Secure Electronic Transaction

(SET)

Specification

Changes Approved for Testing

January 17, 1997

� EMBED Draw ���	�

�Preface

Purpose�This document describes the changes that have been approved for testing. The items contained in this document modify the version of the SET published in Book 3, Formal Protocol Definition, on August 1, 1996.��

Interoperability�Software vendors participating in interoperability testing must implement all of these changes.

Note: Two (or more) vendors may agree to conduct a limited test of their respective implementations without implementing all of these changes.��

Table of Contents

� TOC \t "Chapter Title,2,Map Title,3,Part Title,1" �Preface	� GOTOBUTTON _Toc380311569 � PAGEREF _Toc380311569 �i��

Part I Approved Changes	� GOTOBUTTON _Toc380311571 � PAGEREF _Toc380311571 �1��

1. Align Certificate Definition with X.509	� GOTOBUTTON _Toc380311572 � PAGEREF _Toc380311572 �2��

2. Include RRPID in Certificate Messages	� GOTOBUTTON _Toc380311573 � PAGEREF _Toc380311573 �3��

3. Add a Registration Form Identifier to Certificate Processing	� GOTOBUTTON _Toc380311574 � PAGEREF _Toc380311574 �4��

Transport of SET messages	� GOTOBUTTON _Toc380311575 � PAGEREF _Toc380311575 �5��

Appendix D HTTP and SMTP Transport	� GOTOBUTTON _Toc380311576 � PAGEREF _Toc380311576 �7��

Appendix E TCP-based Transport	� GOTOBUTTON _Toc380311591 � PAGEREF _Toc380311591 �57��

Part II ASN.1 Code	� GOTOBUTTON _Toc380311609 � PAGEREF _Toc380311609 �91��

�

�Part I�Approved Changes

Introduction�Part I provides a description of the changes that have been approved. Each description consists of three parts: Explanation, Formal Definition and ASN.1 changes.��

Explanation�Describes why the change has been made and provides any information a vendor will need to implement the change.��Formal Definition�The changes to the Formal Protocol Definition as published on August 1, 1996 necessary to implement the change.��ASN.1 changes�The changes to the ASN.1 published on August 1, 1996 necessary to implement the change.��

�1.	Align Certificate Definition with X.509

Explanation�The SET certificate definition should be consistent with the developing X.509 version 3 certificate format. The following changes are necessary:

1.	Remove the constraint (0..MAX) on serial numbers.

2.	Remove the tag [0] from RDN Sequence.

3.	Define critical as DEFAULT FALSE.

4.	Make the X.509 extension PrivateKeyUsagePeriod non-critical.

5.	Change countryName from three characters to two.��

Formal Definition�No changes to the formal definition are necessary to implement this item.��

ASN.1 changes���1. Change

1325 CertificateSerialNumber ::= INTEGER(0..MAX)

to

1325 CertificateSerialNumber ::= INTEGER

2. Change

2235 Name ::= CHOICE { -- only one possibility for now --

2236 distinguishedName [0] RDNSequence }

to

2235 Name ::= CHOICE { -- only one possibility for now --

2236 distinguishedName RDNSequence }

3. Change

1436 critical EXTENSION.&critical({ExtensionSet}{@extnID}),

to

1436 critical EXTENSION.&critical({ExtensionSet}{@extnID}) DEFAULT FALSE,

4. Change

1484 CRITICAL TRUE

to

1484 CRITICAL FALSE

5. Change

2178 countryName ATTRIBUTE ::= { -- SET requires three

characters

2179 WITH SYNTAX PrintableString(SIZE(3))

to

2178 countryName ATTRIBUTE ::= {

2179 WITH SYNTAX PrintableString(SIZE(2))��

�2.	Include RRPID in Certificate Messages

Explanation�Certificate request messages should include a RRPID.

The SET Technical Advisory Panel has reviewed a suggestion that the certificate messages should include a request/response pair identifier and agreed that such a change should be included in version 1 of SET. When version 1 is published the RRPID will appear in appropriate locations within the certificate messages so that the value is protected by a digital signature or message digest as appropriate.

For testing purposes, SET applications should set the RRPID field in the MessageWrapper for the certificate messages just as they do for payment messages. While the value will not be protected during the test phase, applications can implement setting the value and certificate authorities can implement using the value for idempotency purposes.

The following messages are affected:

CardCInitReq and CardCInitRes

Me_AqCInitReq and Me_AqCInitRes

RegFormReq and RegFormRes

CertReq and CertRes

CertInqReq and CertInqRes��

Formal Definition�No changes to the formal definition are necessary to implement this item.��

ASN.1 changes�No changes to the ASN.1 are necessary to implement this item.��

�3.	Add a Registration Form Identifier to Certificate Processing

Explanation�An identifier is necessary in order for a CA to identify registration forms.

A RegFormID will be added to the Me_AqCInitRes, RegFormRes, and CertReq messages.

The field IDData in the CertReq will always be required for the Merchant or Payment Gateway.��

Formal Definition�The following changes to the formal definition are necessary to implement this item.��

Me_AqCInitRes�RegTemplate�{RegFormID, [BrandLogoURL], [CardLogoURL], FieldNames}��

RegFormRes�RegTemplate�{RegFormID, [BrandLogoURL], [CardLogoURL], FieldNames}��

CertReq�CertReqTBE�{RequestType, EE_Tags3, [CA_Tags], [IDData], RegFormID, RegForm, [CaBackKeys], PublicKeySorE}��

ASN.1 changes���Insert the following lines:

374.5 regFormID INTEGER (0..MAX), -- CA assigned identifier

404.5 regFormID INTEGER (0..MAX), -- CA assigned identifier��

�Transport of SET messages

Explanation�A ìTransport Summitî meeting was held in Dallas, Texas, USA on October 28-30, 1996 to formalize the interim proposals for HTTP, SMTP, and TCP/IP transport of SET messages.

Two appendices of Book 2: Programmerís Guide were revised as a result of this meeting:

Appendix D, formerly ìInterim Merchant/Cardholder Communicationî

Appendix E, formerly ìInterim Merchant/Acquirer Communicationî

The updated appendices are attached to this document and become part of the formal specification for testing.��

Formal Definition�No changes to the formal definition are necessary to implement this item.��

ASN.1 changes�No changes to the ASN.1 are necessary to implement this item.���

��Appendix D�HTTP and SMTP Transport

General

Overview�This section describes the method to be used when transporting SET messages via the HTTP and SMTP protocols. These methods are provided to ensure a guaranteed baseline set of interoperable transport mechanisms. It is anticipated that other supporting electronic commerce protocols (e.g., shopping, price negotiation, payment selection, etc.) will be available by the time SET completes its prototype phase. Such protocols are expected to supplant the mechanism described here.

The methods described below are intended primarily for use on the link between the cardholder and the merchant. Consequently, the discussion and examples below generally take the cardholder-merchant perspective. However, these methods should work equally well between merchants and acquirers with little or no change. The methods described below may be used on any SET transport link.��

Caveat�SET is exclusively a payment protocol. This exclusive scope raises a number of issues for implementations during the initial prototype phase, when supporting electronic commerce protocols are not yet widely available.��

�Issues

SET initiation

mechanism�One issue is the mechanism for initiating a SET transaction. Because SET is a payment protocol, its scope is explicitly restricted to the core payment transaction (payment request or payment-related certificate registration). However, SET does not specify how a SET transaction is initiated. A payment request, for example, could be initiated by a shopping application, through a payment selection protocol, or directly by a cardholder using a SET-aware Web browser.

In the short term, implementations of shopping protocols and applications, payment selection protocols, or SET-aware browsers may not be widely available. In their absence, a minimal mechanism may be needed to provide SET implementations a common, interoperable methodology and to allow them to work with currently available shopping mechanisms. This section describes one such a minimal mechanism (a ìSET initiationî message), which supports initiation of SET transactions over the World Wide Web and through electronic mail.�� Continued on next page

��styleref "Map Title"�Issues�, continued

Order

description�Another issue is the communication of the order description in a payment request. In order to minimize the use of encryption and more easily comply with government export controls, SET explicitly does not communicate privacy-sensitive information such as the order description (OD). The exchange of such information falls within the scope of other electronic commerce protocols (i.e. shopping protocols). SET explicitly defers the communication of shopping-related information to such protocols.

However, in order to initiate a SET payment, the merchant and cardholder shall agree on a description of the order (the order description, or OD) and the amount of the purchase. This data shall be available to the SET application. At present, there is neither a standardized mechanism for accumulating the OD at the cardholder computer nor for transmitting the OD and purchase amount from the merchant to the cardholder.

Eventually, shopping applications and protocols may exist that allow the cardholder to accumulate ODs on their local machine over the course of a shopping session or that allow them to exchange this information with the merchant securely and privately. Until these other supporting electronic commerce protocols and applications become available, merchants should coordinate purchase information with the cardholder by sending it to the cardholder in the ìSET initiationî message, using the structure described later in this section.��

Summary�This ìSET initiationî message is not a formal component of SET. It provides a minimal method of integrating SET into shopping environments based on the World Wide Web. It acts as a bridge between the World Wide Web and SET. Until other mechanisms become commonly available, the methods described in this section shall be the required minimum for software that claims to support HTTP or SMTP transport for SET messages.��

�Organization

Structure of

appendix�This appendix describes the use of a minimal mechanism to initiate SET transactions and to communicate order information to the cardholder SET application.

The discussion unfolds in three stages:

Overall structure of the minimal SET initiation message

Specific information for particular types of transactions (payment request, payment inquiry, certificate registration, and certificate query)

Sample scenarios demonstrating the intended operation of the mechanism over the World Wide Web and through electronic mail��

�Overall Structure

Overview of

MIME

encapsulation�The minimal SET initiation message is encapsulated using MIME conventions. MIME encapsulation allows the message to be identified and processed appropriately by MIME-aware applications such as mail readers and Web browsers. A Web browser, for example, could automatically start up a SET helper application to process data identified as a SET initiation message.

��

MIME�Multipurpose Internet Mail Extensions (MIME) is an IETF standard (RFC 1521) for structuring messages that carry data of arbitrary types. MIME messages are not restricted to text. For example, they can carry GIF images, PostScript documents, or application-specific documents such as a spreadsheet or a word-processing document. Such data is conceptually wrapped inside a MIME envelope, which identifies its type and other meta-information such as length and transfer encoding.

Structurally, a MIME message contains a header and a body. The body consists of the content of a MIME message. The header contains meta-information, in the form of key-value header fields that describe the message content. The header conceptually forms the ìenvelopeî of a MIME message, while the body may be considered as being carried within the envelope.

MIME is a recursive format. A MIME message (header and body both) may itself be wrapped inside an outer MIME envelope. In such a case, the inner MIME envelope describes the content of the inner MIME message; the outer envelope describes the inner MIME message as a whole, including the inner MIME envelope. For example, the Content-Length field of the outer MIME envelope covers both the header and body of the inner MIME message. The Content-Length field of the inner MIME envelope, on the other hand, covers only the body of the inner message.

��Continued on next page

��styleref "Map Title"�Overall Structure�, continued

Use of MIME in SET�A variant of this ìMIME-in-MIMEî structure is used for encapsulated SET initiation messages. The SET initiation message is itself structured as a MIME message, including its own header and body. The encapsulated SET initiation message is therefore structured as an inner MIME message within an outer MIME message. The inner MIME message is the SET initiation message itself, with the inner MIME envelope conveying meta-information appropriate for the particular SET transaction. In a payment request, for example, the inner message body carries the order description and the Content-Type of the inner envelope for a payment request identifies the type of the enclosed order description. The outer MIME envelope describes the SET initiation message itself, with its Content-Type identifying the contents as a SET initiation message.

The structure of the minimal SET initiation message will be described more fully in following sections. Further information about SETís usage of MIME may also be found in Part 1: Chapter 3, Section 3. of the Programmerís Guide.��Continued on next page

��styleref "Map Title"�Overall Structure�, continued

MIME type�MIME messages contain a Content-Type header field describing the type of the enclosed message contents. This type is known as a ìMIME typeî or ìmedia type.î The structure and definition of the Content-Type field is given in RFC 1521. Briefly, its value is a string containing the type and subtype of the message contents. The type and subtype values are string tokens separated by an ASCII slash (ë/í) character. These may optionally be followed with type parameters.

The minimal SET initiation message is described by a MIME type whose overall type is application, with a subtype that differs for the payment and registration cases. No type parameters are currently specified. The subtype is different for the payment and registration cases in order to allow the use of separate SET applications for those two cases. Both MIME types can be mapped to the same SET application, if that application handles both the payment and registration cases.

The specific MIME subtypes shall be set-payment-initiation for the payment case (PInitReq and InqReq) and set-registration-initiation for registration (CardCInitReq and CertReq). IANA has formally approved these MIME types.

The MIME types for initiation differ from the primary MIME application types used for SET payment and certificate registration messages (set-payment and set-registration respectively). Different types are used in order to allow the initiation messages to invoke applications other than the payment or registration applications used to handle the formal SET protocol. For example, application/set-payment-initiation may invoke a shopping (rather than payment) application. Implementations may optionally map the secondary MIME types to the same helper applications as the main SET MIME types.�� Continued on next page

��styleref "Map Title"�Overall Structure�, continued

MIME transfer

encoding�The minimal SET initiation message is itself structured as a well-formed MIME message, with its own type and content encoding as described in the following section. Because the initiation message is encapsulated as the body of a MIME message, the overall effect is that of a MIME message (the initiation message) inside another MIME message (the wrapper whose MIME type triggers the appropriate helper application).

In accordance with MIME conventions for a MIME message encapsulating another MIME message, the outer MIME message shall be encoded as binary, 7-bit, or 8-bit (if it contains only plain ASCII characters) or as binary; the latter permits the order description to contain any kind of application-specific data.��Continued on next page

��styleref "Map Title"�Overall Structure�, continued

Message structure, general�The SET initiation message is itself structured as a well-formed MIME message, composed of a header (which contains transaction meta-information) and a body (which contains the order description in the payment case). The body may be empty. For SET initiation messages, the message body should be empty for all cases except that of payment.

The header fields follow the same generic format given by Section 3.1 of RFC 822. Each field consists of a name followed by a colon (ì:î), a single space (SP, ASCII 20 hex) character, and the value. Field names are not sensitive to case, but field values may be. Field values are terminated by the end of the line (CRLF, ASCII 0D 0A hex).

Long field values may be expressed using multiple lines. Continuation lines are prefixed with a sequence of at least one linear whitespace character: space (SP, ASCII 20 hex) or horizontal tab (HT, ASCII 09 hex).

An empty line (CRLF alone) separates the header from the body.

In the WWW context, the only required fields are X-SET-WakeUp-Type and X-SET-SET-URL. Other fields are optional, and implementations may define additional types of fields.

Many fields do not apply in the electronic mail context.

It is expected that values for fields that are not present will be obtained through other means, for instance by requesting the cardholder to enter this information or by obtaining the information from the local disk. In addition, SET applications are not required to use the values that come from this message. Further, there are no limitations on what can be included in this message. As in HTML, applications encountering unrecognized fields should ignore them.��

�MIME Formats

Purpose�This section provides a brief overview of MIME headers and encoding methods and describes the standard SET MIME encapsulation. The reader is encouraged to supplement this description with the information provided in RFCs 1521 and 1522.��

Benefits�MIME began as a standard set of extensions to regular Internet mail that enabled it to combine data of varying types (e.g., audio, video, raw binary) within E-mail messages using a portable and backwards-compatible format. As a result of its flexibility in handling new formats, the MIME standard has since been adopted by the World Wide Web community as the method for specifying the content type and encoding during transmission. Specifying a standard MIME description and encoding provides a method for enabling existing Web browsers and MIME enabled E-mail readers to support SET transactions.��

MIME Version�Mime messages contain a declaration of the version of MIME used to encode the document. The version number indicates properties of the MIME encapsulation and supported feature sets. Presently, MIME v1.0 is the only version of MIME that is widely supported and accepted. The MIME version of a message is indicated by the Mime-Version header field. SET implementations shall support MIME version 1.0 and, when appropriate, indicate MIME version 1.0 in the header field of the MIME message.

In the case of HTTP transport, it is common practice to use a more loosely defined variant of MIME encapsulation. This HTTP form accepts any line termination convention, does not limit lines, and does not accept the Content-Transfer-Encoding. SET software shall support decoding of the HTTP variant and may support encoding.

SET implementations may support other MIME versions (e.g., S/MIME and MIME v1.1). However, they shall not in anyway assume support for these newer versions. ��Continued on next page

��styleref "Map Title"�MIME Formats�, continued

Content type�The content type describes the general category of the data (e.g., text, audio, image, video, or application). A sub-type may also be given. Typically, the sub-types are used to specify format of the data. In the case of the application type, the sub-type is commonly used to specify a particular application for the described data. The SET content type shall fall into the application MIME type.

���application/set-payment

application/set-payment-initiation

application/set-registration

application/set-registration-initiation��

Transfer encoding�The transfer encoding specifies the encoding used to prepare the data for transmission so that it may be decoded upon arrival. Transfer encoding is particularly important for transmitting raw binary data via electronic mail: Many older mail gateways handle only plain text data properly, garbling any binary data that passes through them. The transfer-encoding field allows binary data to be encoded for transmission through even the most limited mail gateways. One common MIME encoding scheme is Base-64, which translates raw binary data into the 64 most commonly supported characters and back again. Note: Many web applications do not recognize transfer-encoding as an option. In these cases, binary is the assumed encoding. ��

International Character Sets�Implementations shall support both US-ASCII and Unicode. In case of Unicode, the receiver shall behave gracefully if the character set cannot fully be displayed.

MIME headers shall support US-ASCII. Others are not excluded if MIME permits and the communicating parties can negotiate appropriately.��

Multipart Mime�SET implementations shall support single-part MIME messages. SET software may support multi-part messages but shall not in anyway assume support for multi-part messages by other SET software. Multi-part MIME messages may be supported on connections over which the message encoding can be negotiated out-of-band, prior to SET transactions.��Continued on next page

��styleref "Map Title"�MIME Formats�, continued

Headers�SET Messages, in their unencoded original form, exist as binary data. Thus typical SET message MIME headers might be as follows:

Web browser case:	Mail reader case:

MIME-Version: 1.0	MIME-Version: 1.0

Content-type: application/set-payment	Content-type: application/set-payment

HTTP-Version 1.0	Content-transfer-encoding: base64

Content-Encoding: binary��

�Payment Overview

Initiation and

payment

flows�The following diagram illustrates the use of the minimal initiation message for payment transactions:��

�EMBED Unknown�����Initiation message (payment request)����PInitReq����PInitRes����PReq����PRes����Initiation message (payment inquiry)����InqReq����InqRes����

Initiation

messages�In this diagram, two initiation messages are sent from the merchant to the cardholder. For the WWW case, these messages are typically sent by a merchant Web server in response to a cardholderís explicit request during an interactive Web session (e.g., by clicking a ìPayî button on a Web page).��Continued on next page

��styleref "Map Title"�Payment Overview�, continued

1st message�The first initiation message triggers the cardholder application, which initiates the payment transaction by sending the PinitReq message to the merchant. Processing continues through the PRes. If the authorization for the transaction has been fully processed at that point, the result of the authorization is returned in the PRes and the transaction is concluded.��

2nd message�The second initiation message is used when authorization has not been fully concluded at the time that the merchant sends the PRes to the cardholder. In that case, the cardholder software shall query the merchant later for the result of the authorization. If that query is signaled interactively during a Web session, the merchant Web server will send the second initiation message to the cardholder (as indicated in the diagram). That initiation message again triggers the cardholder application, this time to initiate a payment inquiry (by sending InqReq to the merchant).��

Caveat�Initiation messages need not be used in the electronic mail case, where cardholder software is more likely to initiate payment transactions without prompting from the merchant. Similarly, initiation messages are not required in the Web case if the cardholder triggers requests directly using the cardholder SET application rather than indirectly through the merchantís Web page.

