluations in these conferences. Let see the related reference list of Camellia as below.
 http://info.isl.ntt.co.jp/crypt/eng/camellia/reference.html
In addition, Camellia has also been selected as a recommendation/standardization cipher by various organizations/projects, such as NESSIE, and ISO/IEC, besides IETF.
1.1.1 Definitions

This section defines the key type “CKK_CAMELLIA” for type CK_KEY_TYPE as used in the CKA_KEY_TYPE attribute of key objects.

Mechanisms:

CKM_CAMELLIA_KEY_GEN

CKM_CAMELLIA_ECB

CKM_CAMELLIA_CBC

CKM_CAMELLIA_MAC

CKM_CAMELLIA_MAC_GENERAL

CKM_CAMELLIA_CBC_PAD
1.1.2 Camellia secret key objects

Camellia secret key objects (object class CKO_SECRET_KEY, key type CKK_CAMELLIA) hold Camellia keys. The following table defines the Camellia secret key object attributes, in addition to the common attributes defined for this object class:

Table 2, Camellia Secret Key Object Attributes

	Attribute
	Data type
	Meaning

	CKA_VALUE1,4,6,7
	Byte array
	Key value (16, 24, or 32 bytes)

	CKA_VALUE_LEN2,3,6
	CK_ULONG
	Length in bytes of key value

- Refer to table エラー! 参照元が見つかりません。 for footnotes

The following is a sample template for creating a Camellia secret key object:

CK_OBJECT_CLASS class = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_CAMELLIA;

CK_UTF8CHAR label[] = “A Camellia secret key object”;

CK_BYTE value[] = {...};

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &class, sizeof(class)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_TOKEN, &true, sizeof(true)},

 {CKA_LABEL, label, sizeof(label)-1},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_VALUE, value, sizeof(value)}

};

CKA_CHECK_VALUE: The value of this attribute is derived from the key object by taking the first three bytes of the ECB encryption of a single block of null (0x00) bytes, using the default cipher associated with the key type of the secret key object.

1.1.3 Camellia key generation

The Camellia key generation mechanism, denoted CKM_CAMELLIA_KEY_GEN, is a key generation mechanism for Camellia.

It does not have a parameter.

The mechanism generates Camellia keys with a particular length in bytes, as specified in the CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new key. Other attributes supported by the Camellia key type (specifically, the flags indicating which functions the key supports) may be specified in the template for the key, or else are assigned default initial values.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

1.1.4 Camellia-ECB

Camellia-ECB, denoted CKM_CAMELLIA_ECB, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia and electronic codebook mode.
It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 3, Camellia-ECB: Key And Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CAMELLIA
	any
	input length rounded up to multiple of block size
	

	C_UnwrapKey
	CAMELLIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

1.1.5 CAMELLIA-CBC

Camellia-CBC, denoted CKM_CAMELLIA_CBC, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia and cipher-block chaining mode.
It has a parameter, a 16-byte initialization vector.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length is a multiple of the block size. The output data is the same length as the padded input data. It does not wrap the key type, key length, or any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as the CKA_VALUE attribute of the new key; other attributes required by the key type must be specified in the template.

Constraints on key types and the length of data are summarized in the following table:

Table 4, Camellia-CBC: Key And Data Length

	Function
	Key type
	Input length
	Output length
	Comments

	C_Encrypt
	CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_Decrypt
	CAMELLIA
	multiple of block size
	same as input length
	no final part

	C_WrapKey
	CAMELLIA
	any
	input length rounded up to multiple of the block size
	

	C_UnwrapKey
	CAMELLIA
	multiple of block size
	determined by type of key being unwrapped or CKA_VALUE_LEN
	

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

1.1.6 Camellia-CBC with PKCS padding

Camellia-CBC with PKCS padding, denoted CKM_CAMELLIA_CBC_PAD, is a mechanism for single- and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on Camellia; cipher-block chaining mode; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a 16-byte initialization vector.