A more detailed discussion of SET payment flows may be found in Book II: Part III.��Continued on next page

��styleref "Map Title"�Payment Overview�, continued

Example initiation messages�A typical payment initiation message might be:

MIME-Version: 1.0

X-SET-WakeUp-Type: PInitReq

Content-Type: text/plain

Content-Length: 67

X-SET-PurchAmt: 840,250,-2

X-SET-LID_M: A53F49

X-SET-SET-URL: http://www.merchant.com/payment

X-SET-Query-URL: http://www.merchant.com/pay-query

X-SET-Success-URL: http://www.merchant.com/pay-completion.html

X-SET-Failure-URL: http://www.merchant.com/pay-failure.html

X-SET-Cancel-URL: http://www.merchant.com/cancel-order.html

X-SET-Brand: brand1 <http://www.brand1.com/logo.gif>

X-SET-Brand: brand2 <http://www.brand2.com/logo.gif>

1 jar of peanut butter

1 jar of grape jelly

1 loaf of white bread

A MIME-encapsulated form of the above message is:

MIME-Version: 1.0

Content-Type: application/set-payment-initiation

Content-Length: 605

Content-Transfer-Encoding: binary

MIME-Version: 1.0

X-SET-WakeUp-Type: PInitReq

Content-Type: text/plain

Content-Length: 67

X-SET-PurchAmt: 840,250,-2

X-SET-LID_M: A53F49

X-SET-SET-URL: http://www.merchant.com/payment

X-SET-Query-URL: http://www.merchant.com/pay-query

X-SET-Success-URL: http://www.merchant.com/pay-completion.html

X-SET-Failure-URL: http://www.merchant.com/pay-failure.html

X-SET-Cancel-URL: http://www.merchant.com/cancel-order.html

X-SET-Brand: brand1 <http://www.brand1.com/logo.gif>

X-SET-Brand: brand2 <http://www.brand2.com/logo.gif>

1 jar of peanut butter

1 jar of grape jelly

1 loaf of white bread��

�Payment Request Fields

WakeUp type�The X-SET-WakeUp-Type field specifies the SET message that should be sent by the cardholder in response to the initiation message.

The field value shall be PInitReq for a payment request.��

Order description (body)�In the case of payment request, the order description (OD) is passed as the body of the initiation message. The order description may take any form, from plain text to application-specific spreadsheets. All SET implementations shall support plain text, in order to provide a least-common-denominator format for interoperability. Other encodings may be supported.

The order description shall satisfy MIME requirements. In particular, order descriptions typed as text shall use CRLF as the line terminator irrespective of native platform conventions. The final line of an order description typed as text may be terminated with a CRLF but is not required to be.

SET ensures that the customer and merchant agree on this order description by including a hash of the OD in the PReq message. Specifically, all bytes in the inner message body are hashed, from the first character after the double CRLF that ends the inner MIME header through the end of the body. If a Content-Length field is specified, it covers exactly the same bytes as are hashed.��

Content type (optional)�The MIME content-type field specifies the media type of the order description body. The field value shall take the same form as in MIME: a type followed by a slash (ì/î) and a subtype, optionally followed by media type parameters.

If the content-type field is omitted, the default value of text/plain is assumed. If the charset parameter is omitted for a text type, the default character set of US-ASCII shall be assumed.�� Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Content length (optional)�The content-length field specifies the number of bytes in the order description body. As in HTTP, the count starts immediately after the empty line (double CRLF) separating the header from the order description.

If the content-length field is omitted, the order body extends from immediately after the double CRLF to the end of the connection. In the Web case, if the content-length is absent, the merchant shall then indicate the end of the order description by closing the connection after the last byte is transmitted.��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Payment amount

(optional)�The X-SET-PurchAmt field is expressed in terms of the same three components (currency, amount, and amtExp10) used in the SET payment messages. Those components are specified as comma-delimited elements in the field value, i.e.

	X-SET-PurchAmt: currency, amount, amtExp10

where currency, amount, and amtExp10 are numeric ASCII strings described further below. The elements shall appear in the specified order (currency, amount, amtExp10). Linear whitespace is permitted both before and after the delimiting commas.

The currency value shall be a numeric ASCII string specifying the three-digit ISO 4217 currency code. For example, a payment denominated in U.S. currency will have a currency value of ì840î.

The amount value shall be a numeric ASCII string representing the amount of the payment, specified in terms of the stated currency.

The amtExp10 value shall be a numeric ASCII string representing an exponent base 10 such that

	Amount * (10 ** amtExp10)

is the amountís value in the minor unit of the specified currency. If the specified currency does not have a minor unit, then

	amount * (10 ** amtExp10)

shall be the value in the major unit of the specified currency.

The amount and amtExp10 values shall be in canonical form, satisfying the following constraints:

If no minor unit of currency applies, amtExp10 shall be 0.

Otherwise, an amount expressed in terms of the minor unit of currency may be multiplied by (10 ** amtExp10) to yield the same amount expressed in terms of the major unit of currency.

��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Payment amount example�For example, the U.S. currency has the dollar as the major unit and the cent as the minor unit. Because 100 cents may be multiplied by (10 ** -2) to yield the equivalent amount of one dollar, amtExp10 shall be -2. The value of $2.50 in U.S. dollars shall therefore be expressed as

X-SET-PurchAmt: 840,250,-2

SET ensures that the customer and merchant agree on this amount by including it with the OD hash in the Preq message.

If the X-SET-PurchAmt field is not present, the SET application is assumed to have obtained the payment amount through other means.��

LID_M (optional)�X-SET-LID_M is an optional field containing the merchantís label identifying the transaction. It may be used by the merchant as an order number to associate the payment with other information. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to binary form and copied into the LID_M field of the payment initiation request (PInitReq) and subsequent payment messages.�� Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

URL fields�Five URL fields are defined. These are meaningful only in the WWW context and may be omitted in other environments.

The X-SET-SET-URL and X-SET-Query-URL attributes give addresses to be used for sending the SET payment messages and for any subsequent payment inquiry (InqReq) messages. X-SET-SET-URL is required in the WWW environment. X-SET-Query-URL is optional; if X-SET-Query-URL is not supplied by the merchant, the cardholder software shall assume that it is the same as X-SET-SET-URL.

The other three URLs specify which WWW pages shall be retrieved by the cardholder software after SET is finished: one for the case where the payment completes successfully; one to handle the situation where the cardholder cancels the payment; and a third to be used when an error occurs in the processing of the payment messages. These URLs provide for smooth transition to merchant-controlled WWW pages for each of these three situations. X-SET-Success-URL is required; the other two are optional. If X-SET-Failure-URL or X-SET-Cancel-URL are omitted, the cardholder software shall assume these are the same as X-SET-Success-URL.

The URL fields may be repeated with different values. If so, the different values are regarded as alternatives, which the cardholder software may choose between as desired. The order of such alternatives does not imply an order of preference.

For example, a merchant that supports SET through HTTP and SSL could specify

X-SET-SET-URL: http://www.merchant.com/payment

X-SET-SET-URL: https://www.merchant.com/payment

WWW-based SET applications shall support at least HTTP; other protocols are optional. If HTTP is used, the cardholder software shall use the POST method to send encapsulated SET messages to the X-SET-SET-URL and X-SET-Query-URL. The cardholder software is expected (but not required) to use the GET method with the X-SET-Success-URL, X-SET-Failure-URL, and X-SET-Cancel-URL.

The merchant URLs are explicitly allowed to encode state in query strings. Such encoded state may enable generation of success, failure, and cancel pages that are customized for the transaction at hand.��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Brand

(optional)�The X-SET-Brand field is used to convey a card brand accepted by the merchant. It may be repeated for each brand that the merchant accepts. The SET application may read the X-SET-Brand fields and display to the user the set of cards that match a brand ID on the brand list and allow the user to select a card for payment. The application may also display the brand logos beside each applicable merchant-accepted card.

The X-SET-Brand value shall be a brand ID followed optionally by the URL of the brand logo. The brand ID shall be expressed in the format defined for brandIDs in SET certificates (ìbrand[:product]î). The optional logo URL shall contain a pointer to a logo image file on the Internet. It is delimited by angle brackets on either side. For example:

X-SET-Brand: brandID <http://brand.com/logo.gif>

GIF is the suggested encoding for brand logos.��

Recurring�Total�Trans (optional)�The X-SET-RecurringTotalTrans field is used to authorize payment in installments (such as split shipments).

The value shall be a numeric ASCII string specifying the maximum number of permitted authorizations.

This field is mutually exclusive with the X-SET-Recurring field.

If the X-SET-RecurringTotalTrans field is specified, the X-SET-PurchAmt field shall specify the total amount of all authorized installments.��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Recurring� (optional)�The X-SET-Recurring field is used to authorize recurring payments. The field value is a comma-delimited two-element list, specifying values for the recurringFrequency and recurringExpiry. I.e.,

	X-SET-Recurring: recurringFrequency, recurringExpiry

The elements shall appear in the specified order recurringFrequency, recurringExpiry. Linear whitespace is permitted both before and after the delimiting commas.

The value of recurringFrequency shall be a numeric ASCII string specifying the maximum rate (in days) between authorizations.

The value of recurringExpiry shall be an ASCII string specifying the final date, after which no further authorizations are permitted. The string shall follow the ASN.1 syntax for GeneralizedTime, with the restriction that local times are not permitted. This restriction avoids ambiguity when the merchant and cardholder are located in different time zones.

An example X-SET-Recurring field is

X-SET-Recurring: 31, 199602232106Z

The X-SET-Recurring field is mutually exclusive with the X-SET-RecurringTotalTrans field.

If the X-SET-Recurring field is specified, the X-SET-PurchAmt field shall specify the total amount of all authorized installments.��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Recurring

Expiry

formats�In brief, the recurringExpiry string shall be in one of two formats:

UTC time.

A string representing the calendar date and UTC time, in the format YYYYMMDDHHMM[SS[.f[f[f]]]] followed by a literal upper-case letter Z. That is, the string should consist of a four-digit representation of the year, a two-digit representation of the month, a two-digit representation of the day in the month, a two-digit representation of the hour (on a 24-hour clock), a two-digit representation of the minutes after the hour, an optional representation of the seconds after the minute, and a literal upper-case letter Z.

If present, the seconds field shall be a two-digit representation of the seconds followed optionally by a representation of fractional seconds. Fractional seconds are indicated by either a decimal comma or decimal point, followed by one to three digits.

No separators are used aside from the decimal comma or decimal point in the optional representations of fractional seconds.

Examples:

199602232106Z�19960223210630Z�19960223210630.123Z

Difference between local and UTC times

A string representing the calendar date and local time (in the format given above), followed by a representation of the time differential between local and UTC times. The time differential is given by a sign character (ë+í or ë-ë) followed by a string in the format of HHMM (two digits for hours followed by two digits for minutes).

Examples (local time 8 hours behind in relation to UTC time):

199602232106-0800�19960223210630-0800�19960223210630.123-0800��Continued on next page

��styleref "Map Title"�Payment Request Fields�, continued

Note�The minimal payment initiation mechanism assures neither the integrity nor the privacy of the purchase information. This is beyond SETís scope, which is explicitly limited to payment authorization data. It is hoped that other protocols will develop to provide this functionality. It is recommended that SET applications display the OD and amount to the cardholder to permit verification before committing to the payment.��

�Payment Inquiry Fields

WakeUp type�The X-SET-Wakeup-Type field specifies the SET message that shall be sent by the cardholder in response to the initiation message.

The field value shall be InqReq for a payment inquiry.��

Content type (optional)�The MIME content-type field specifies the media type of the message body. The field value shall take the same form as in MIME: a type followed by a slash (ì/î) and a subtype, optionally followed by media type parameters.

If the content-type field is omitted, the default value of text/plain is assumed. If the charset parameter is omitted for a text type, the default character set of US-ASCII is assumed.��

Content length (optional)�The content-length field specifies the number of bytes in the message body. As in HTTP, the count starts immediately after the empty line (double CRLF) separating the header from the message body.

For payment inquiries, the initiation message typically does not carry a message body. The value of the content-length field is therefore typically zero for payment inquiries.

If the content-length field is omitted, the message body (if present) extends from immediately after the double CRLF to the end of the connection. In the Web case, if the content-length is absent, the merchant shall then indicate the end of the message body by closing the connection after the last byte is transmitted.��Continued on next page

��styleref "Map Title"�Payment Inquiry Fields�, continued

URL fields�Five URL fields are defined. These are meaningful only in the WWW context and may be omitted in other environments.

The X-SET-SET-URL and X-SET-Query-URL attributes give addresses to be used for sending the SET payment messages and for any subsequent payment inquiry (InqReq) messages. X-SET-SET-URL is necessary in the WWW environment. X-SET-Query-URL is optional; if X-SET-Query-URL is not supplied by the merchant, the cardholder software should assume that it is the same as X-SET-SET-URL

The other three URLs specify which WWW pages should be retrieved by the cardholder software after SET is finished: one for the case where the inquiry completes successfully; one for the situation where the cardholder cancels the payment; and a third to be used when an error occurs in the processing of the inquiry message. These URLs provide for smooth transition to merchant-controlled WWW pages for each of these three situations. X-SET-Success-URL is required; the other two are optional. If X-SET-Failure-URL or X-SET-Cancel-URL are omitted, the cardholder software should assume these are the same as X-SET-Success-URL.

The URL fields may be repeated with different values. If so, the different values are regarded as alternatives, which the cardholder software may choose between as desired. The order of such alternatives does not imply an order of preference.

For example, a merchant that supports SET through HTTP and SSL could specify

X-SET-SET-URL: http://www.merchant.com/payment

X-SET-SET-URL: https://www.merchant.com/payment

WWW-based SET applications should support at least HTTP; other protocols are optional. If HTTP is used, the cardholder software should use the POST method to send encapsulated SET messages to the X-SET-SET-URL and X-SET-Query-URL. The cardholder software is expected (but not required) to use the GET method with the X-SET-Success-URL, X-SET-Failure-URL, and X-SET-Cancel-URL.

The merchant URLs are explicitly allowed to encode state in query strings. Such encoded state may enable generation of success, failure, and cancel pages that are customized for the transaction at hand.��Continued on next page

��styleref "Map Title"�Payment Inquiry Fields�, continued

LID_C (optional)�X-SET-LID_C is an optional field containing the cardholderís label identifying the transaction. It may be used by the cardholder as an order number to associate the payment with other information. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to binary form and copied into the LID_C field of the payment inquiry request (InqReq).

If this field is not specified, the cardholder software is assumed to have obtained the value of LID_C through other means. E.g., the cardholder software could ask the cardholder to select which currently outstanding transaction shall be the subject of the inquiry.��

XID (optional)�X-SET-XID is an optional field containing a globally unique ID identifying the transaction. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to binary form and copied into the XID field of the payment inquiry request (InqReq).

If this field is not specified, the cardholder software is assumed to have obtained the value of XID through other means. E.g., the cardholder software could ask the cardholder to select which currently outstanding transaction shall be the subject of the inquiry.��

LID_M (optional)�X-SET-LID_M is an optional field containing the merchantís label identifying the transaction. It may be used by the merchant as an order number to associate the payment with other information. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to binary form and copied into the LID_M field of the payment inquiry request (InqReq).

If this field is not specified, the cardholder software is assumed to have obtained the value of LID_M through other means. E.g., the cardholder software could ask the cardholder to select which currently outstanding transaction shall be the subject of the inquiry.�� Continued on next page

��styleref "Map Title"�Payment Inquiry Fields�, continued

PaySysID (optional)�X-SET-PaySysID is an optional field containing a unique identifier used by some associations for the transaction from the time of authorization onward. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to binary form and copied into the PaySysID field of the payment inquiry request (InqReq).

If this field is not specified, the cardholder software is assumed to have obtained the value of PaySysID through other means. E.g., the cardholder software could ask the cardholder to select which currently outstanding transaction should be the subject of the inquiry.��

�Certificate Registration Overview

Initiation and registration flows�The following diagram illustrates the use of the minimal initiation message for certificate registration transactions: ��

�EMBED Unknown�����Initiation message (registration request)����CardCInitReq����CardCInitRes����RegFormReq����RegFormRes����Initiation message (registration inquiry)����CertReq����CertRes����

Initiation

messages�In this diagram, two initiation messages are sent from the Cardholder Certificate Authority (CCA) to the cardholder. For the WWW case, these messages are typically sent by a CCA Web server in response to a cardholderís explicit request during an interactive Web session (e.g., by clicking a ìRegisterî button on a Web page).��Continued on next page

��styleref "Map Title"�Certificate Registration Overview�, continued

1st message�The first initiation message triggers the cardholder application, which initiates the registration transaction by sending the CardCInitReq message to the CCA. Processing continues through the RegFormRes.��

2nd message�The second initiation message is used when the cardholder triggers the certificate inquiry interactively during a Web session with the CCA. In that case, the CCA Web server will send the second initiation message to the cardholder (as indicated in the diagram). That initiation message again triggers the cardholder application, this time to initiate a registration inquiry (by sending CertReq to the CCA).��

Caveat�Initiation messages need not be used in the electronic mail case, where cardholder software is more likely to initiate registration transactions without prompting from the CCA. Similarly, initiation messages are not required in the Web case if the cardholder triggers requests directly using the cardholder application rather than indirectly through the CCAís Web page.

A more detailed discussion of SET registration flows may be found in Part 2 of this Programmerís Guide.��Continued on next page

��styleref "Map Title"�Certificate Registration Overview�, continued

Example initiation messages�A typical registration initiation message might be:

MIME-Version: 1.0

X-SET-WakeUp-Type: CardCInitReq

Content-Type: text/plain

Content-Length: 0

X-SET-SET-URL: http://www.CCA.com/registration

X-SET-Query-URL: http://www.CCA.com/register-query

X-SET-Success-URL: http://www.CCA.com/register-completion.html

X-SET-Failure-URL: http://www.CCA.com/register-failure.html

X-SET-Cancel-URL: http://www.CCA.com/cancel-order.html

X-SET-Brand: brand1 <http://www.brand1.com/logo.gif>

X-SET-Brand: brand2 <http://www.brand2.com/logo.gif>

A MIME-encapsulated form of the above message is:

MIME-Version: 1.0

Content-Type: application/set-registration-initiation

Content-Length: 485

Content-Transfer-Encoding: binary

MIME-Version: 1.0

X-SET-WakeUp-Type: CardCInitReq

Content-Type: text/plain

Content-Length: 0

X-SET-SET-URL: http://www.CCA.com/registration

X-SET-Query-URL: http://www.CCA.com/register-query

X-SET-Success-URL: http://www.CCA.com/register-completion.html

X-SET-Failure-URL: http://www.CCA.com/register-failure.html

X-SET-Cancel-URL: http://www.CCA.com/cancel-order.html

X-SET-Brand: brand1 <http://www.brand1.com/logo.gif>

X-SET-Brand: brand2 <http://www.brand2.com/logo.gif>

Note that the body of the inner MIME message is empty. In conformance with the general structure of messages given in RFC 822, the inner MIME message may end with the final header lineóan additional empty line is not required, as no body exists that requires separation from the header.

However, the last line of the inner MIME message (a header field) shall be terminated with a CRLF to conform to RFC 822 header field requirements. The content-length field in the outer MIME message shall count this final CRLF in its count (485 in this example).��

�Certificate Registration Fields

WakeUp type�The X-SET-Wakeup-Type field specifies the SET message that shall be sent by the cardholder in response to the initiation message.

The field value shall be CardCInitReq for certificate registration.��

Content type (optional)�The MIME content-type field specifies the media type of the message body. The field value shall take the same form as in MIME: a type followed by a slash (ì/î) and a subtype, optionally followed by media type parameters.

If the content-type field is omitted, the default value of text/plain is assumed. If the charset parameter is omitted for a text type, the default character set of US-ASCII is assumed.��

Content length (optional)�The content-length field specifies the number of bytes in the message body. As in HTTP, the count starts immediately after the empty line (double CRLF) separating the header from the message body.

For certificate registration, the initiation message typically does not carry a message body. The value of the content-length field is therefore typically zero for certificate registration.

If the content-length field is omitted, the message body (if present) extends from immediately after the double CRLF to the end of the connection. In the Web case, if the content-length is absent, the CCA shall then indicate the end of the message body by closing the connection after the last byte is transmitted.��Continued on next page

��styleref "Map Title"�Certificate Registration Fields�, continued

URL fields�Five URL fields are defined. These are meaningful only in the WWW context and may be omitted in other environments.

The X-SET-SET-URL and X-SET-Query-URL attributes give addresses to be used for sending the SET registration messages and for any subsequent certificate inquiry (CertInqReq) messages. X-SET-SET-URL is necessary in the WWW environment. X-SET-Query-URL is optional; if X-SET-Query-URL is not supplied by the CCA, the cardholder software should assume that it is the same as X-SET-SET-URL

The other three URLs specify which WWW pages should be retrieved by the cardholder software after SET is finished: one for the case where the registration request completes successfully; one for the situation where the cardholder cancels the registration request; and a third to be used when an error occurs in the processing of the registration messages. These URLs provide for smooth transition to CCA-controlled WWW pages for each of these three situations. X-SET-Success-URL is required; the other two are optional. If X-SET-Failure-URL or X-SET-Cancel-URL are omitted, the cardholder software should assume these are the same as X-SET-Success-URL.

The URL fields may be repeated with different values. If so, the different values are regarded as alternatives, which the cardholder software may choose between as desired. The order of such alternatives does not imply an order of preference.

For example, a CCA that supports SET through HTTP and SSL could specify

X-SET-SET-URL: http://www.CCA.com/registration

X-SET-SET-URL: https://www.CCA.com/registration

WWW-based SET applications should support at least HTTP; other protocols are optional. If HTTP is used, the cardholder software should use the POST method to send encapsulated SET messages to the X-SET-SET-URL and X-SET-Query-URL. The cardholder software is expected (but not required) to use the GET method with the X-SET-Success-URL, X-SET-Failure-URL, and X-SET-Cancel-URL.

The CCA URLs are explicitly allowed to encode state in query strings. Such encoded state may enable generation of success, failure, and cancel pages that are customized for the transaction at hand.��Continued on next page

��styleref "Map Title"�Certificate Registration Fields�, continued

Brand

(optional)�The X-SET-Brand field is used to specify the brand of card being registered, as well as an optional brand logo that may be displayed to the cardholder to identify the brand.

The X-SET-Brand value should be a brand ID followed optionally by the URL of the brand logo. The brand ID should be expressed in the format defined for brandIDs in SET certificates (ìbrand[:product]î). The optional logo URL should contain a pointer to a logo image file on the Internet. It is delimited by angle brackets on either side. For example:

X-SET-Brand: brandID <http://brand.com/logo.gif>

GIF is the suggested encoding for brand logos.��

�Certificate Inquiry (Registration) Fields

WakeUp type�The X-SET-Wakeup-Type field specifies the SET message that shall be sent by the cardholder in response to the initiation message.

The field value shall be CertInqReq for a certificate inquiry request.��

Content type (optional)�The MIME content-type field specifies the media type of the message body. The field value shall take the same form as in MIME: a type followed by a slash (ì/î) and a subtype, optionally followed by media type parameters.

If the content-type field is omitted, the default value of text/plain is assumed. If the charset parameter is omitted for a text type, the default character set of US-ASCII is assumed.��

Content length (optional)�The content-length field specifies the number of bytes in the message body. As in HTTP, the count starts immediately after the empty line (double CRLF) separating the header from the message body.

For certificate inquiry, the initiation message typically does not carry a message body. The value of the content-length field is therefore typically zero for certificate registration.

If the content-length field is omitted, the message body (if present) extends from immediately after the double CRLF to the end of the connection. In the Web case, if the content-length is absent, the CCA shall then indicate the end of the message body by closing the connection after the last byte is transmitted.��

LID_CA (optional)�X-SET-LID_CA is an optional field specifying the certificate authorityís label for an ongoing registration transaction. It shall be expressed as a hexadecimal string in ASCII. If provided, this value shall be converted to integer form and copied into the LID_CA field of the certificate inquiry message (CertInqReq).

If this field is not specified, the cardholder software is assumed to have obtained the value of LID_CA through other means. E.g., the cardholder software could ask the cardholder to select which currently outstanding transaction should be the subject of the inquiry.��Continued on next page

��styleref "Map Title"�Certificate Inquiry (Registration) Fields�, continued

URL fields�Five URL fields are defined. These are meaningful only in the WWW context and may be omitted in other environments.

The X-SET-SET-URL and X-SET-Query-URL attributes give addresses to be used for sending the SET registration messages and for any subsequent certificate inquiry (CertInqReq) messages. X-SET-SET-URL is necessary in the WWW environment. X-SET-Query-URL is optional; if X-SET-Query-URL is not supplied by the CCA, the cardholder software should assume that it is the same as X-SET-SET-URL

The other three URLs specify which WWW pages should be retrieved by the cardholder software after SET is finished: one for the case where the inquiry completes successfully; one for the situation where the cardholder cancels the inquiry; and a third to be used when an error occurs in the processing of the inquiry message. These URLs provide for smooth transition to CCA-controlled WWW pages for each of these three situations. X-SET-Success-URL is required; the other two are optional. If X-SET-Failure-URL or X-SET-Cancel-URL are omitted, the cardholder software should assume these are the same as X-SET-Success-URL.

The URL fields may be repeated with different values. If so, the different values are regarded as alternatives, which the cardholder software may choose between as desired. The order of such alternatives does not imply an order of preference.

For example, a CCA that supports SET through HTTP and SSL could specify

X-SET-SET-URL: http://www.CCA.com/registration

X-SET-SET-URL: https://www.CCA.com/registration

WWW-based SET applications should support at least HTTP; other protocols are optional. If HTTP is used, the cardholder software should use the POST method to send encapsulated SET messages to the X-SET-SET-URL and X-SET-Query-URL. The cardholder software is expected (but not required) to use the GET method with the X-SET-Success-URL, X-SET-Failure-URL, and X-SET-Cancel-URL.

The CCA URLs are explicitly allowed to encode state in query strings. Such encoded state may enable generation of success, failure, and cancel pages that are customized for the transaction at hand.��

�World Wide Web Operation

Introduction�World Wide Web (WWW) service is delivered via the HTTP protocol. HTTP is intended for rapid, interactive applications. It also allows client browsers to request information from and post data to a network based server. During an HTTP transfer, MIME headers are transmitted along with other headers following the initial request/response. This happens before any requested data is transferred. In the HTTP setting, binary data is supported and is the default transfer encoding. Thus, for SET messages, no MIME transfer encoding need be specified.��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Issues�There are a few issues with regard to WWW support for SET transactions:

Initiation: Because of the mechanics of HTTP, it is most convenient to start the SET helper application in response to data sent by the merchant. By design, SET does not allow payment transactions to be initiated by the merchant. Also, the merchant and the customer need to agree on the order description and the purchase amount prior to the initial exchange. There is no straightforward method for supporting this exchange using SET exclusively.

Browser upstream support: Browser MIME support provides a channel from the merchant, down through the browser, to the SET payment application. It does not provide a similar upstream channel, i.e. there is not a pre-defined method for passing information back from the SET application to the merchant via the cardholderís browser.

Browser manipulation: The minimal merchant/cardholder mechanism provides for three URLs (Success-URL, Failure-URL, and Cancel-URL), which the cardholder software is expected to retrieve for a smooth transition to the appropriate merchant-controlled WWW page at the end of a payment transaction. For the smoothest transition, the contents of such URLs shall replace the contents of the merchant page that triggered the payment request. However, there is no standardized mechanism for a helper application to either identify the appropriate instance of a browser or cause the browser to retrieve a particular page.

Application state: Browsers may choose to spawn new instances of the SET helper application for each downstream SET message. Therefore, it may not be feasible for the helper application to maintain state by staying ìliveî through an entire SET transaction.

Session Timeouts: Under a number of circumstances, SET software operating over HTTP connections may not receive a timely response: The upstream system may be down; a server may be overly loaded; an intervening network connection may be down. For whatever reason, SET software shall have a rational response to connection and session timeouts.

��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Issues (continued)�Retry Limits: Unconstrained use of retries may lead to cases where the retries themselves are a larger problem than whatever necessitated retry initially. Thus, it is useful to establish limits on the number and frequency of retries for SET software.

Browser caching: One concern for HTTP transport is that many proxy-servers cache HTTP pages between sessions. Despite all best efforts, this cached data may be occasionally displayed to web users for which it was not intended.

Diagnostic Logging: It may be desirable to support a logging mechanism outside the normal SET channel to avoid error message loops. Unfortunately, firewalls, which often allow HTTP connections, do not usually allow other types of TCP connections ñ therefore error logging via HTTP may be desirable. If logging is supported on HTTP connections, software should use a unique URL, negotiated out-of-band, for those errors.��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Initiation and browser upstream support�It is expected that these issues will eventually be resolved through the development of shopping protocols and through internal browser support for SET transactions. The previous section describes a method for exchanging the Order description and the Amount of the purchase. This mechanism also provides a work around for the initiation problem.

Since there is no standardized channel for passing data upstream from helper applications through browsers, the upstream problem will have to be handled in a platform/ browser dependent fashion. Methods may include operating system supported inter-process communication, manually driven file-based interaction, or browser-dependent client APIs.

If there is no channel for passing data upstream through the browser, the SET helper application may be required to initiate connections to the SET-URL and Query-URL. As HTTP is expected to be a common scheme for such URLs, the SET application may need to initiate HTTP POST requests for SET messages and receive the corresponding HTTP responses. As an HTTP originator, it may also need to deal with firewall-related issues such as proxy support.��

Browser manipulation�The browser manipulation issue will likewise require handling in a platform- and/or browser-dependent fashion. For example, Windows-based browsers may provide OLE automation interfaces that enable retrieval of URLs.

If there is no feasible mechanism for the SET ìbolt-onî to cause the browser to retrieve URLs, the ìbolt-onî may not be able to support the transition to the Success-URL, Failure-URL, or Cancel-URL. The ìbolt-onî is not expected to provide HTML support itself in order to retrieve the transition URLs and display the associated Web pages on its own.��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Application state�In some environments, it will not be possible to keep the SET ìbolt-onî live during the entire SET transaction ìlifetime.î Therefore, it may be required that implementations arrange to save state between invocations. It may be possible in some environments to request that the ìhostî application provide caching for this state. In other environments, the bolt-on will be required to implement all cache management. The solution to caching state will be implementation- and application-specific.

Due to the unspecified nature of the end of a transaction, deletion of cache state may require user intervention. For instance, on the client side, the purchase response (PRes) message may not signal the end of the transaction because it is still possible for the user to request a payment inquiry (InqReq). Note, however, that some applications may require users who request payment inquiry following the purchase response to enter the relevant information (the TransIDs) via the keyboard. Such implementations will need to display this information prior to removing it from the cache.��

Session Timeouts�For whatever reason, the upstream system in a SET transaction may fail to respond in a timely manner. SET software should behave rationally in this event. In the case of the Payment Gateway, the upstream system is the financial network. Over these connections, the default timeout value shall be thirty seconds. Timeout policy (i.e., time until timeout and response in case of timeout) should be configurable on a per connection basis.

In all other cases, timeouts response is less critical. Since all necessary SET messages are idempotent, SET software may simply resend request messages until a successful response is received. Duplicate requests will simply be ignored. ��

Retry Limits�Unconstrained use of message retries can result in an excessive burden on SET servers. This may aggravate whatever problems necessitated message retry to begin with. In order to avoid this, SET software shall institute the following limitations on message retries on outbound messages:

[need input on limits in terms of number and frequency for each message]��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Browser Caching�HTTP service is often provided by means of a proxy mechanism. In the interest of performance, it is common practice for these proxy servers to cache data over many browser sessions. For SET, this means that the details of a private transaction may be mistakenly presented to other users of a proxy server that connect to the same merchant.

A number of methods should be used to mitigate this risk. Merchants and Acquirers running HTTP servers offering SET services should take appropriate precautions to minimize this risk. Such precautions include:

Using POST instead of GET to collect data from browsers (very effective);

Setting page expiration to ìImmediateî (very effective); and

Using the ìno-cacheî pragma.

In the next version of HTTP (version 1.1), cache control will be included within the HTTP protocol. SET servers should make appropriate use of these controls.

Below are samples of HTTP headers which implement the immediate expiration and no-cache methods:

Pragma: no-cache

Expires: Thu, 01 Jan 1970 00:00:00 GMT��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Diagnostic log�If SET error messages are used to signal errors in both directions of a connection, there is a danger that two SET systems may enter into an infinite loop of error messages. To avoid this, it is desirable to have a mechanism in addition to SET Error messages to communicate message failures happening in one of the two directions on the transport connection. The diagnostic log mechanism is intended to provide such a mechanism for the downstream connection.

When diagnostic log messages are sent from merchant to the payment gateways via HTTP, the following method is specified:

�EMBED Unknown���

The merchant shall generate a diagnostic log message when they receive an HTTP transported SET message that fails basic SET message decoding. Such failures include DER-decoding errors, and failure of signature verifications.

The merchant shall open a HTTP connection to the payment gateway's diagnostic log URL, send a diagnostic log message as a MIME-encapsulated DER-encoded SET message, and then close the HTTP connection. The URL shall be negotiated by the merchant and Payment gateway prior to beginning service.

Merchants shall send only one diagnostic log message per HTTP connection.

Payment gateways shall not respond to diagnostic log messages, but shall simply close the HTTP connection once each message is received.

Processing of the diagnostic log message by the payment gateway shall be implementation dependent. It is strongly recommend that gateways journal such messages in log files.��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

Typical interaction�A typical WWW payment transaction might proceed as follows:��

Step�Action��1�Customer shops at merchant web site, selects goods, negotiates price, and then selects SET as the payment method.��2�Merchantís server sends the non-SET payment initiation message with the application/set-payment-initiation MIME type to the customerís browser, thus causing it to start a SET helper application. This message contains the OD and amount of the payment.��3�The SET application presents the OD and amount to the user for verification. If the cardholder disapproves the OD or amount, the SET application causes the browser to transition to the WWW page given by the Cancel-URL.��4�If the user approves, the SET application authenticates the customer, then allows him or her to select a card account from the electronic wallet.��5�The SET application records the initial transaction data for later use.��6�The SET application creates a PInitReq message, and passes it to the browser via a platform/browser dependent channel. The browser posts the message to the X-SET-SET-URL address with the MIME type application/set-payment.��7�The merchantís application receives the posted message and processes it.��8�The application creates an appropriate PInitRes and passes it back to the customer via the server as a response to the customerís post, using the MIME type application/set-payment.��Continued on next page

��styleref "Map Title"�World Wide Web Operation�, continued

�styleref "Block Label"�Typical interaction� (continued)���

Step�Action��9�The browser passes the PInitRes message to the SET application. The SET application extracts the merchant's name and address from the merchant's certificate, shows them to the user, and asks for approval. If that is given, the SET application uses the OD and amount and other information to form the PReq message. It then updates its records.��10�Using the customerís browser, the SET application posts the PReq to an application at the merchant server via the customerís web browser.��11�The merchantís software processes the PReq.��12�The merchantís software forms an appropriate PRes and returns it to the customer via the merchantís web server using the application/set-payment MIME type as the response to the posted PReq.��13�The customerís browser passes the PRes to the SET application that parses the messages and displays the results.��14�If an error occurred in the processing of the SET protocol, the SET application causes the browser to transition to the WWW page given by the Failure-URL. Otherwise, it causes the browser to retrieve the page given by the Success-URL.��

�Electronic Mail Operation

Introduction�In the electronic mail case, the supporting protocol is the Simple Mail Transport Protocol (SMTP). In SMTP, the MIME headers appear in the standard SMTP Mail headers at the top of each mail message. ��

Issues�SMTP based electronic mail has two significant limitations in its ability to support SET transactions:

No binary data: Not all SMTP servers support 8 bit and binary data.

Delayed delivery: Unlike HTTP, SMTP mail delivery does not always occur in a direct source-to-destination fashion. The SMTP protocol was designed to allow mail delivery even when it was not possible to find a route directly from one host to another or when there were transient network outages. Therefore, mail messages often pass through several intermediate ìrelayî hosts and sometimes encounter significant delays. This makes it difficult to support rapid interactive communication via e-mail. ��Continued on next page

��styleref "Map Title"�Electronic Mail Operation�, continued

Resolutions�MIME encapsulation provides a standard method for resolving the binary issue: Each message has a specified transfer-encoding. Base64 is a standard MIME encoding for binary data in non-binary settings. The issue may be resolved by transmitting SET messages in Base64 encoding in the mail case.

To mitigate the effects of delayed delivery, the two initial messages, PInitReq and PInitRes, may be skipped in the electronic mail case with one caveat: The cardholder shall provide the transaction specific merchant values normally provided in the PInitRes message. This data may be provided via some other media, such as CD-ROM or newspaper ad or created on the cardholderís machine by custom merchant software, which might be included on a CD-ROM. Consequently, SET applications shall provide a means to manually enter this merchant information in the event that it is provided via an alternative media. Please see the discussion of this transaction flow in Book 2 of this specification. All SET software shall support the PInit-less option for the purchase transaction flow.

Eliminating these two messages will reduce the number of messages required for a complete SET transaction, and, thereby, reduce the time to complete transaction from beginning to end.��

Initial exchange�As in the Web scenario, the merchant and the cardholder shall coordinate the order description and the amount of the transaction. In the mail case, it is recommended that the cardholder include in the mail both the order description and the amount, using the initiation message described earlier. This shall be included as a MIME-encapsulated message marked with the SET initialization MIME type, application/set-payment-initiation. If it is included in the same mail with the PReq message, the mail message shall be a multipart/mixed MIME message containing the SET message in one part and the payment initiation message in another. ��Continued on next page

��styleref "Map Title"�Electronic Mail Operation�, continued

Typical interaction�A typical SMTP interaction might proceed as follows:��

Step�Action��1�Using custom-developed merchant software, the customer shops via a CD-ROM based catalog, selects goods, negotiates price, and selects SET as the payment method. The software develops the order description (OD) and total amount.��2�The customer is authenticated and allowed to choose a card account from his or her electronic wallet.��3�The custom-developed merchant software creates a payment initiation message based on the order description and the amount.��4�The custom-developed software creates a PReq message based on the order description, amount, and the chosen account.��5�The custom-developed merchant software then passes the payment initiation message, PReq message, and electronic mail address of the merchant to the customerís electronic mail application via a messaging API or similar channel.��6�Customerís mail software encodes the messages in base64 and creates a multipart electronic mail message with headers that contain the merchantís electronic mail address, message-encoding type (i.e., base64), and message MIME types.��7�Customerís mail software delivers the mail via the Internet.��8�Merchant receives the mail and detaches the payment initiation and SET messages. Merchant records the order information and amount from the initiation message, then decodes the SET message and processes it.��9�Merchant creates a PRes message, similarly attaches it to an electronic mail message and sends it back to the customer. ��10�The customerís mail reader receives the mail, decodes the SET message portion back to pure binary form. Based on the messageís MIME type, the mail software invokes the SET helper application on the SET message.��11�The SET application displays the results contained in the PRes message. It extracts the merchant's name and address from the merchant's certificate, and displays them to the user so that the latter can know what organization signed the purchase response.��

�Other Mechanisms

Introduction�SET has been designed with the larger electronic commerce picture in mind. Eventually, there will be a need for protocols that support shopping, negotiation, and payment selection. Rather than try to provide these functions internally, SET has been designed to interoperate with other protocols that provide this functionality. ��

Shopping protocols�This will likely have the affect of interposing other applications between SET payment applications and the network application. For example, cardholders may shop using a shopping protocol and application that allows them to accumulate the OD on their local machine. Upon completing their shopping, they may negotiate the price or the payment method with the merchant via a payment selection protocol and application. In this scenario, the SET application would be invoked by some later application, which would pass it the necessary initiating purchase information. ��

JEPI�Another scenario is being developed by the Joint Electronic Payment Initiative (JEPI) of CommerceNet and the World Wide Web Consortium (W3C). JEPI explores the technology required to provide negotiation over multiple payment instruments, protocols and transports. It seeks to develop an open, vendor-independent mechanism to allow the merchant and cardholder to select a payment method and smoothly transition between WWW pages and the selected payment protocol.��

��Appendix E�TCP-based Transport

Overview

Introduction�To encourage interoperability among vendors, it is desirable to have a standard approach for data transport between merchants and acquirer payment gateways when they communicate over the Internet.

SET has been designed to place minimal requirements on the transport channel. SET requires only that the communications environment be able to carry arbitrary-length messages and provide reasonable reliability.

The Programmerís Guide outlines methods for the use of two currently acceptable communication options:

HTTP - described in Appendix D, and

TCP - described in this appendix.