The PKCS padding in this mechanism allows the length of the plaintext value to be recovered from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no value should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap RSA, Diffie-Hellman, X9.42 Diffie-Hellman, EC (also related to ECDSA) and DSA private keys (see Section エラー! 参照元が見つかりません。 for details). The entries in the table below for data length constraints when wrapping and unwrapping keys do not apply to wrapping and unwrapping private keys.

Constraints on key types and the length of data are summarized in the following table:

Table 5, Camellia-CBC with PKCS Padding: Key And Data Length

	Function
	Key type
	Input length
	Output length

	C_Encrypt
	CAMELLIA
	any
	input length rounded up to multiple of the block size

	C_Decrypt
	CAMELLIA
	multiple of block size
	between 1 and block size bytes shorter than input length

	C_WrapKey
	CAMELLIA
	any
	input length rounded up to multiple of the block size

	C_UnwrapKey
	CAMELLIA
	multiple of block size
	between 1 and block length bytes shorter than input length

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

1.1.7 General-length Camellia-MAC

General-length Camellia -MAC, denoted CKM_CAMELLIA_MAC_GENERAL, is a mechanism for single- and multiple-part signatures and verification, based on Camellia and data authentication as defined in FIPS PUB 113.

It has a parameter, a CK_MAC_GENERAL_PARAMS structure, which specifies the output length desired from the mechanism.

The output bytes from this mechanism are taken from the start of the final Camellia cipher block produced in the MACing process.

Constraints on key types and the length of data are summarized in the following table:

Table 6, General-length Camellia-MAC: Key And Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	CAMELLIA
	any
	0-block size, as specified in parameters

	C_Verify
	CAMELLIA
	any
	0-block size, as specified in parameters

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

1.1.8 Camellia-MAC

Camellia-MAC, denoted by CKM_CAMELLIA_MAC, is a special case of the general-length Camellia-MAC mechanism. Camellia-MAC always produces and verifies MACs that are half the block size in length.

It does not have a parameter.

Constraints on key types and the length of data are summarized in the following table:

Table 7, Camellia-MAC: Key And Data Length

	Function
	Key type
	Data length
	Signature length

	C_Sign
	CAMELLIA
	any
	½ block size (8 bytes)

	C_Verify
	CAMELLIA
	any
	½ block size (8 bytes)

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure specify the supported range of Camellia key sizes, in bytes.

Key derivation by data encryption – Camellia

These mechanisms allow derivation of keys using the result of an encryption operation as the key value. They are for use with the C_DeriveKey function.

Definitions

Mechanisms:

CKM_CAMELLIA_ECB_ENCRYPT_DATA

CKM_CAMELLIA_CBC_ENCRYPT_DATA

typedef struct CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS {

 CK_BYTE iv[16];

 CK_BYTE_PTR pData;

 CK_ULONG length;

} CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS;

typedef CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS CK_PTR

CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS_PTR;

Mechanism Parameters

Uses CK_KEY_DERIVATION_STRING_DATA as defined in section エラー! 参照元が見つかりません。
Table 8, Mechanism Parameters

	CKM_CAMELLIA_ECB_ENCRYPT_DATA
	Uses CK_KEY_DERIVATION_STRING_DATA structure. Parameter is the data to be encrypted and must be a multiple of 16 long.

	CKM_CAMELLIA_CBC_ENCRYPT_DATA
	Uses CK_CAMELLIA_CBC_ENCRYPT_DATA_PARAMS. Parameter is an 16 byte IV value followed by the data. The data value part

must be a multiple of 16 bytes long.

A Manifest constants

The following definitions can be found in the appropriate header file.
#define CKK_CAMELLIA TBD
#define CKM_CAMELLIA_KEY_GEN TBD
#define CKM_CAMELLIA_ECB TBD
#define CKM_CAMELLIA_CBC TBD
#define CKM_CAMELLIA_MAC TBD
#define CKM_CAMELLIA_MAC_GENERAL TBD
#define CKM_CAMELLIA_CBC_PAD TBD
#define CKM_CAMELLIA_ECB_ENCRYPT_DATA TBD
#define CKM_CAMELLIA_CBC_ENCRYPT_DATA TBD