Additional communication options may be defined in the future.��Continued on next page

��styleref "Map Title"�Overview�, continued

Organization�This appendix addresses the following topics:��

Topic�Page��� REF map_TCP_based_Comm * MERGEFORMAT �TCP-based Communication��� PAGEREF map_TCP_based_Comm �59���� REF map_Connection_States * MERGEFORMAT �Connection States��� PAGEREF map_Connection_States �61���� REF map_Closed_State * MERGEFORMAT �Closed State��� PAGEREF map_Closed_State �64���� REF map_Greeting_State * MERGEFORMAT �Greeting State��� PAGEREF map_Greeting_State �65���� REF map_Auth_State * MERGEFORMAT �Authenticating State��� PAGEREF map_Auth_State �69���� REF map_Open_State * MERGEFORMAT �Open State��� PAGEREF map_Open_State �73���� REF map_Closing_State * MERGEFORMAT �Closing State��� PAGEREF map_Closing_State �74���� REF map_MIME_Wrapping * MERGEFORMAT �SET Message MIME-wrapping��� PAGEREF map_MIME_Wrapping �76���� REF map_Trans_Layer_Ctl_Msgs * MERGEFORMAT �Transport Layer Control Messages��� PAGEREF map_Trans_Layer_Ctl_Msgs �78���� REF map_Graceful_Clos * MERGEFORMAT �Graceful Close Message��� PAGEREF map_Graceful_Clos �79���� REF map_Status_Msgs * MERGEFORMAT �Status Messages��� PAGEREF map_Status_Msgs �80���� REF map_Echo_Msgs * MERGEFORMAT �Echo Messages��� PAGEREF map_Echo_Msgs �82���� REF map_Non_SET_Msgs * MERGEFORMAT �Non-SET Messages��� PAGEREF map_Non_SET_Msgs �83���� REF map_Diag_Log * MERGEFORMAT �Diagnostic Log��� PAGEREF map_Diag_Log �84���� REF map_Example_Comm * MERGEFORMAT �Example Communication��� PAGEREF map_Example_Comm �85���� REF map_Out_of_Band * MERGEFORMAT �Out-of-band Merchant/Acquirer Agreement��� PAGEREF map_Out_of_Band �90���

�TCP-based Communication

Requirements�To ensure interoperability, merchants and payment gateways using TCP for communications must use the method presented in this section. Although this method presumes communication between a merchant and a payment gateway, nothing in this method, other than the security and performance considerations, precludes communications between any two SET parties. This method does not preclude multiple, parallel connection between the parties.��

Benefits�TCP has a number of advantages over other low-level Internet protocols such as UDP.

TCP is error-correcting. Most SET messages are signed, so errors are detected by SET implementations. However, error correction at the communications transport level will improve the overall performance and robustness of SET implementations in the face of error-prone communications environments.

TCP permits arbitrary-length messages. Some SET messages may be longer than the 512-byte capacity guaranteed for UDP packets.

Using TCP for data communications according to the method described in this section offers several advantages compared to HTTP.

The overhead of establishing and maintaining each TCP session may be amortized over multiple SET request/response pairs. The merchant server and payment gateway may choose to hold a TCP session open across multiple requests, and multiple requests may be interleaved on one session.

Session management functions are provided in a manner tailored to the needs of SET. These functions include echo, transport-level error indication, retry, and graceful close of sessions.

A connection authentication mechanism is provided to deter one form of denial-of-service attack.

Note: TCP does not offer any security for the data transmitted within it. This is not an issue for SET messages, as the SET protocol provides all required security for message contents. However, any additional information exchanged via this TCP connection will not be protected.��Continued on next page

��styleref "Map Title"�TCP-based Communication�, continued

Interleaving�The TCP method specified in this section allows asynchronous communications. This allows the merchant to interleave its requests. In other words, a merchant may send another request right after the first without waiting for paired responses. The responses may come back in any order. If there is a communications failure, it is up to the merchant to re-send requests that did not receive responses.

The maximum number of outstanding requests shall be limited by a configuration parameter.

The merchant can have synchronous communications by always waiting for a response before sending the next request.��

Merchant authentication (optional)�There is a certain amount of computational cost to processing even bogus or forged SET messages. Given the TCP method described here, one possible attack on the SET system is a denial of service attack in which a malicious entity floods the payment gateway with bogus messages with the intent of tying up its resources. This risk of this attack can be mitigated by authenticating the merchant. Two simple authentication mechanisms are provided:

TCP address authentication -- authentication is accomplished by the payment gateway accepting connections only from certain TCP addresses, and rejecting all other connection attempts.

Challenge authentication -- authentication is accomplished via a challenge and response mechanism using shared secrets.

These two mechanisms may be optionally used in any combination and make it difficult or impossible for unauthorized parties to deliver messages to the payment gateway. ��

�Connection States

Overview�This method defines the following connection states for a TCP connection between the merchant and the payment gateway:��

Connection State�Definition��Closed�No connection exists between the merchant and the gateway.��Greeting�The gateway greets the merchant, with an optional authentication challenge.��Authenticating�The gateway authenticates the merchant.��Open�The merchant and the gateway can exchange SET messages.��Closing�Either party has requested that the connection be closed.��Continued on next page

��styleref "Map Title"�Connection States�, continued

Diagram

�� REF _Ref372438666 * MERGEFORMAT �Figure 1� below illustrates these connection states.

�

Figure � SEQ Figure * ARABIC �1�: TCP Connection States

� REF _Ref372438666 * MERGEFORMAT �Figure 1� illustrates the expected operation of a connection. Network errors such as equipment failures will cause the state to transition to the Closed state.��Continued on next page

��styleref "Map Title"�Connection States�, continued

Connection events�The following events cause transition from one state to another:��

Open TCP Connection�Signals that the merchant opened a TCP connection to the payment gateway.��Merchant Address Invalid�Signals that the merchantís TCP address is invalid to the payment gateway.��Challenge Issued�Signals that the payment gateway issued a challenge in order to authenticate the merchant.��No Challenge Issued�Signals that the payment gateway is not challenging the merchant and has accepted the connection.��Close�Signals that either party sent a Close request, requesting that the connection be closed.��Close TCP Connection�Signals that both parties have terminated the connection between them.��

�Closed State

Definition�This is the state when a connection does not exist between the merchant and the payment gateway. For a connection to exist, the merchant has to open a TCP connection, causing a transition to the Greeting state. The merchant opens a TCP connection with the payment gateway anytime the merchant has a request to transmit (and no available connection exists). ��

�Greeting State

Definition�This state is entered when the merchant opens a TCP connection with the payment gateway (this implies that the gateway is ìlisteningî for a connection). If merchant address authentication is required, the payment gateway shall verify and only accept connections from specified TCP addresses. The payment gatewayís TCP address, port, and the merchantís TCP address (if required) are communicated out-of-band. (See page � PAGEREF _Ref372534026 �90� for a list of networking attributes that must be agreed.)��

Greeting message�When the merchant opens a TCP connection, the payment gateway shall respond by sending a Greeting message through the connection. The Greeting will signal that the payment gateway is prepared to receive data. If the Greeting is not received by the merchant in t30 seconds, the connection shall be closed. The default time-out value for t30 shall be 30 seconds; this time-out value shall be configurable and communicated out-of-band. (See page � PAGEREF _Ref372534026 �90�.)

The Greeting shall consist of one of two messages: ����Condition�Message�����If the merchantís address is valid, �or if no TCP address authentication is required:�+OK|text|challenge(�����If the payment gateway performs TCP address authentication, and the merchantís address is invalid:�ERR|text(���Continued on next page

��styleref "Map Title"�Greeting State�, continued

Greeting message fields�The fields of the message must always be present, and must consist of printable ASCII characters.�������text�Optional text that the payment gateway may use to provide more information: any text the acquirer wants to send to the merchant. It is recommended that, at a minimum, it include the payment gatewayís host name or IP number.�����|�field separator�����challenge�The challenge the payment gateway sends to the merchant for challenge authentication. If no challenge authentication is required, this field must be null.�����(�ASCII CR-LF����If no challenge is issued (that is, if no authentication is required), the connection is established, and the state transitions to the Open state. If a challenge is issued (that is, if authentication is required), the state transitions to the Authenticating state.

Note: The Greeting message is not MIME-wrapped.�����

Example Greeting messages�OK message with a challenge:

ì+OK|payment.gateway.com|12:34:56 01/23/45 payment.gateway.com(î

OK message without a challenge:

ì+OK|payment.gateway.com is ready|(î

Error message with text:

ì-ERR|Invalid merchant address(î

Error message with no text:

ì-ERR|(î��Continued on next page

��styleref "Map Title"�Greeting State�, continued

Merchant in Greeting state�� REF _Ref372440860 * MERGEFORMAT �Figure 2� below depicts the flow for the Merchant in the Greeting state:

�

Figure � SEQ Figure * ARABIC �2�: Merchant in TCP Greeting State��Continued on next page

��styleref "Map Title"�Greeting State�, continued

Payment Gateway in Greeting state�� REF _Ref372600376 * MERGEFORMAT �Figure 3� below depicts the flow for the Payment Gateway in the Greeting state:

�

Figure � SEQ Figure * ARABIC �3�: Payment Gateway in TCP Greeting State��

�Authenticating State

Definition�This is the state where the merchant challenge authentication is performed. Authentication shall be accomplished via a challenge and response mechanism using a shared secret. This state is entered when the payment gateway issues a challenge to the merchant in the Greeting message.��

Authentication message�After issuing the challenge, the payment gateway shall wait for the Authentication message from the merchant (with a time-out value t30 as described on page � PAGEREF t30 �65�).

The Authentication message shall consist of the following:

Authentication|transportId|authenticationResp(

where: ����transportId�a configurable transport layer ID for the merchant that shall uniquely identify the merchant to the payment gateway. It may be anything from a pre-assigned value (for example, the merchantís DNS name) to a certificate thumbprint.�����authenticationResp�base64(HMAC(Greeting||transportID, shared-secret))�����Greeting�the complete Greeting message without the trailing CR-LF�����||�the concatenation operator�����transportID�the transportID in the Authentication message (without any surrounding whitespace)�����shared-secret�the shared secret used as the key to the HMAC function (described in Part I of this Programmerís Guide). The shared secret may be anything but shall be communicated out-of-band. (See page � PAGEREF map_Out_of_Band �90�.)����Note: The Authentication message is not MIME-wrapped.��Continued on next page

��styleref "Map Title"�Authenticating State�, continued

Authentication-Reply message�After receiving the Authentication message, the payment gateway will verify the authenticationResp field and return the Authentication-Reply message to the merchant. The Authentication-Reply consists of one of two messages. ����Condition�Message�Action�����If the authentication succeeded: �+OK|text(�The state transitions to the Open state. �����If the authentication failed: �ERR|text(�Both the merchant and the payment gateway shall close the TCP connection and transition to the Closed state.����After sending the Authentication message, the merchant shall wait for the Authentication-Reply message from the payment gateway (with a time-out value t30 as above).

Note: The Authentication-Reply message is not MIME-wrapped.��Continued on next page

��styleref "Map Title"�Authenticating State�, continued

Merchant in Authenticating state�� REF _Ref372442119 * MERGEFORMAT �Figure 4� below depicts the flow for the Merchant in the Authenticating state:

�

Figure � SEQ Figure * ARABIC �4�: Merchant in TCP Authenticating State��Continued on next page

��styleref "Map Title"�Authenticating State�, continued

Payment Gateway in Authenticating state�� REF _Ref372442194 * MERGEFORMAT �Figure 5� below depicts the flow for the Payment Gateway in the Authenticating state.

�

Figure � SEQ Figure * ARABIC �5�: Payment Gateway in TCP Authenticating State

��

�Open State

Definition �It is only in this state that the merchant can send SET requests to the payment gateway. As discussed on page � PAGEREF block_Interleaving �60�, the merchant can interleave the requests to the payment gateway.

Whenever either party desires to close the communications, it issues the Close request that causes the state to transition to the Close state.

All messages sent in this state are MIME-wrapped as described on page � PAGEREF map_MIME_Wrapping �76�.��

�Closing State

Definition�This state allows the graceful closing of a connection between the merchant and the payment gateway. This state is entered when either the merchant or the payment gateway sends a Close request. After a Close request is sent (by either party), the payment gateway shall ignore any SET requests from the merchant.��

Merchant sends Close request�If the merchant sends the Close request, it shall wait for the Close-Reply response (with a time-out value t30 as described on page � PAGEREF t30 �65�) from the payment gateway. When the Close-Reply response is received (or a time-out occurs), the merchant shall close the TCP connection and transition to the Closed state. When the payment gateway receives the Close request, it shall respond with a Close-Reply. After sending the Close-Reply, both parties shall close the TCP connection. Any outstanding SET responses shall be lost. The following diagram illustrates the message flow when the merchant sends the Close request:

� EMBED ShapewareVISIO20 �����Continued on next page

��styleref "Map Title"�Closing State�, continued

Payment gateway sends Close request�If the payment gateway sends the Close request, the merchant can wait until it receives any outstanding SET responses before sending the Close-Reply response to the payment gateway. If the payment gateway does not receive the Close-Reply response within t120 seconds (see page � PAGEREF sub_t120 �90�), the payment gateway shall close the TCP connection and transition to the Closed state. The following diagram illustrates the message flow when the payment gateway sends the Close request:

� EMBED ShapewareVISIO20 �����

Multiple Close requests�If a Close request is received while in this state, it shall be treated like a Close-Reply response.��

�SET Message MIME-wrapping

MIME header�All SET messages between merchant and payment gateway are defined in ASN.1 and encoded according to the Distinguished Encoding Rules (DER) as described in this specification. When exchanged via this TCP method, these messages shall be wrapped by a standard MIME header as follows:

MIME-Version: 1.0(

Content-type: application/set-payment;msg-tag=ìxxxî(

Content-transfer-encoding: binary(

Content-length: xxx(

(

{SET ASN.1 DER message}

All MIME header labels and values are case insensitive. Any additional headers (for example, a Date: header) are ignored.��

Content-type�Required��content-length�Required��MIME-Version�Optional��Content-transfer-encoding�Optional, and defaults to binary. If present, it shall always be binary.��Continued on next page

��styleref "Map Title"�SET Message MIME-wrapping�, continued

msg-tag parameter�The msg-tag parameter is optional, and if present in a SET request, it must be returned in the SET response. The following are reasons for using the msg-tag:

When multiple merchants wish to communicate over the same link, as in an Internet Mall, and the responses need to be sent to the correct merchant.

When it is desirable to observe messages passing over a physical link with a line monitor and easily see some plain text identification of the message.

When the merchant wants to interleave messages, so that the responses can be matched to the request.

When messages received at an acquirerís payment gateway communication front-end need to be efficiently dispatched to different gateway back-ends, as indicated by the merchant under prior agreement with the acquirer. This usage is outside the scope of this method.

All of these and possibly additional functions are enabled by the msg-tag parameter. The merchant can add it to the Content-Type header in the MIME wrapper on SET requests. Its value is quoted string or token, up to 32 characters, as specified in RFC-1521. The value is specified by the merchant and is opaque to and echoed back by the payment gateway. The merchant is free to encode multiple ìsubfieldsî into the msg-tag value. For example the tag might be: ìmerchantID.messageSequenceNoî, where ìmerchantIDî identifies the merchant within a mall, and the ìmessageSequenceNoî is the number of the message so that the merchant can correlate a response to a request.��

�Transport Layer Control Messages

Purpose�This TCP method provides for a number of transport layer conditions to be noted and transport layer actions to be available. Messages are needed for graceful close of the TCP connection, transport level status reporting, and a transport level test of the connection. ��

Structure�The general structure of these transport layer messages is as follows:

MIME-version: 1.0(

Content-type: text/set-transport;control=uuu;

 class=xxx;delay=yyy;msg-tag=ìzzzî(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is human readable text.}(

The content-type and content-length headers are required. MIME-version is optional. content-transfer-encoding is optional with the default being 7bit.

Unknown headers are ignored.

The body of the message is intended to be human readable text.��

Parameters�For the control parameter, the only acceptable values are:����close�specifies a Close request message����close-reply�specifies a Close response message����status�specifies a Status message����echo�specifies an Echo request message����echo-reply�specifies an Echo response message���The msg-tag parameter is required for control=status messages, and optional for the other messages. If it is present, then it shall be included in any response.

The class and delay parameters are only valid when control=status.��

�Graceful Close Message

Purpose�With multiple outstanding requests permitted on a TCP/IP connection, a graceful way to close is required. This process was described in the Closing state description on page � PAGEREF block_Closing_state �74�.��

Structure�The graceful close request is indicated by a control=close parameter and the response by a control=close-reply. The body of the close should indicate the reason for the close (idle-connection, equipment going out of service, etc.) and should be echoed in the response.��

Sample Close request�MIME-version: 1.0(

Content-type: text/set-transport;control=close;

 msg-tag=ìzzzî(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is human readable text.}(��

Sample �Close-Reply response�MIME-version: 1.0(

Content-type: text/set-transport;control=close-reply;

 msg-tag=ìzzzî(

Content-length: xxx(

Content-transfer-encoding: 7bit(

(

{This is human readable text.}(��

�Status Messages

Overview�Status messages are indicated by a control=status parameter. There shall be no response to a status message.

Note: These are transport layer only messages. Any SET level errors are indicated through the SET Error and Response messages.��

Failed message�If class=failed, a permanent error has occurred in the sense that the message causing the error should not be retried. The body contains an explanation. For example: ìMessages too bigî, ìService unavailableî, ìBad content typeî, ìBad content-transfer-encodingî, ìConnection closingî, etc.

The following is a sample Failed message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=failed;

 msg-tag=ìxxxî(

Content-length: 19(

Content-transfer-encoding: 7bit(

(

Service unavailable(��

Retry message�If class=retry, a transient error has occurred and the message causing the error may be retried in not less than n number of seconds as specified by delay=n. This number shall be greater than zero. For example: ìBusyî, ìToo many outstanding requestsî, etc.

The following is a sample ìretryî message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;

 class=retry;delay=5;msg-tag=ìxxxî(

Content-length: 29(

Content-transfer-encoding: 7bit(

(

Too many outstanding requests(

For more information about ìretryî messages, see page � PAGEREF _Ref372606819 �89�. ��Continued on next page

��styleref "Map Title"�Status Messages�, continued

Info message�If class=info, the message has been accepted and some status concerning it is being reported. The only anticipated use of this is to inform the sender that a response may be unusually delayed. It is possible to receive multiple such status messages for one request (identified by the msg-tag) and possible to receive one or more such status messages followed by a transport status message.

The following is a sample Info message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=info;

 msg-tag=ìxxxî(

Content-length: 22(

Content-transfer-encoding: 7bit(

(

Slow financial network(��

Closing message�If class=closing, the message has not been accepted because the connection is closing. The merchant should resend this message in another connection.

The following is a sample Closing message:

MIME-version: 1.0(

Content-type: text/set-transport;control=status;class=closing;

 msg-tag=ìxxxî(

Content-length: 21(

Content-transfer-encoding: 7bit(

(

Connection is closing(��

�Echo Messages

Purpose�Echo messages may be used to test transport layer connectivity, and can be issued by either party.��

Structure�The request is indicated by control=echo and the response by control=echo-reply. The body of the echo message must be echoed as the body of the echo-reply��

Sample Echo request�MIME-version: 1.0(

Content-type: text/set-transport;control=echo(

Content-length: 14(

Content-transfer-encoding: 7bit(

(

Are you there?(��

Sample Echo response�MIME-version: 1.0(

Content-type: text/set-transport;control=echo-reply(

Content-length: 14(

Content-transfer-encoding: 7bit(

(

Are you there?(��

�Non-SET Messages

Non-SET message summary�� REF _Ref372437160 * MERGEFORMAT �Table 1� below summarizes the non-SET messages used in this TCP communications method.��

Message Name�Allowed in States�Description�MIME-wrapped��Greeting�Greeting�Sent by payment gateway to accept connection or challenge merchant.�No��Authentication�Authenticating�Sent by merchant to respond to the payment gatewayís challenge.�No��Authentication-Reply�Authenticating�Sent by the payment gateway to accept or deny the merchantís challenge.�No��Close�Open�Sent by either party to request a graceful closing of the connection.�Yes��Close-Reply�Closing�Sent by the party receiving the Close request to acknowledge the Close.�Yes��Status�Open, Closing�Sent by the payment gateway to inform the merchant of the status of the previous message.�Yes��Echo�Open, Closing�Sent by either party to request confirmation that the connection is still active.�Yes��Echo-Reply�Open, Closing�Sent by the party receiving the Echo request to acknowledge the Echo.�Yes��Table � SEQ Table * ARABIC �1�: Non-SET Messages for TCP

�Diagnostic Log

Method�When diagnostic log messages are sent from merchant to the payment gateways via TCP, the following method is specified:

� EMBED ShapewareVISIO20 ���

Figure � SEQ Figure * ARABIC �6�: TCP Diagnostic Log

The merchant shall generate a diagnostic log message when they receive a SET response message that fails basic SET message decoding. Such failures include DER-decoding errors and failure of signature verification.

The merchant shall open a TCP connection to the payment gatewayís diagnostic log port, send a diagnostic log message as a MIME-encapsulated DER-encoded SET message, and then close the TCP connection.

Merchants shall send only one diagnostic log message per TCP connection.

Payment gateways shall not respond to diagnostic log messages, but shall simply close the TCP connection once each message is received.

Processing of the diagnostic log message by the payment gateway shall be implementation dependent. It is strongly recommend that payment gateways journal such messages in log files.��

�Example Communication

Overview�This section provides examples of merchant to payment gateway communications, including:

Single SET Request/Response Pair

Multiple Request/Response Pairs

Merchant Sends Close Request

Payment Gateway Sends Close Request

Transport Errors Occur During Processing��

Single SET request/ response pair�� REF _Ref372435828 * MERGEFORMAT �Figure 7� below shows a single SET request/response pair with authentication and no errors.����

Figure � SEQ Figure * ARABIC �7�: TCP - Single SET Request/Response Pair

Notes:

If the Merchant does not want to interleave transactions, it may still send multiple requests on a single connection in serial mode, waiting for each response before sending the next request.

Multiple simultaneous connections, up to the agreed maximum, may be in progress between the Merchant and the Payment Gateway.��Continued on next page

��styleref "Map Title"�Example Communication�, continued

Multiple request/ response pairs�� REF _Ref372435976 * MERGEFORMAT �Figure 8� below shows multiple request/response pairs with authentication and no errors.

�

�

�

Figure � SEQ Figure * ARABIC �8�: TCP - Multiple Request/Response Pairs

Notes:

Responses to SET requests may come back in any order.

An Echo request may be sent by either end of a connection while the connection is in the Open state.

The Payment Gateway may send a Close request while responses are outstanding.

The Merchant shall only send the Close-Reply after all outstanding SET responses are received or timed-out.

Since TCP is full-duplex, responses to SET requests may be returned at any time.��Continued on next page

��styleref "Map Title"�Example Communication�, continued

Merchant sends the Close request�����

Figure � SEQ Figure * ARABIC �9�: TCP - Merchant Sends Close Request

Notes:

Merchant decides to close the connection.

Merchant waits for all outstanding responses.

Merchant sends Close request. The Merchant shall not send the Close request when SET responses are outstanding unless it is willing to lose the responses. Any outstanding responses will be discarded by the Payment Gateway after it receives the Close request.��Continued on next page

��styleref "Map Title"�Example Communication�, continued

Merchant sends a request after Payment Gateway sends Close request�� REF _Ref380306704 * MERGEFORMAT �Figure 10� below outlines the flow when the Payment Gateway sends a Close request, and the Merchant sends a subsequent request.

�

�

Figure � SEQ Figure * ARABIC �10�: TCP - Payment Gateway Sends Close Request

Notes:

Payment Gateway sends a Close request.

Merchant sends another SET request. This may be unintentional due to IP stack or transmission delays at either end of the connection.

Payment Gateway sends a Status with a class=Closing, indicating that the message should not be resent in this connection. Merchant may resend the request on another connection.��Continued on next page

��styleref "Map Title"�Example Communication�, continued

Transport errors�� REF _Ref380306934 * MERGEFORMAT �Figure 11� below demonstrates processing during which transport errors occur.����

�

Figure � SEQ Figure * ARABIC �11�: TCP - Transport Errors Occur During Processing

Notes:

The Payment Gateway received a request that could not be handled at this time. It sent the Merchant a Status message indicating that the request should be resent in n seconds. N is defined in the delay field of the MIME message header.

The Merchant waits n seconds before resending this request. It should not be assumed that no request may be sent until the delay expires as the Payment Gateway may be having a problem with specific requests.

A Status message with ìclass=failedî indicates that the previous message should not be resent on this or any other connection.

A Status message shall never be sent as a response to a received Status message.��

�Out-of-band Merchant/Acquirer Agreement

Items to agree�The merchant and acquirer must agree on several networking attributes prior to TCP communications. This information must be exchanged out-of-band. A partial list of these attributes, with an explanation, is provided below: ��

DNS name (or IP address) and port number�Each participant requires a resolvable DNS name or IP address and a port number to open a connection for communications. See page � PAGEREF map_Greeting_State �65�.��TransportID name�The identity of the message originator (for example, the name of the originating host). This field is used in the Authentication message. See page � PAGEREF block_Auth_message �69�.��Maximum number of outstanding requests per TCP connection�The maximum number of pending request(s) in the participantís network queue to be processed.��Minimum time-out on outstanding requests�The minimum time one should wait before resubmitting requests.��Maximum time-out for value t30�The maximum time one should wait while in the Greeting and Authenticating states. See pages � PAGEREF map_Greeting_State �65� and � PAGEREF block_Auth_message �69�.��Maximum time-out for value t120�The maximum time one should wait while in the Closing state. See page � PAGEREF block_Closing_state �74�.��Maximum number of concurrent TCP connections�The maximum number of concurrent TCP connections that are available to each participant.��Maximum number of automatic retries per request�The maximum number of retries a participant can send per request.��Authentication requirement�Whether authentication is necessary between the communicating parties.��Shared secret value�The key that the HMAC function will use for generating the challenge/response.��Table � SEQ Table * ARABIC �2�: TCP Networking Attributes Out-of-band to SET

�Part II�ASN.1 Code

ASN.1 code�The following source code includes all of the changes approved for testing. A text file without the line numbers should be available from the same source as this document.��

 -- History

 -- 1 Aug 1996 Published original version for testing

 -- 4 Nov 1996 CC #1; changed 1325, 2235-6, 1436, 1484, 2178-9

 -- 14 Jan 1997 CDMF object identifier defined; changed 2130

 -- 17 Jan 1997 CC #3; added 374.5, 404.5

 1 SetMessage DEFINITIONS IMPLICIT TAGS ::= BEGIN

 2

 3 --

 4 -- This module defines types for use in the SET protocol certificate and

 5 -- payment flow messages.

 6 --

 7

 8 -- EXPORTS All;

 9

 10 IMPORTS

 11

 12 DirectoryString {}, Name

 13 FROM SetAttribute

 14

 15 SIGNED {}, Validity

 16 FROM SetCertificate

 17

 18 Extensions

 19 FROM SetCertificateExtensions

 20

 21 CertInqReq, CertInqRes, CertReq, CertRes, CardCInitRes, CardCInitReq,

 22 Me-AqCInitReq, Me-AqCInitRes, RegFormReq, RegFormRes

 23 FROM SetCertMsgs

 24

 25 AuthReq, AuthRes, AuthRevReq, AuthRevRes, BatchAdminReq,

 26 BatchAdminRes, CapReq, CapRes, CapRevReq, CapRevRes, CredReq,

 27 CredRes, CredRevReq, CredRevRes, InqReq, InqRes, PCertReq,

 28 PCertRes, PInitReq, PInitRes, PReq, PRes

 29 FROM SetPayMsgs

 30

 31 DAlgorithmIdentifier, Digest, Digests

 32 FROM SetPKCS7Plus;

 33

 34

 35 MessageWrapper ::= SEQUENCE {

 36 version INTEGER { setVer0(0) } (setVer0),

 37 date Date,

 38 messageIDs [0] MessageIDs OPTIONAL,

 39 rrPID [1] RRPID OPTIONAL, -- Not used in CMS messages

 40 swIdent SWIdent,

 41 message [2] EXPLICIT MESSAGE.&Type (Message) -- Open type

 42 }

 43

 44 MessageIDs ::= SEQUENCE {

 45 localID-C [0] LocalID OPTIONAL,

 46 localID-M [1] LocalID OPTIONAL,

 47 xID [2] XID OPTIONAL

 48 }

 49

 50 MESSAGE ::= TYPE-IDENTIFIER -- ISO/IEC 8824-2:1995(E), Annex A

 51

 52 Message ::= CHOICE {

 53

 54 purchaseInitRequest [0] PInitReq,

 55 purchaseInitResponse [1] PInitRes,

 56

 57 purchaseRequest [2] EXPLICIT PReq,

 58 purchaseResponse [3] PRes,

 59

 60 inquiryRequest [4] EXPLICIT InqReq,

 61 inquiryResponse [5] InqRes,

 62

 63 authorizationRequest [6] AuthReq,

 64 authorizationResponse [7] EXPLICIT AuthRes,

 65

 66 authReversalRequest [8] AuthRevReq,

 67 authReversalResponse [9] EXPLICIT AuthRevRes,

 68

 69 captureRequest [10] EXPLICIT CapReq,

 70 captureResponse [11] CapRes,

 71

 72 captureReversalRequest [12] EXPLICIT CapRevReq,

 73 captureReversalResponse [13] CapRevRes,

 74

 75 creditRequest [14] EXPLICIT CredReq,

 76 creditResponse [15] CredRes,

 77

 78 creditReversalRequest [16] EXPLICIT CredRevReq,

 79 creditReversalResponse [17] CredRevRes,

 80

 81 pCertificateRequest [18] PCertReq,

 82 pCertificateResponse [19] PCertRes,

 83

 84 batchAdministrationRequest [20] BatchAdminReq,

 85 batchAdministrationResponse [21] BatchAdminRes,

 86

 87 cardholderCInitRequest [22] CardCInitReq,

 88 cardholderCInitResponse [23] CardCInitRes,

 89

 90 meAgCInitRequest [24] Me-AqCInitReq,

 91 meAgCInitResponse [25] Me-AqCInitRes,

 92

 93 registrationFormRequest [26] RegFormReq,

 94 registrationFormResponse [27] RegFormRes,

 95

 96 certificateRequest [28] EXPLICIT CertReq,

 97 certificateResponse [29] EXPLICIT CertRes,

 98

 99 certificateInquiryRequest [30] CertInqReq,

 100 certificateInquiryResponse [31] EXPLICIT CertInqRes,

 101

 102 error [32] Error

 103 }

 104

 105 Error ::= SEQUENCE {

 106 errorCode INTEGER

 107 }

 108

 109 -- Brand CRL Identifiers

 110

 111 BrandCRLIdentifier ::= SIGNED {

 112 EncodedBrandCRLID

 113 } (CONSTRAINED BY { -- Verify Or Sign UnsignedBrandCRLIdentifier -- })

 114

 115 EncodedBrandCRLID ::= TYPE-IDENTIFIER.&Type (UnsignedBrandCRLIdentifier)

 116

 117 UnsignedBrandCRLIdentifier ::= SEQUENCE {

 118 brandVersion INTEGER { bVer1(0) } (bVer1),

 119 sequenceNum INTEGER (0..MAX),

 120 brandID BrandID,

 121 validity Validity,

 122 crl-IDs CRL-IDs OPTIONAL,

 123 bCRLExtensions [0] Extensions -- authorityKeyIdentifier only

 124 }

 125

 126 BrandID ::= DirectoryString { ub-BrandID }

 127

 128 CRL-IDs ::= SEQUENCE OF CRL-ID

 129

 130 CRL-ID ::= SEQUENCE {

 131 issuerName Name, -- CRL issuer Distinguished Name

 132 crlNumber INTEGER (0..MAX) -- cRLNumber extension sequence number

 133 }

 134

 135 --

 136

 137 AcqCardCode ::= ENUMERATED {

 138 tbd (0) -- To be defined

 139 }

 140

 141 AcqCardCodeMsg ::= SEQUENCE {

 142 acqCardCode AcqCardCode,

 143 acqCardMsgData AcqCardMsgData

 144 }

 145

 146 AcqCardMsgData ::= SEQUENCE {

 147 acqCardText [0] EXPLICIT

 148 DirectoryString { ub-acqCardText } OPTIONAL,

 149 acqCardURL URL OPTIONAL,

 150 acqCardPhone DirectoryString { ub-acqCardPhone } OPTIONAL

 151 }

 152

 153 BIN ::= NumericString -- Bank identification number

 154

 155 CardExpiry ::= IA5String (SIZE(6)) -- YYYYMM expiration date on card

 156

 157 CertThumb ::= SEQUENCE {

 158 digestAlgorithm DAlgorithmIdentifier -- (sha1)--,

 159 thumbprint Digest

 160 }

 161

 162 Challenge ::= OCTET STRING (SIZE(20)) -- Signature freshness challenge

 163

 164 Currency ::= INTEGER (1..999) -- Three digit ISO-4217 currency code

 165

 166 Date ::= GeneralizedTime

 167

 168 Language ::= IA5String (SIZE(3)) -- RFC1766 language preference

 169

 170 LocalID ::= OCTET STRING (SIZE(1..20))

 171

 172 MerchantID ::= DirectoryString { ub-MerchantID }

 173

 174 Nonce ::= OCTET STRING (SIZE(20))

 175

 176 PAN ::= NumericString (SIZE(1..19))

 177

 178 PANData ::= SEQUENCE {

 179 pan PAN,

 180 cardExpiry CardExpiry,

 181 panSecret OCTET STRING (SIZE(20)),

 182 exNonce Nonce

 183 }

 184

 185 PaySysID ::= IA5String

 186

 187 RRPID ::= OCTET STRING(SIZE(20)) -- Request response pair identification

 188

 189 SWIdent ::= DirectoryString { ub-SWIdent } -- Software identification

 190

 191 Thumbs ::= SEQUENCE {

 192 digestAlgorithm DAlgorithmIdentifier --(sha1)--,

 193 certThumbs [0] Digests OPTIONAL,

 194 crlThumbs [1] Digests OPTIONAL,

 195 brandCRLIdThumbs [2] Digests OPTIONAL

 196 }

 197

 198 TransIDs ::= SEQUENCE {

 199 localID-C LocalID,

 200 localID-M [0] LocalID OPTIONAL,

 201 xID XID,

 202 pReqDate Date,

 203 paySysID [1] PaySysID OPTIONAL,

 204 language Language -- Cardholder requested session language

 205 }

 206

 207 URL ::= IA5String -- Universal Resource Locator

 208

 209 XID ::= OCTET STRING (SIZE(20))

 210

 211 -- Upper bounds of DirectoryString{} types

 212

 213 ub-BrandID INTEGER ::= 40

 214 ub-acqCardText INTEGER ::= 128

 215 ub-acqCardPhone INTEGER ::= 50

 216 ub-MerchantID INTEGER ::= 30

 217 ub-SWIdent INTEGER ::= 256

 218

 219

 220 END

 221 SetCertMsgs DEFINITIONS IMPLICIT TAGS ::= BEGIN

 222

 223 --

 224 -- Types used in the SET Certificate Management Protocol messages.

 225 --

 226

 227 -- EXPORTS All;

 228

 229 IMPORTS

 230

 231 DirectoryString {}

 232 FROM SetAttribute

 233

 234 SubjectPublicKeyInfo

 235 FROM SetCertificate

 236

 237 BIN, BrandID, BrandCRLIdentifier, CardExpiry, CertThumb, Challenge,

 238 Currency, Language, LocalID, MerchantID, Nonce, PAN, Thumbs, URL

 239 FROM SetMessage

 240

 241 CA, CEAlgorithmIdentifier, EE, Enc {}, EncK {}, EncX {}, EXH {}, S {}

 242 FROM SetPKCS7Plus;

 243

 244

 245 -- PAYLOADS

 246

 247 IDData ::= CHOICE { -- Merchants and Acquirers only

 248 merchantAcquirerID [0] MerchantAcquirerID,

 249 acquirerID [1] AcquirerID

 250 }

 251

 252 MerchantAcquirerID ::= SEQUENCE {

 253 merchantBIN BIN,

 254 merchantID MerchantID -- By prior agreement of Merchant/Acquirer

 255 }

 256

 257 AcquirerID ::= SEQUENCE {

 258 acquirerBIN BIN,

 259 acquirerBusinessID AcquirerBusinessID OPTIONAL

 260 }

 261

 262 AcquirerBusinessID ::= NumericString

 263

 264 -- request type

 265

 266 RequestType ::= ENUMERATED { -- Indicates requestor and type of request

 267 cardInitialSig (1),

 268 -- cardInitialEnc (2), Reserved

 269 -- cardInitialBoth (3), Reserved

 270 merInitialSig (4),

 271 merInitialEnc (5),

 272 merInitialBoth (6),

 273 pgwyInitialSig (7),

 274 pgwyInitialEnc (8),

 275 pgwyInitialBoth (9),

 276 cardRenewalSig (10),

 277 -- cardRenewalEnc (11), Reserved

 278 -- cardRenewalBoth (12), Reserved

 279 merRenewalSig (13),

 280 merRenewalEnc (14),

 281 merRenewalBoth (15),

 282 pgwyRenewalSig (16),

 283 pgwyRenewalEnc (17),

 284 pgwyRenewalBoth (18)

 285 }

 286

 287 -- Certificate Initialization Pair - Cardholder

 288

 289 CardCInitReq ::= SEQUENCE {

 290 eeTags EE-Tags,

 291 brandID BrandID,

 292 thumbs Thumbs OPTIONAL

 293 }

 294

 295 EE-Tags ::= SEQUENCE {

 296 localID-EE LocalID,

 297 chall-EE Challenge

 298 }

 299

 300 CardCInitRes ::= S { CA, CardCInitResTBS }

 301

 302 CardCInitResTBS ::= SEQUENCE {

 303 eeTags EE-Tags,

 304 cakThumb CertThumb,

 305 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 306 thumbs Thumbs OPTIONAL

 307 }

 308

 309 -- Certificate Initialization Pair - Merchant | Acquirer Payment Gateway

 310

 311 Me-AqCInitReq ::= SEQUENCE {

 312 eeTags EE-Tags,

 313 requestType RequestType,

 314 idData IDData,

 315 brandID BrandID,

 316 language Language,

 317 thumbs Thumbs OPTIONAL

 318 }

 319

 320 Me-AqCInitRes ::= S { CA, Me-AqCInitResTBS }

 321

 322 Me-AqCInitResTBS ::= SEQUENCE {

 323 eeTags EE-Tags,

 324 requestType RequestType,

 325 regTemplate RegTemplate,

 326 policy PolicyText,

 327 cakThumb CertThumb,

 328 logoURL URL,

 329 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 330 thumbs Thumbs OPTIONAL

 331 }

 332

 333 PolicyText ::= DirectoryString { ub-PolicyText }

 334

 335 -- Registration Form - Request/Response/Referral - Cardholder Only

 336

 337 RegFormReq ::= EXH { CA, RegFormReqTBE, PANOnly }

 338

 339 RegFormReqTBE ::= SEQUENCE {

 340 requestType RequestType,

 341 eeTags2 EE-Tags,

 342 language Language

 343 }

 344

 345 PANOnly ::= SEQUENCE {

 346 pan PAN,

 347 exNonce Nonce

 348 }

 349

 350 RegFormRes ::= S { CA, RegFormTBS }

 351

 352 RegFormTBS ::= SEQUENCE {

 353 eeTags2 EE-Tags, -- From RegFormReq

 354 requestType RequestType,

 355 formOrReferal RegFormOrReferral

 356 }

 357

 358 RegFormOrReferral ::= CHOICE {

 359 regFormData [0] RegFormData,

 360 referralData [1] ReferralData

 361 }

 362

 363 RegFormData ::= SEQUENCE {

 364 caTags CA-Tags,

 365 regTemplate RegTemplate,

 366 policy PolicyText

 367 }

 368

 369 CA-Tags ::= SEQUENCE {

 370 lID-CA LocalID,

 371 chall-CA Challenge

 372 }

 373

 374 RegTemplate ::= SEQUENCE {

 374.5 regFormID INTEGER (0..MAX), -- CA assigned identifier

 375 brandLogoURL [0] URL OPTIONAL,

 376 cardLogoURL [1] URL OPTIONAL,

 377 fieldNames FieldNames

 378 }

 379

 380 FieldNames ::= SEQUENCE SIZE(1..50) OF FieldName

 381

 382 ReferralData ::= SEQUENCE {

 383 reason Reason, -- Displayed on requestor's system

 384 referralLoc ReferralLoc OPTIONAL

 385 }

 386

 387 Reason ::= DirectoryString { ub-Reason }

 388

 389 ReferralLoc ::= SEQUENCE OF ReferralURL -- Ordered by preference

 390

 391 ReferralURL ::= URL

 392

 393 -- Request Messages

 394

 395 CertReq ::= CHOICE {

 396 encx [0] EncX { EE, CA, CertReqTBE, AcctInfo},

 397 enc [1] Enc {EE, CA, CertReqTBE}

 398 }

 399

 400 CertReqTBE ::= SEQUENCE {

 401 requestType RequestType,

 402 eeTags3 EE-Tags,

 403 caTags [0] CA-Tags OPTIONAL,

 404 idData [1] EXPLICIT IDData OPTIONAL,

 404.5 regFormID INTEGER (0..MAX), -- CA assigned identifier

 405 regForm RegForm,

 406 caBackKeyData [2] CABackKeys OPTIONAL,

 407 publicKeySorE PublicKeySorE

 408 }

 409

 410 RegForm ::= SEQUENCE SIZE(1..50) OF RegFormItems -- Registration form

 411

 412 RegFormItems ::= SEQUENCE {

 413 fieldName FieldName,

 414 fieldValue FieldValue

 415 }

 416

 417 FieldName ::= DirectoryString { ub-FieldName }

 418

 419 FieldValue ::= DirectoryString { ub-FieldValue } -- EE entered values

 420

 421 CABackKeys ::= SEQUENCE OF CABackKeyData -- In order of preference

 422

 423 CABackKeyData ::= SEQUENCE {

 424 caAlgID CEAlgorithmIdentifier,

 425 caKey CAKey

 426 }

 427

 428 CAKey ::= OCTET STRING (SIZE(1..24)) -- Secret

 429

 430 PublicKeySorE ::= SEQUENCE {

 431 publicKeyS [0] SubjectPublicKeyInfo OPTIONAL,

 432 publicKeyE [1] SubjectPublicKeyInfo OPTIONAL

 433 } --

 434 -- At least one component must be present. A user may request a

 435 -- signature certificate, an encryption certificate, or both.

 436 --

 437 (WITH COMPONENTS { ..., publicKeyS PRESENT } |

 438 WITH COMPONENTS { ..., publicKeyE PRESENT })

 439

 440 AcctInfo ::= CHOICE {

 441 panData0 [0] PANData0,

 442 acctData [1] AcctData

 443 }

 444

 445 PANData0 ::= SEQUENCE {

 446 pan PAN,

 447 cardExpiry CardExpiry,

 448 cardNonce Nonce,

 449 exNonce Nonce

 450 }

 451

 452 AcctData ::= SEQUENCE {

 453 acctIdentification OCTET STRING (SIZE(74)),

 454 exNonce Nonce

 455 }

 456

 457 CertRes ::= CHOICE {

 458 certResTBS [0] S { CA, CertResData },

 459 certResTBSE [1] EncK { CAKey, CA, CertResData }

 460 }

 461

 462 CertResData ::= SEQUENCE {

 463 eeTags3 EE-Tags,

 464 localID-CA LocalID OPTIONAL,

 465 certStatus CertStatusCode,

 466 eeMessage DirectoryString { ub-eeMessage } OPTIONAL,

 467 nonceCCA [0] Nonce OPTIONAL,

 468 caMsg [1] CA-Msg OPTIONAL,

 469 certThumbs Thumbs -- Match SignedData.Certificates

 470 }

 471

 472 CertStatusCode ::= ENUMERATED { -- In-process status of CertReq

 473 requestComplete (1),

 474 invalidLanguage (2),

 475 invalidBIN (3),

 476 sigValidationFail (4),

 477 decryptionError (5),

 478 requestInProgress (6),

 479 rejectedByIssuer (7),

 480 requestPended (8),

 481 rejectedByAquirer (9)

 482 }

 483

 484 CA-Msg ::= SEQUENCE {

 485 cardLogo [0] URL OPTIONAL,

 486 brandLogo [1] URL OPTIONAL,

 487 cardCurrency [2] Currency OPTIONAL,

 488 cardholderMsg [3] EXPLICIT

 489 DirectoryString { ub-cardholderMsg } OPTIONAL

 490 }

 491

 492 CertInqReq ::= S { EE, LocalID } -- CertRes(localID-CA) or assigned

 493

 494 CertInqRes ::= CertRes

 495

 496 -- Upper bounds of DirectoryString{} types

 497

 498 ub-cardholderMsg INTEGER ::= 128

 499 ub-eeMessage INTEGER ::= 128

 500 ub-FieldName INTEGER ::= 128

 501 ub-FieldValue INTEGER ::= 128

 502 ub-PolicyText INTEGER ::= 20000

 503 ub-Reason INTEGER ::= 512

 504

 505

 506 END

 507 SetPayMsgs DEFINITIONS IMPLICIT TAGS ::= BEGIN

 508

 509 --

 510 -- This module defines types for SET protocol payment messages.

 511 --

 512

 513 -- EXPORTS All;

 514

 515 IMPORTS

 516

 517 DirectoryString {}

 518 FROM SetAttribute

 519

 520 SIGNED {}

 521 FROM SetCertificate

 522

 523 AcqCardCodeMsg, BrandCRLIdentifier, BrandID, CardExpiry, CertThumb,

 524 Challenge, Currency, Date, Language, LocalID, MerchantID, Nonce, PAN,

 525 PANData, RRPID, SWIdent, Thumbs, TransIDs

 526 FROM SetMessage

 527

 528 C, CEAlgorithmIdentifier, DAlgorithmIdentifier, DD {}, Digest,

 529 Enc {}, EncB {}, EncBX {}, EncK{}, EncX {}, EnvelopedData, EX {},

 530 EXH {}, P1, P2, L {}, M, P, S {}, SO {}

 531 FROM SetPKCS7Plus;

 532

 533

 534 -- Purchase Initialization Pair

 535

 536 PInitReq ::= SEQUENCE { -- Purchase Initialization Request

 537 rrPID RRPID,

 538 language Language,

 539 localID-C LocalID,

 540 localID-M [0] LocalID OPTIONAL,

 541 chall-C Challenge,

 542 brandID BrandID,

 543 thumbs Thumbs OPTIONAL

 544 }

 545

 546 PInitRes ::= S { M, PInitResData }

 547

 548 PInitResData ::= SEQUENCE {

 549 transIDs TransIDs,

 550 rrPID RRPID,

 551 chall-C Challenge,

 552 chall-M Challenge,

 553 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 554 gkThumb CertThumb,

 555 thumbs Thumbs

 556 }

 557

 558 -- Purchase (P) Messages

 559

 560 PReq ::= CHOICE {

 561 pReqDualSigned [0] PReqDualSigned,

 562 pReqUnsigned [1] PReqUnsigned

 563 }

 564

 565 PReqDualSigned ::= SEQUENCE {

 566 piDualSigned PIDualSigned,

 567 oiDualSigned OIDualSigned

 568 }

 569

 570 PIDualSigned ::= SEQUENCE {

 571 piSignature PISignature,

 572 exPIData EX { P, L { PIHead, OIData }, PANData }

 573 }

 574

 575 OIDualSigned ::= L{ OIData, PIData }

 576

 577 PISignature ::= SO { C, SEQUENCE { hPIData HPIData, hOIData HOIData } }

 578

 579 HPIData ::= DD { PIData } -- PKCS#7 DigestedData

 580

 581 HOIData ::= DD { OIData } -- PKCS#7 DigestedData

 582

 583 PIHead ::= SEQUENCE {

 584 transIDs TransIDs,

 585 piNonce Nonce,

 586 inputs Inputs,

 587 merchantID MerchantID,

 588 splitRecurInd SplitRecurInd OPTIONAL,

 589 swIdent SWIdent,

 590 acqBackInfo AcqBackInfo OPTIONAL

 591 }

 592

 593 OIData ::= SEQUENCE { -- Order Information Data

 594 transIDs TransIDs,

 595 rrpid RRPID,

 596 chall-C Challenge,

 597 hod HOD,

 598 odSalt Nonce,

 599 chall-M Challenge OPTIONAL,

 600 brandID BrandID OPTIONAL

 601 }

 602

 603 HOD ::= DD { HODInput }

 604

 605 PReqUnsigned ::= SEQUENCE { -- Sent by cardholders without certificates

 606 piUnsigned PIUnsigned,

 607 oiUnsigned OIUnsigned

 608 }

 609

 610 OIUnsigned ::= L { OIData, PIDataUnsigned }

 611

 612 PIDataUnsigned ::= SEQUENCE {

 613 piHead PIHead,

 614 panToken PANToken -- Only when signing

 615 }

 616

 617 PIData ::= SEQUENCE {

 618 piHead PIHead,

 619 panData PANData -- Only when signing

 620 }

 621

 622 PANToken ::= SEQUENCE {

 623 pan PAN,

 624 cardExpiry CardExpiry,

 625 exNonce Nonce

 626 }

 627

 628 PI ::= CHOICE {

 629 piUnsigned [0] PIUnsigned,

 630 piDualSigned [1] PIDualSigned,

 631 authToken [2] AuthToken

 632 }

 633

 634 PIUnsigned ::= EXH { P, L { PIHead, OIData }, PANToken }

 635

 636 PRes ::= S { M, PResData }

 637

 638 PResData ::= SEQUENCE {

 639 transIDs TransIDs,

 640 rrpid RRPID,

 641 chall-C Challenge,

 642 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 643 pResPayload PResPayload

 644 }

 645

 646 -- Inquiries and Responses

 647

 648 InqReq ::= CHOICE {

 649 inqReqSigned [0] InqReqSigned,

 650 inqReqUnsigned [1] InqReqData

 651 }

 652

 653 InqReqSigned ::= S { C, InqReqData }

 654

 655 InqReqData ::= SEQUENCE { -- Signed by cardholder, if signed

 656 transIDs TransIDs,

 657 rrpid RRPID,

 658 chall-C2 Challenge

 659 }

 660

 661 InqRes ::= PRes

 662

 663 -- Auth Pair

 664

 665 AuthReq ::= EncB { M, P, AuthReqData, PI }

 666

 667 AuthReqPayload ::= SEQUENCE {

 668 subsequentAuthInd BOOLEAN,

 669 authReqAmt CurrencyAmount, -- May differ from PurchAmt

 670 merchData MerchData,

 671 captureNow BOOLEAN,

 672 saleDetail SaleDetail OPTIONAL -- Iff captureNow is true

 673 }

 674

 675 MerchData ::= SEQUENCE {

 676 cardSuspect [0] CardSuspect OPTIONAL,

 677 merchCatCode MerchCatCode OPTIONAL,

 678 merchGroup MerchGroup OPTIONAL,

 679 marketSpecData [1] EXPLICIT MarketSpecAuthData OPTIONAL,

 680 avsData AVSData OPTIONAL

 681 }

 682

 683 CardSuspect ::= ENUMERATED { -- Indicates merchant suspects cardholder

 684 --

 685 -- Specific values indicate why the merchant is suspicious

 686 --

 687 unspecifiedReason (0), -- Either the merchant does not differentiate

 688 -- reasons for suspicion, or the specific

 689 -- reason does not appear in the list

 690 ...

 691 }

 692

 693 MerchCatCode ::= IA5String (SIZE(4))

 694 -- Merchant Category Code (MCCs) are assigned by acquirer to

 695 -- describe the merchant's product, service or type of business

 696

 697 MerchGroup ::= ENUMERATED {

 698 commercialTravel (1),

 699 lodging (2),

 700 automobileRental (3),

 701 restaurant (4),

 702 medical (5),

 703 mailOrPhoneOrder (6),

 704 riskyPurchase (7),

 705 other (8)

 706 }

 707

 708 AVSData ::= DirectoryString { ub-AVSData } -- Cardholder billing address

 709

 710 AuthRes ::= CHOICE {

 711 encBX [0] EncBX { P, M, AuthResData, AuthResBaggage, PANToken },

 712 encB [1] EncB { P, M, AuthResData, AuthResBaggage }

 713 }

 714

 715 AuthResData ::= SEQUENCE {

 716 authTags AuthTags,

 717 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 718 gkThumb [1] CertThumb OPTIONAL,

 719 authResPayload AuthResPayload

 720 }

 721

 722 AuthResBaggage ::= SEQUENCE {

 723 capToken [0] EXPLICIT CapToken OPTIONAL,

 724 acqCardMsg [1] AcqCardMsg OPTIONAL,

 725 authToken [2] AuthToken OPTIONAL

 726 }

 727

 728 AcqCardMsg ::= EncK { -- AcqBackAlg, -- AcqBackKey, P, AcqCardCodeMsg }

 729

 730 AuthResPayload ::= SEQUENCE {

 731 authHeader AuthHeader,

 732 saleResPayload SaleResPayload OPTIONAL

 733 }

 734

 735 AuthHeader ::= SEQUENCE {

 736 authAmt CurrencyAmount,

 737 respCode RespCode,

 738 responseData ResponseData,

 739 captureControl [0] CaptureControl OPTIONAL,

 740 currConv CurrConv OPTIONAL -- Merchant to cardholder

 741 }

 742

 743 AuthCode ::= IA5String (SIZE(6)) -- Returned on successful authorization

 744

 745 SaleResPayload ::= SEQUENCE {

 746 capCode CapCode,

 747 capAmt CurrencyAmount,

 748 settleAmount CurrencyAmount OPTIONAL

 749 }

 750

 751 CapCode ::= ENUMERATED {

 752 success (1),

 753 unknown (2),

 754 closed (3)

 755 }

 756

 757 -- Capture Pair

 758

 759 CapReq ::= CHOICE {

 760 encB [0] EncB { M, P, CapReqData, CapTokSeq },

 761 encBX [1] EncBX { M, P, CapReqData, CapTokSeq, PANToken }

 762 }

 763

 764 CapReqData ::= SEQUENCE {

 765 capRRTags CapRRTags,

 766 mThumbs [0] Thumbs OPTIONAL,

 767 capSeq CapSeq,

 768 forceClosure BatchIDs

 769 }

 770

 771 CapRRTags ::= RRTags

 772

 773 BatchIDs ::= SEQUENCE SIZE(0..MAX) OF BatchID

 774

 775 MerBatchID ::= NumericString (SIZE(8))

 776

 777 CapSeq ::= SEQUENCE SIZE(1..MAX) OF CapItem

 778

 779 CapItem ::= SEQUENCE {

 780 transIDs TransIDs,

 781 capPayload CapPayload

 782 }

 783

 784 CapPayload ::= SEQUENCE {

 785 capReqAmt CurrencyAmount,

 786 authReqData [0] AuthReqData OPTIONAL,

 787 authResPayload [1] AuthResPayload OPTIONAL,

 788 saleDetail SaleDetail

 789 }

 790

 791 CapRes ::= Enc { P, M, CapResData }

 792

 793 CapResData ::= SEQUENCE {

 794 capTags CapTags,

 795 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 796 gkThumb [1] CertThumb OPTIONAL,

 797 captureControl CaptureControl,

 798 capResSeq CapResSeq

 799 }

 800

 801 CapTags ::= SEQUENCE {

 802 rrTags RRTags,

 803 merBatchID MerBatchID OPTIONAL

 804 }

 805

 806 CapResSeq ::= SEQUENCE SIZE(1..MAX) OF CapResItem

 807

 808 CapResItem ::= SEQUENCE {

 809 transIDs TransIDs,

 810 capResPayload CapResPayload

 811 }

 812

 813 CapResPayload ::= SEQUENCE {

 814 capCode CapCode,

 815 capAmt CurrencyAmount,

 816 batchID BatchID OPTIONAL,

 817 settleAmount CurrencyAmount OPTIONAL

 818 }

 819

 820 -- Auth Reversal Pair

 821

 822 AuthRevReq ::= EncB { M, P, AuthRevReqData, AuthRevReqBaggage }

 823

 824

 825 AuthRevReqData ::= SEQUENCE {

 826 authRevTags AuthRevTags,

 827 mThumbs [0] Thumbs OPTIONAL,

 828 authReqData [1] AuthReqData OPTIONAL,

 829 authResPayload [2] AuthResPayload OPTIONAL,

 830 authNewAmt CurrencyAmount OPTIONAL

 831 }

 832

 833 AuthRevReqBaggage ::= SEQUENCE {

 834 pi PI,

 835 capToken CapToken OPTIONAL

 836 }

 837

 838 AuthRevTags ::= SEQUENCE {

 839 authRevRRTags AuthRevRRTags,

 840 authRetNum AuthRetNum OPTIONAL

 841 }

 842

 843 AuthRevRRTags ::= RRTags

 844

 845 AuthRetNum ::= INTEGER (0..MAX)

 846

 847 AuthRevRes ::= CHOICE {

 848 encB [0] EncB { P, M, AuthRevResData, AuthRevResBaggage },

 849 enc [1] Enc { P, M, AuthRevResData }

 850 }

 851

 852 AuthRevResBaggage ::= SEQUENCE {

 853 capTokenNew CapToken OPTIONAL,

 854 authTokenNew AuthToken OPTIONAL

 855 }

 856

 857 AuthRevResData ::= SEQUENCE {

 858 authRevTags AuthRevTags,

 859 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 860 gkThumb [1] CertThumb OPTIONAL,

 861 authNewAmt CurrencyAmount, -- May be zero

 862 authResDataNew AuthResDataNew OPTIONAL

 863 }

 864

 865 AuthResDataNew ::= SEQUENCE {

 866 transIDs TransIDs,

 867 authResPayloadNew AuthResPayload -- Contains new data

 868 }

 869

 870 -- Capture Reversal Pair

 871

 872 CapRevReq ::= CHOICE {

 873 encB [0] EncB { M, P, CapRevData, CapTokSeq },

 874 encBX [1] EncBX { M, P, CapRevData, CapTokSeq, PANToken }

 875 }

 876

 877 CapRevData ::= CapRevOrCredReqData

 878

 879 CapRevOrCredReqData ::= SEQUENCE {

 880 capRevOrCredTags CapRevOrCredRRTags,

 881 mThumbs [0] Thumbs OPTIONAL,

 882 capRevOrCredReqItems CapRevOrCredReqItems

 883 }

 884

 885 CapRevOrCredRRTags ::= RRTags

 886

 887 CapRevOrCredReqItems ::= SEQUENCE SIZE(1..MAX) OF CapRevOrCredReqItem

 888

 889 CapRevOrCredReqItem ::= SEQUENCE {

 890 transIDs [0] TransIDs OPTIONAL,

 891 authReqData [1] AuthReqPayload OPTIONAL,

 892 authResPayload [2] AuthResPayload OPTIONAL,

 893 capRevOrCredReqAmt CurrencyAmount

 894 }

 895

 896 CapRevRes ::= Enc { P, M, CapRevResData }

 897

 898 CapRevResData ::= CapRevOrCredResData

 899

 900 CapRevOrCredResData ::= SEQUENCE {

 901 capRevOrCredTags CapRevOrCredTags,

 902 brandCRLIdentifier [0] BrandCRLIdentifier OPTIONAL,

 903 gkThumb [1] CertThumb OPTIONAL,

 904 capRevOrCredResItems CapRevOrCredResItems

 905 }

 906

 907 CapRevOrCredTags ::= RRTags

 908

 909 CapRevOrCredResItems ::= SEQUENCE SIZE(1..MAX) OF CapRevOrCredResItem

 910

 911 CapRevOrCredResItem ::= SEQUENCE {

 912 transIDs TransIDs,

 913 capRevOrCredResPayload CapRevOrCredResPayload

 914 }

 915

 916 CapRevOrCredResPayload ::= SEQUENCE {

 917 capRevOrCredCode CapRevOrCredCode,

 918 capRevOrCredActualAmt CurrencyAmount,

 919 captureControl CaptureControl,

 920 batchID BatchID OPTIONAL,

 921 settleAmt CurrencyAmount OPTIONAL

 922 }

 923

 924 CapRevOrCredCode ::= ENUMERATED {

 925 tbd (0) -- To be defined

 926 }

 927

 928 -- Credit Pair

 929

 930 CredReq ::= CHOICE {

 931 encB [0] EncB { M, P, CredReqData, CapTokSeq },

 932 encBX [1] EncBX { M, P, CredReqData, CapTokSeq, PANToken }

 933 }

 934

 935 CredReqData ::= CapRevOrCredReqData

 936

 937 CredRes ::= Enc { P, M, CredResData }

 938

 939 CredResData ::= CapRevOrCredResData

 940

 941 -- Credit Reversal Pair

 942

 943 CredRevReq ::= CHOICE {

 944 encB [0] EncB { M, P, CredRevReqData, CapTokSeq },

 945 encBX [1] EncBX { M, P, CredRevReqData, CapTokSeq, PANToken }

 946 }

 947

 948 CredRevReqData ::= CapRevOrCredReqData

 949

 950 CredRevRes ::= Enc { P, M, CredRevResData }

 951

 952 CredRevResData ::= CapRevOrCredResData

 953

 954 --PCert Pair

 955

 956 PCertReq ::= S { M, PCertReqData }

 957

 958 PCertReqData ::= SEQUENCE {

 959 pCertTags PCertTags,

 960 mThumbs [0] Thumbs OPTIONAL,

 961 brandIDSeq BrandIDSeq

 962 }

 963

 964 PCertTags ::= RRTags

 965

 966 BrandIDSeq ::= SEQUENCE OF BrandID

 967

 968 PCertRes ::= S { P, PCertResTBS }

 969

 970 PCertResTBS ::= SEQUENCE {

 971 pCertTags PCertTags,

 972 brandCRLIdentifier BrandCRLIdentifier OPTIONAL,

 973 pCertResThumbs [0] Thumbs

 974 }

 975

 976 -- Batch Administration

 977

 978 BatchAdminReq ::= S { M, BatchAdminReqTBS }

 979

 980 BatchAdminReqTBS ::= SEQUENCE {

 981 batchAdminRRTags BatchAdminRRTags,

 982 batchAdminReqData BatchAdminReqData

 983 }

 984

 985 BatchAdminRRTags ::= RRTags

 986

 987 BatchAdminReqData ::= SEQUENCE {

 988 batchID BatchID,

 989 brandIDSeq BrandIDSeq,

 990 openBatchInd BOOLEAN,

 991 forceBatchClosureInd BOOLEAN,

 992 returnBatchSummaryInd BOOLEAN,

 993 returnTransactionDetailInd BOOLEAN

 994 }

 995

 996 BatchAdminRes ::= S { P, BatchAdminResTBS }

 997

 998 BatchAdminResTBS ::= SEQUENCE {

 999 batchAdminTags RRTags,

1000 batchAdminResData BatchAdminResData

1001 }

1002

1003 BatchAdminResData ::= SEQUENCE {

1004 batchID BatchID,

1005 openStatus OpenStatus OPTIONAL,

1006 closedWhen ClosedWhen OPTIONAL,

1007 batchStatus [0] BatchStatus OPTIONAL,

1008 transDetails [1] TransDetails OPTIONAL

1009 }

1010

1011 OpenStatus ::= ENUMERATED {

1012 tbd (0) -- To be defined

1013 }

1014

1015 ClosedWhen ::= SEQUENCE {

1016 closeStatus CloseStatus,

1017 closeDateTime Date

1018 }

1019

1020 CloseStatus ::= ENUMERATED {

1021 tbd (0) -- To be defined

1022 }

1023

1024 BatchStatus ::= SEQUENCE {

1025 transactionCountCredit INTEGER (0..MAX),

1026 transactionTotalAmtCredit CurrencyAmount,

1027 transactionCountDebit INTEGER (0..MAX),

1028 transactionTotalAmtDebit CurrencyAmount,

1029 settlementAmount CurrencyAmount,

1030 settlementAccount MerchantID,

1031 settlementDepositDate Date

1032 }

1033

1034 TransDetails ::= SEQUENCE OF TransactionDetail

1035

1036 TransactionDetail ::= SEQUENCE {

1037 transIDs TransIDs,

1038 batchSeqNum BatchSeqNum,

1039 reimbursementID ReimbursementID,

1040 transactionAmtCredit CurrencyAmount,

1041 transactionAmtDebit CurrencyAmount

1042 }

1043

1044 ReimbursementID ::= ENUMERATED {

1045 tbd (0) -- To be defined

1046 }

1047

1048 -- COMMON MESSAGE TYPES AND PAYLOADS

1049

1050 AcqBackInfo ::= SEQUENCE {

1051 acqBackAlg CEAlgorithmIdentifier,

1052 acqBackKey AcqBackKey -- Length from AcqBackAlg

1053 }

1054

1055 AcqBackKey ::= OCTET STRING (SIZE(1..24))

1056

1057 AuthRatio ::= REAL

1058 -- Authorization Ratio is AuthAmt/PurchAmt present if

1059 -- CompletionCode indicates Authorization is complete

1060

1061 AuthReqData ::= SEQUENCE {

1062 authTags AuthTags,

1063 checkDigests [0] CheckDigests OPTIONAL,

1064 mThumbs [1] Thumbs OPTIONAL,

1065 authReqPayload AuthReqPayload

1066 }

1067

1068 AuthTags ::= SEQUENCE {

1069 authRRTags RRTags,

1070 transIDs TransIDs,

1071 authRetNum AuthRetNum OPTIONAL

1072 }

1073

1074 AuthToken ::= EncX { P1, P2, AuthTokenTBE, PANToken }

1075

1076 AuthTokenTBE ::= SEQUENCE {

1077 transIDs TransIDs,

1078 purchAmt CurrencyAmount,

1079 merchantID MerchantID,

1080 acqBackInfo AcqBackInfo OPTIONAL,

1081 splitRecurInd SplitRecurInd,

1082 recurringCount INTEGER OPTIONAL,

1083 prevAuthDateTime Date OPTIONAL,

1084 totalAuthAmount CurrencyAmount OPTIONAL,

1085 authTokenOpaque OCTET STRING

1086 }

1087

1088 AuthValCodes ::= SEQUENCE {

1089 authCode [0] AuthCode OPTIONAL,

1090 authCharInd [1] AuthCharInd OPTIONAL,

1091 validationCode [2] ValidationCode OPTIONAL,

1092 marketSpec MarketSpecDataID OPTIONAL

1093 }

1094

1095 AuthCharInd ::= IA5String (SIZE(1))

1096

1097 AVSResult ::= IA5String (SIZE(1))

1098

1099 BatchID ::= IA5String -- Merchant assigned draft capture batch id

1100

1101 BatchSeqNum ::= IA5String -- Record identifier in capture logs

1102

1103 CapToken ::= CHOICE {

1104 enc [0] Enc { P1, P2, CapTokenData },

1105 encX [1] EncX { P1, P2, CapTokenData, PANToken },

1106 null [2] NULL

1107 }

1108

1109 CapTokenData ::= SEQUENCE {

1110 authAmt CurrencyAmount,

1111 batchID BatchID OPTIONAL,

1112 tokenOpaque TokenOpaque

1113 }

1114

1115 CapTokSeq ::= SEQUENCE SIZE(1..MAX) OF CapToken

1116

1117 CaptureControl ::= SEQUENCE {

1118 batchSeqNum BatchSeqNum OPTIONAL,

1119 draftCaptStatus DraftCaptStatus OPTIONAL

1120 }

1121

1122 CheckDigests ::= SEQUENCE {

1123 hOIData HOIData,

1124 hod2 HOD

1125 }

1126

1127 CompletionCode ::= ENUMERATED {

1128 meaninglessRatio (0), -- PurchAmt = 0 condition

1129 orderReceived (1),

1130 authoriziationPerformed (2),

1131 capturePerformed (3),

1132 creditPerformed (4)

1133 }

1134

1135 CurrencyAmount ::= SEQUENCE {

1136 currency Currency,

1137 amount INTEGER,

1138 amtExp10 INTEGER -- Base ten exponent, such that the value in local

1139 -- currency is "amount * (10 ** amtExp10)"

1140 }

1141

1142 CurrConv ::= SEQUENCE {

1143 currConvRate REAL,

1144 cardCurr Currency

1145 }

1146

1147 DraftCaptStatus ::= SEQUENCE {

1148 -- Provides status information, totals, &/or record counts for batch

1149 closedWhen [0] ClosedWhen OPTIONAL,

1150 batchStatus BatchStatus

1151 }

1152

1153 Duration ::= INTEGER (1..99) -- Number of days

1154

1155 HODInput ::= SEQUENCE {

1156 od OD,

1157 purchAmt CurrencyAmount,

1158 odSalt Nonce,

1159 splitRecurInd SplitRecurInd OPTIONAL

1160 }

1161

1162 Inputs ::= SEQUENCE {

1163 hod HOD,

1164 purchAmt CurrencyAmount

1165 }

1166

1167 MarketAutoAuth ::= SEQUENCE {

1168 duration Duration

1169 }

1170

1171 MarketAutoCap ::= OCTET STRING -- To be defined

1172

1173 MarketHotelAuth ::= SEQUENCE {

1174 duration Duration,

1175 prestige Prestige OPTIONAL

1176 }

1177

1178 MarketHotelCap ::= OCTET STRING -- To be defined

1179

1180 MarketSpecAuthData ::= CHOICE {

1181 auto-rental [0] MarketAutoAuth,

1182 hotel [1] MarketHotelAuth,

1183 transport [2] MarketTransportAuth

1184 }

1185

1186 MarketSpecCapData ::= CHOICE {

1187 auto-rental [0] MarketAutoCap,

1188 hotel [1] MarketHotelCap,

1189 transport [2] MarketTransportCap

1190 }

1191

1192 MarketSpecSaleData ::= SEQUENCE {

1193 marketSpecDataID MarketSpecDataID OPTIONAL,

1194 marketSpecCapData MarketSpecCapData OPTIONAL

1195 }

1196

1197 MarketTransportAuth ::= NULL

1198

1199 MarketTransportCap ::= OCTET STRING -- To be defined

1200

1201 MarketSpecDataID ::= IA5String (SIZE(1))

1202

1203 MerOrderNum ::= IA5String (SIZE(1..25)) -- Merchant order number

1204

1205 MerTermIDs ::= SEQUENCE {

1206 merchantID MerchantID,

1207 terminalID IA5String OPTIONAL,

1208 agentNum INTEGER OPTIONAL,

1209 chainNum [0] INTEGER OPTIONAL,

1210 storeNum [1] INTEGER OPTIONAL

1211 }

1212

1213 OD ::= OCTET STRING -- Order description

1214

1215 PayRecurInd ::= IA5String (SIZE(1)) -- Association specific

1216

1217 Prestige ::= IA5String (SIZE(1)) -- D, B, S

1218

1219 PurchaseCardData ::= IA5String

1220

1221 Recurring ::= SEQUENCE {

1222 recurringFrequency INTEGER,

1223 recurringExpiry Date

1224 }

1225

1226 PResPayload ::= SEQUENCE {

1227 completionCode CompletionCode,

1228 results Results OPTIONAL

1229 }

1230

1231 RespCode ::= IA5String (SIZE(3))

1232

1233 ResponseData ::= SEQUENCE {

1234 authValCodes [0] AuthValCodes OPTIONAL,

1235 respReason [1] RespReason OPTIONAL,

1236 avsResult [2] AVSResult OPTIONAL,

1237 logRefID LogRefID OPTIONAL

1238 }

1239

1240 RespReason ::= IA5String -- Optional indicator of authorization

1241 -- service entity and reason for decline

1242

1243 LogRefID ::= IA5String -- Used to match and clear transactions

1244

1245 Results ::= SEQUENCE {

1246 acqCardMsg AcqCardMsg OPTIONAL,

1247 authCode AuthCode,

1248 authRatio AuthRatio,

1249 capCodeAndRatio CapCodeAndRatio OPTIONAL

1250 }

1251

1252 CapCodeAndRatio ::= SEQUENCE {

1253 capCode CapCode,

1254 capRatio CapRatio

1255 }

1256

1257 CapRatio ::= REAL

1258

1259 RRTags ::= SEQUENCE {

1260 rrpid RRPID,

1261 merTermIDs MerTermIDs,

1262 currentDate Date

1263 }

1264

1265 SaleDetail ::= SEQUENCE {

1266 saleDate Date,

1267 batchID [0] BatchID OPTIONAL,

1268 payRecurInd [1] PayRecurInd OPTIONAL, -- Transaction type

1269 merOrderNum [2] MerOrderNum OPTIONAL,

1270 authCharInd [3] AuthCharInd OPTIONAL,

1271 marketSpecData MarketSpecSaleData OPTIONAL,

1272 purchaseCardData PurchaseCardData OPTIONAL

1273 }

1274

1275 SplitRecurInd ::= CHOICE {

1276 recurringTotalTrans [0] INTEGER,

1277 recurring [1] Recurring

1278 }

1279

1280 TokenOpaque ::= OCTET STRING -- Meaningful to Payment Gateways only

1281

1282 ValidationCode ::= IA5String (SIZE(4)) -- For authorization responses

1283

1284 -- Upper bound of DirectoryString{} type

1285

1286 ub-AVSData INTEGER ::= 128

1287

1288

1289 END

1290 SetCertificate DEFINITIONS EXPLICIT TAGS ::= BEGIN

1291

1292 --

1293 -- This module defines types for CRL and X.509v3 certificate support.

1294 --

1295

1296 -- EXPORTS All;

1297

1298 IMPORTS

1299

1300 AlgorithmIdentifier, Name

1301 FROM SetAttribute

1302

1303 Extensions

1304 FROM SetCertificateExtensions

1305

1306 id-sha1-with-rsa-signature

1307 FROM SetPKCS7Plus;

1308

1309

1310 UnsignedCertificate ::= SEQUENCE {

1311 version [0] CertificateVersion,

1312 serialNumber CertificateSerialNumber,

1313 signature SignatureAlgorithmIdentifier,

1314 issuer Name,

1315 validity Validity,

1316 subject Name,

1317 subjectPublicKeyInfo SubjectPublicKeyInfo,

1318 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

1319 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

1320 extensions [3] Extensions -- Required for SET usage

1321 }

1322

1323 CertificateVersion ::= INTEGER { ver3(2) } (ver3)

1324

1325 CertificateSerialNumber ::= INTEGER(0..MAX)

1326

1327 -- Compute the encrypted hash of this value if issuing a certificate,

1328 -- or recompute the issuer's signature on this value if validating a

1329 -- certificate.

1330 --

1331 EncodedCertificate ::= TYPE-IDENTIFIER.&Type (UnsignedCertificate)

1332

1333 Certificate::= SIGNED {

1334 EncodedCertificate

1335 } (CONSTRAINED BY { -- Verify Or Sign Certificate -- })

1336

1337 SIGNED { ToBeSigned } ::= SEQUENCE {

1338 toBeSigned ToBeSigned,

1339 algorithm SignatureAlgorithmIdentifier,

1340 signature BIT STRING

1341 }

1342

1343 Validity ::= SEQUENCE {

1344 notBefore UTCTime, -- Not valid before this date

1345 notAfter UTCTime -- Not valid after this date

1346 }

1347

1348 UniqueIdentifier ::= BIT STRING -- Not used in the SET protocol

1349

1350 SubjectPublicKeyInfo ::= SEQUENCE {

1351 algorithm AlgorithmIdentifier,

1352 subjectPublicKey BIT STRING

1353 }

1354

1355 SIGNATURE-ALGORITHM ::= TYPE-IDENTIFIER

1356

1357 SignatureAlgorithmIdentifier ::= SEQUENCE {

1358 algorithm SIGNATURE-ALGORITHM.&id({SupportedSignatureAlgorithms}),

1359 parameters SIGNATURE-ALGORITHM.&Type({SupportedSignatureAlgorithms}

1360 {@algorithm}) OPTIONAL

1361 }

1362

1363 SupportedSignatureAlgorithms SIGNATURE-ALGORITHM ::= {

1364 sha1-with-rsa-signature

1365 }

1366

1367 sha1-with-rsa-signature SIGNATURE-ALGORITHM ::= {

1368 NULL IDENTIFIED BY id-sha1-with-rsa-signature }

1369

1370

1371 END

1372 SetCertificateExtensions DEFINITIONS IMPLICIT TAGS ::= BEGIN

1373

1374 --

1375 -- Defines X.509 Version 3 certificate extensions.

1376 --

1377

1378 -- EXPORTS All;

1379

1380 IMPORTS

1381

1382 DirectoryString {}, Name, ub-name

1383 FROM SetAttribute

1384

1385 CertificateSerialNumber

1386 FROM SetCertificate

1387

1388 BIN, MerchantID

1389 FROM SetMessage

1390

1391 DAlgorithmIdentifier, DetachedDigest, Digest

1392 FROM SetPKCS7Plus;

1393

1394

1395 -- X.509v3 Certificate Extensions

1396

1397 EXTENSION ::= CLASS {

1398 &id OBJECT IDENTIFIER UNIQUE,

1399 &critical BOOLEAN DEFAULT FALSE,

1400 &ExtenType

1401 }

1402 WITH SYNTAX {

1403 SYNTAX &ExtenType

1404 [CRITICAL &critical]

1405 IDENTIFIED BY &id

1406 }

1407

1408 Extensions ::= SEQUENCE OF Extension

1409

1410 ExtensionSet EXTENSION ::= { -- Information Object Set

1411 --

1412 -- Standard X.509v3 extensions

1413 --

1414 authorityKeyIdentifier |

1415 subjectKeyIdentifier |

1416 keyUsage |

1417 privateKeyUsagePeriod |

1418 certificatePolicies |

1419 subjectAltName |

1420 issuerAltName |

1421 basicConstraints |

1422 cRLNumber |

1423 --

1424 -- SET Private extensions

1425 --

1426 hashedRootKey |

1427 certificateType |

1428 merchantData |

1429 cardCertRequired |

1430 tunneling |

1431 setQualifier

1432 }

1433

1434 Extension ::= SEQUENCE {

1435 extnID EXTENSION.&id({ExtensionSet}),

1436 critical EXTENSION.&critical({ExtensionSet}{@extnID}) DEFAULT FALSE,

1437 extnValue OCTET STRING -- DER representation of &ExtenType extension

1438 -- object for the object identified by extnID

1439 }

1440

1441 -- Key and policy information extensions --

1442

1443 authorityKeyIdentifier EXTENSION ::= {

1444 SYNTAX AuthorityKeyIdentifier

1445 IDENTIFIED BY { id-ce-authorityKeyIdentifier }

1446 }

1447

1448 AuthorityKeyIdentifier ::= SEQUENCE {

1449 keyIdentifier [0] KeyIdentifier OPTIONAL,

1450 authorityCertIssuer [1] GeneralNames OPTIONAL,

1451 authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL

1452 } (WITH COMPONENTS { ...,

1453 authorityCertIssuer PRESENT, authorityCertSerialNumber PRESENT } |

1454 WITH COMPONENTS { ...,

1455 authorityCertIssuer ABSENT, authorityCertSerialNumber ABSENT })

1456

1457 KeyIdentifier ::= OCTET STRING

1458

1459 subjectKeyIdentifier EXTENSION ::= {

1460 SYNTAX SubjectKeyIdentifier

1461 IDENTIFIED BY { id-ce-subjectKeyIdentifier }

1462 }

1463

1464 SubjectKeyIdentifier ::= KeyIdentifier

1465

1466 keyUsage EXTENSION ::= {

1467 SYNTAX KeyUsage

1468 CRITICAL TRUE

1469 IDENTIFIED BY { id-ce-keyUsage }

1470 }

1471

1472 KeyUsage ::= BIT STRING {

1473 digitalSignature (0),

1474 nonRepudiation (1),

1475 keyEncipherment (2),

1476 dataEncipherment (3),

1477 keyAgreement (4),

1478 keyCertSign (5), -- For use in CA-certificates only

1479 cRLSign (6) -- For use in CA-certificates only

1480 }

1481

1482 privateKeyUsagePeriod EXTENSION ::= {

1483 SYNTAX PrivateKeyUsagePeriod

1484 CRITICAL TRUE FALSE

1485 IDENTIFIED BY { id-ce-privateKeyUsagePeriod }

1486 }

1487

1488 PrivateKeyUsagePeriod ::= SEQUENCE {

1489 notBefore [0] GeneralizedTime OPTIONAL,

1490 notAfter [1] GeneralizedTime OPTIONAL

1491 } (WITH COMPONENTS { ..., notBefore PRESENT } |

1492 WITH COMPONENTS { ..., notAfter PRESENT })

1493

1494 certificatePolicies EXTENSION ::= {

1495 SYNTAX CertificatePoliciesSyntax

1496 CRITICAL TRUE

1497 IDENTIFIED BY { id-ce-certificatePolicies }

1498 }

1499

1500 CertificatePoliciesSyntax ::= SEQUENCE SIZE(1..MAX) OF PolicyInformation

1501

1502 PolicyInformation ::= SEQUENCE {

1503 policyIdentifier CertPolicyId,

1504 policyQualifiers SEQUENCE SIZE(1..MAX) OF

1505 PolicyQualifierInfo OPTIONAL

1506 }

1507

1508 CertPolicyId ::= OBJECT IDENTIFIER

1509

1510 PolicyQualifierInfo ::= SEQUENCE {

1511 policyQualifierId CERT-POLICY-QUALIFIER.&id

1512 ({SupportedPolicyQualifiers}),

1513 qualifier CERT-POLICY-QUALIFIER.&Qualifier

1514 ({SupportedPolicyQualifiers}{@policyQualifierId})

1515 OPTIONAL

1516 }

1517

1518 SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { ... }

1519

1520 CERT-POLICY-QUALIFIER ::= CLASS {

1521 &id OBJECT IDENTIFIER UNIQUE,

1522 &Qualifier OPTIONAL

1523 }

1524 WITH SYNTAX {

1525 POLICY-QUALIFIER-ID &id

1526 [QUALIFIER-TYPE &Qualifier]

1527 }

1528

1529 -- Certificate subject and certificate issuer attributes extensions --

1530

1531 subjectAltName EXTENSION ::= {

1532 SYNTAX GeneralNames

1533 IDENTIFIED BY { id-ce-subjectAltName }

1534 }

1535

1536 GeneralNames ::= SEQUENCE SIZE(1..MAX) OF GeneralName

1537

1538 GeneralName ::= CHOICE {

1539 otherName [0] INSTANCE OF OTHER-NAME,

1540 rfc822Name [1] IA5String,

1541 dNSName [2] IA5String,

1542 x400Address [3] EXPLICIT OR-ADDRESS.&Type,

1543 directoryName [4] EXPLICIT Name, -- Only choice in Set

1544 ediPartyName [5] EDIPartyName,

1545 uniformResourceIdentifier [6] IA5String,

1546 iPAddress [7] OCTET STRING,

1547 registeredID [8] OBJECT IDENTIFIER

1548

1549 } (WITH COMPONENTS { directoryName PRESENT })

1550

1551 OTHER-NAME ::= TYPE-IDENTIFIER

1552

1553 EDIPartyName ::= SEQUENCE {

1554 nameAssigner [0] EXPLICIT DirectoryString { ub-name } OPTIONAL,

1555 partyName [1] EXPLICIT DirectoryString { ub-name }

1556 }

1557

1558 OR-ADDRESS ::= TYPE-IDENTIFIER

1559

1560 issuerAltName EXTENSION ::= {

1561 SYNTAX GeneralNames

1562 IDENTIFIED BY { id-ce-issuerAltName }

1563 }

1564

1565 -- Certification path constraints extensions --

1566

1567 basicConstraints EXTENSION ::= {

1568 SYNTAX BasicConstraintsSyntax

1569 CRITICAL TRUE

1570 IDENTIFIED BY { id-ce-basicConstraints }

1571 }

1572

1573 BasicConstraintsSyntax ::= SEQUENCE {

1574 cA BOOLEAN DEFAULT FALSE,

1575 pathLenConstraint INTEGER (0..MAX) OPTIONAL

1576 }

1577

1578 -- Basic CRL extensions --

1579

1580 cRLNumber EXTENSION ::= { -- For use in CRLs only

1581 SYNTAX CRLNumber

1582 IDENTIFIED BY { id-ce-cRLNumber }

1583 }

1584

1585 CRLNumber ::= INTEGER (0..MAX)

1586

1587 -- Set protocol private extensions --

1588

1589 hashedRootKey EXTENSION ::= { -- Only in root certificates

1590 SYNTAX HashedRootKeySyntax

1591 CRITICAL TRUE

1592 IDENTIFIED BY { id-set-hashedRootKey }

1593 }

1594

1595 HashedRootKeySyntax ::= RootKeyThumb

1596

1597 RootKeyThumb ::= SEQUENCE {

1598 digestAlgorithm DAlgorithmIdentifier -- (sha1) --,

1599 rootKeyThumbprint Digest

1600 }

1601

1602 certificateType EXTENSION ::= {

1603 SYNTAX CertificateTypeSyntax

1604 CRITICAL TRUE

1605 IDENTIFIED BY { id-set-certificateType }

1606 }

1607

1608 CertificateTypeSyntax ::= BIT STRING {

1609 card (0),

1610 mer (1),

1611 pgwy (2),

1612 cca (3),

1613 mca (4),

1614 pca (5),

1615 gca (6),

1616 bca (7),

1617 rca (8),

1618 acq (9)

1619 }

1620

1621 merchantData EXTENSION ::= {

1622 SYNTAX MerchantDataSyntax

1623 IDENTIFIED BY { id-set-merchantData }

1624 }

1625

1626 MerchantDataSyntax ::= SEQUENCE {

1627 merID MerchantID,

1628 merAcquirerBIN BIN,

1629 merName DirectoryString { ub-merName },

1630 merCity DirectoryString { ub-merCity },

1631 merStateProvince DirectoryString { ub-merStateProvince },

1632 merPostalCode DirectoryString { ub-merPostalCode },

1633 merCountry DirectoryString { ub-merCountry },

1634 merAuthFlag BOOLEAN

1635 }

1636

1637 cardCertRequired EXTENSION ::= {

1638 SYNTAX BOOLEAN

1639 IDENTIFIED BY { id-set-cardCertRequired }

1640 }

1641

1642 tunneling EXTENSION ::= {

1643 SYNTAX TunnelingSyntax

1644 IDENTIFIED BY { id-set-tunneling }

1645 }

1646

1647 TunnelingSyntax ::= SEQUENCE {

1648 tunneling BOOLEAN,

1649 tunnelAlgIDs TunnelAlg

1650 }

1651

1652 TunnelAlg ::= SEQUENCE OF OBJECT IDENTIFIER

1653

1654 setQualifier EXTENSION ::= {

1655 SYNTAX SETQualifierSyntax

1656 IDENTIFIED BY { id-set-setQualifier }

1657 }

1658

1659 SETQualifierSyntax ::= SEQUENCE {

1660 policyDigest DetachedDigest OPTIONAL,

1661 terseStatement DirectoryString { ub-terseStatement } OPTIONAL,

1662 policyURL [0] IA5String OPTIONAL,

1663 policyEmail [1] IA5String OPTIONAL

1664 }

1665

1666 -- Upper bounds of DirectoryString{} types

1667

1668 ub-merCity INTEGER ::= 13

1669 ub-merCountry INTEGER ::= 3

1670 ub-merName INTEGER ::= 25

1671 ub-merPostalCode INTEGER ::= 14

1672 ub-merStateProvince INTEGER ::= 3

1673 ub-terseStatement INTEGER ::= 2048

1674

1675 -- Object identifiers

1676

1677 id-ce OBJECT IDENTIFIER ::= { 2 5 29 }

1678 id-ce-subjectKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 14 }

1679 id-ce-keyUsage OBJECT IDENTIFIER ::= { id-ce 15 }

1680 id-ce-privateKeyUsagePeriod OBJECT IDENTIFIER ::= { id-ce 16 }

1681 id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

1682 id-ce-issuerAltName OBJECT IDENTIFIER ::= { id-ce 18 }

1683 id-ce-basicConstraints OBJECT IDENTIFIER ::= { id-ce 19 }

1684 id-ce-cRLNumber OBJECT IDENTIFIER ::= { id-ce 20 }

1685 id-ce-certificatePolicies OBJECT IDENTIFIER ::= { id-ce 32 }

1686 id-ce-authorityKeyIdentifier OBJECT IDENTIFIER ::= { id-ce 35 }

1687

1688 id-set OBJECT IDENTIFIER ::= { 2 99999 } -- Will change when SET gets a

1689 -- registered number.

1690

1691 id-set-hashedRootKey OBJECT IDENTIFIER ::= { id-set 2 }

1692 id-set-certificateType OBJECT IDENTIFIER ::= { id-set 3 }

1693 id-set-merchantData OBJECT IDENTIFIER ::= { id-set 4 }

1694 id-set-cardCertRequired OBJECT IDENTIFIER ::= { id-set 5 }

1695 id-set-tunneling OBJECT IDENTIFIER ::= { id-set 6 }

1696 id-set-setQualifier OBJECT IDENTIFIER ::= { id-set 7 }

1697

1698

1699 END

1700 SetCRL DEFINITIONS EXPLICIT TAGS ::= BEGIN

1701

1702 --

1703 -- This module defines types for Certificate Revocation List support.

1704 --

1705

1706 -- EXPORTS All;

1707

1708 IMPORTS

1709

1710 Name

1711 FROM SetAttribute

1712

1713 CertificateSerialNumber, SignatureAlgorithmIdentifier, SIGNED {}

1714 FROM SetCertificate

1715

1716 Extensions

1717 FROM SetCertificateExtensions;

1718

1719

1720 UnsignedCertificateRevocationList ::= SEQUENCE {

1721 version INTEGER { crlVer2(1) } (crlVer2),

1722 signature SignatureAlgorithmIdentifier,

1723 issuer Name,

1724 thisUpdate UTCTime,

1725 nextUpdate UTCTime,

1726 revokedCertificates CRLEntryList OPTIONAL,

1727 crlExtensions [0] Extensions

1728 }

1729

1730 CRLEntryList ::= SEQUENCE OF CRLEntry

1731

1732 CRLEntry ::= SEQUENCE{

1733 userCertificate CertificateSerialNumber,

1734 revocationDate UTCTime,

1735 crlEntryExtensions Extensions OPTIONAL

1736 }

1737

1738 EncodedCRL ::= TYPE-IDENTIFIER.&Type (UnsignedCertificateRevocationList)

1739

1740 CRL ::= SIGNED {

1741 EncodedCRL

1742 } (CONSTRAINED BY { -- Validate Or Issue CRL -- })

1743

1744

1745 END

1746 SetPKCS7Plus DEFINITIONS EXPLICIT TAGS ::= BEGIN

1747

1748 --

1749 -- This module defines types for manipulating RSA PKCS #7 Cryptographic

1750 -- Messages, as well as SET-specific messages which contain these types.

1751 -- Note that SET uses definitions for PKCS-7 version 1.5, with some

1752 -- extensions made in anticipation of the proposed PKCS-7 version 2.0

1753 -- standard.

1754 --

1755 -- Notice that all occurances of type set-of have been replaced by

1756 -- sequence-of types, since ISO/IEC 8825-1:1995(E) section 11.6 requires

1757 -- that set-of value components appear in ascending order. This change

1758 -- is intended to preserve the original intent of the PKCS-7 authors.

1759 -- Also note that the definition of ContentInfo has been replaced by

1760 -- ASN.1 Information Object defintions to make the definitions conform

1761 -- to the 1994 ASN.1 ISO standards.

1762 --

1763 -- The PKCS-6 type ExtendedCertificateOrCertificate is now obsolete, and

1764 -- has been replaced by type Certificates at the request of RSA. A set

1765 -- of Information Objects have been specified to replaced the generic

1766 -- AlgorithmIdentifier type, so that SET-specific algorithms and their

1767 -- parameters can be tightly coupled with individual PKCS-7 message

1768 -- types.

1769 --

1770

1771 -- EXPORTS All;

1772

1773 IMPORTS

1774

1775 Attribute, Name

1776 FROM SetAttribute

1777

1778 Certificate, CertificateSerialNumber

1779 FROM SetCertificate

1780

1781 id-set

1782 FROM SetCertificateExtensions

1783

1784 CRL

1785 FROM SetCRL

1786

1787 CardExpiry, PAN

1788 FROM SetMessage;

1789

1790

1791 CertificateRevocationLists ::= SEQUENCE OF CRL

1792

1793 IssuerAndSerialNumber ::= SEQUENCE { -- Uniquely identifies certificate

1794 issuer Name,

1795 serialNumber CertificateSerialNumber

1796 }

1797

1798 CONTENT-INFO ::= TYPE-IDENTIFIER

1799

1800 SupportedContents CONTENT-INFO ::= {

1801 setData |

1802 pkcs7Data |

1803 pkcs7SignedData |

1804 pkcs7EnvelopedData |

1805 pkcs7DigestedData

1806 }

1807

1808 setData CONTENT-INFO ::= {

1809 TYPE-IDENTIFIER.&Type IDENTIFIED BY id-set-data } -- Open type

1810

1811 pkcs7Data CONTENT-INFO ::= {

1812 Data IDENTIFIED BY data }

1813

1814 pkcs7SignedData CONTENT-INFO ::= {

1815 SignedData IDENTIFIED BY signedData }

1816

1817 pkcs7EnvelopedData CONTENT-INFO ::= {

1818 EnvelopedData IDENTIFIED BY envelopedData }

1819

1820 pkcs7DigestedData CONTENT-INFO ::= {

1821 DigestedData IDENTIFIED BY digestedData }

1822

1823 ContentInfo ::= SEQUENCE {

1824 contentType CONTENT-INFO.&id({SupportedContents}),

1825 content [0] EXPLICIT CONTENT-INFO.&Type({SupportedContents}

1826 {@contentType}) OPTIONAL

1827 }

1828

1829 ContentType ::= OBJECT IDENTIFIER

1830

1831 Data ::= OCTET STRING -- Data content type

1832

1833 SignedData ::= SEQUENCE { -- PKCS#7

1834 sdVersion INTEGER { sdVer2(2) } (sdVer2),

1835 digestAlgorithms DAlgorithmIdentifiers,

1836 contentInfo ContentInfo,

1837 certificates [0] IMPLICIT Certificates OPTIONAL,

1838 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,

1839 signerInfos SignerInfos

1840 }

1841

1842 SignerInfos ::= SEQUENCE OF SignerInfo (WITH COMPONENTS { ...,

1843 authenticatedAttributes PRESENT,

1844 unauthenticatedAttributes ABSENT })

1845

1846 SignerInfo ::= SEQUENCE {

1847 siVersion INTEGER { siVer2(2) } (siVer2),

1848 issuerAndSerialNumber IssuerAndSerialNumber,

1849 digestAlgorithm DAlgorithmIdentifier,

1850 authenticatedAttributes [0] IMPLICIT Attributes OPTIONAL,

1851 digestEncryptionAlgorithm DEAlgorithmIdentifier,

1852 encryptedDigest EncryptedDigest,

1853 unauthenticatedAttributes [1] IMPLICIT Attributes OPTIONAL

1854 }

1855

1856 Certificates ::= SEQUENCE OF Certificate

1857

1858 DAlgorithmIdentifiers ::= SEQUENCE OF DAlgorithmIdentifier

1859

1860 DIGEST-ALGORITHM ::= TYPE-IDENTIFIER

1861

1862 DAlgorithmIdentifier ::= SEQUENCE {

1863 algorithm DIGEST-ALGORITHM.&id({SupportedDigestAlgorithms}),

1864 parameters DIGEST-ALGORITHM.&Type({SupportedDigestAlgorithms}

1865 {@algorithm}) OPTIONAL

1866 }

1867

1868 SupportedDigestAlgorithms DIGEST-ALGORITHM ::= { sha1 }

1869

1870 sha1 DIGEST-ALGORITHM ::= { NULL IDENTIFIED BY id-sha1 }

1871

1872 DIGEST-ENCRYPTION-ALGORITHM ::= TYPE-IDENTIFIER

1873

1874 DEAlgorithmIdentifier ::= SEQUENCE {

1875 algorithm DIGEST-ENCRYPTION-ALGORITHM.&id({SupportedDEAlgorithms}),

1876 parameters DIGEST-ENCRYPTION-ALGORITHM.&Type({SupportedDEAlgorithms}

1877 {@algorithm}) OPTIONAL

1878 }

1879

1880 SupportedDEAlgorithms DIGEST-ENCRYPTION-ALGORITHM ::= {

1881 de-rsaEncryption

1882 }

1883

1884 de-rsaEncryption DIGEST-ENCRYPTION-ALGORITHM ::= {

1885 NULL IDENTIFIED BY id-rsaEncryption }

1886

1887 DigestInfo ::= SEQUENCE {

1888 digestAlgorithm DAlgorithmIdentifier,

1889 digest Digest

1890 }

1891

1892 Digest ::= OCTET STRING (SIZE(1..20))

1893

1894 Digests ::= SEQUENCE OF Digest

1895

1896 EnvelopedData ::= SEQUENCE {

1897 edVersion INTEGER { edVer1(1) } (edVer1),

1898 recipientInfos RecipientInfos,

1899 encryptedContentInfo EncryptedContentInfo

1900 }

1901

1902 RecipientInfos ::= SEQUENCE OF RecipientInfo

1903

1904 EncryptedContentInfo ::= SEQUENCE {

1905 contentType ContentType,

1906 contentEncryptionAlgorithm CEAlgorithmIdentifier,

1907 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL

1908 }

1909

1910 EncryptedContent ::= OCTET STRING

1911

1912 CONTENT-ENCRYPTION-ALGORITHM ::= TYPE-IDENTIFIER

1913

1914 CEAlgorithmIdentifier ::= SEQUENCE {

1915 algorithm CONTENT-ENCRYPTION-ALGORITHM.&id({SupportedCEAlgorithms}),

1916 parameters CONTENT-ENCRYPTION-ALGORITHM.&Type({SupportedCEAlgorithms}

1917 {@algorithm}) OPTIONAL

1918 }

1919

1920 SupportedCEAlgorithms CONTENT-ENCRYPTION-ALGORITHM ::= {

1921 desCDMF |

1922 desCBC

1923 }

1924

1925 desCDMF CONTENT-ENCRYPTION-ALGORITHM ::= {

1926 CBC8Parameter IDENTIFIED BY id-desCDMF }

1927

1928 desCBC CONTENT-ENCRYPTION-ALGORITHM ::= {

1929 CBC8Parameter IDENTIFIED BY id-desCBC }

1930

1931 CBC8Parameter ::= IV8

1932

1933 IV8 ::= OCTET STRING (SIZE(8))

1934

1935 RecipientInfo ::= SEQUENCE {

1936 riVersion INTEGER { riVer0(0) } (riVer0),

1937 issuerAndSerialNumber IssuerAndSerialNumber,

1938 keyEncryptionAlgorithm KEAlgorithmIdentifier,

1939 encryptedKey EncryptedKey

1940 }

1941

1942 EncryptedKey ::= OCTET STRING

1943

1944 KEY-ENCRYPTION-ALGORITHM ::= TYPE-IDENTIFIER

1945

1946 KEAlgorithmIdentifier ::= SEQUENCE {

1947 algorithm KEY-ENCRYPTION-ALGORITHM.&id({SupportedKEAlgorithms}),

1948 parameters KEY-ENCRYPTION-ALGORITHM.&Type({SupportedKEAlgorithms}

1949 {@algorithm}) OPTIONAL

1950 }

1951

1952 SupportedKEAlgorithms KEY-ENCRYPTION-ALGORITHM ::= {

1953 key-rsaOAEPEncryptionSET

1954 }

1955

1956 key-rsaOAEPEncryptionSET KEY-ENCRYPTION-ALGORITHM ::= {

1957 NULL IDENTIFIED BY rsaOAEPEncryptionSET }

1958

1959 DigestedData ::= SEQUENCE {

1960 ddVersion INTEGER { ddVer0(0) } (ddVer0),

1961 digestAlgorithm DAlgorithmIdentifier,

1962 contentInfo ContentInfo,

1963 digest OCTET STRING

1964 }

1965

1966 EncryptedDigest ::= OCTET STRING

1967

1968 Attributes ::= SEQUENCE OF Attribute

1969

1970 -- Cryptographic Parameterized Types --

1971

1972 L { T1, T2 } ::= SEQUENCE { -- Linkage from t1 to t2

1973 t1 T1,

1974 t2 DD { T2 } -- PKCS#7 DigestedData

1975 }

1976

1977 DD { ToBeHashed } ::= DetachedDigest

1978 (CONSTRAINED BY { -- digest of the DER representation, including --

1979 -- the tag and length octets, of -- ToBeHashed })

1980

1981 DetachedDigest ::= DigestedData -- No parameter

1982 (WITH COMPONENTS {..., contentInfo (WITH COMPONENTS

1983 {..., contentType (id-set-data), content ABSENT}) })

1984

1985

1986 H { ToBeHashed } ::= OCTET STRING (SIZE(1..20)) (CONSTRAINED BY {

1987 -- HASH is an n-byte value, which must be the results --

1988 -- of the application of a valid digest procedure --

1989 -- applied to -- ToBeHashed })

1990

1991 HMAC { ToBeHashed, Key } ::= Digest

1992 (CONSTRAINED BY { -- HMAC keyed digest of -- ToBeHashed,

1993 -- using -- Key })

1994

1995 HMACPanData ::= SEQUENCE { -- For HMAC, unique cardholder data

1996 pan PAN,

1997 cardExpiry CardExpiry

1998 }

1999

2000 S { Signer, ToBeSigned } ::= SignedData

2001 (CONSTRAINED BY { Signer, -- signs -- ToBeSigned })

2002 (WITH COMPONENTS { ..., contentInfo

2003 (WITH COMPONENTS {

2004 ..., contentType (id-set-data), content PRESENT }) } ^

2005 WITH COMPONENTS { ..., signerInfos (SIZE(1)) })

2006

2007 SO { Signer, ToBeSigned } ::= SignedData -- Detached content

2008 (CONSTRAINED BY { Signer, -- signs -- ToBeSigned })

2009 (WITH COMPONENTS { ..., contentInfo

2010 (WITH COMPONENTS{

2011 ..., contentType (id-set-data), content ABSENT }) } ^

2012 WITH COMPONENTS { ..., signerInfos (SIZE(1)) })

2013

2014

2015 -- Set Encapsulation Types

2016

2017

2018 -- Simple Encapsulation with Signature --

2019

2020 Enc { Signer, Recipient, T } ::= E {

2021 Recipient,

2022 S { Signer, T }

2023 } (WITH COMPONENTS { ..., encryptedContentInfo

2024 (WITH COMPONENTS { ..., contentType (signedData) }) })

2025

2026

2027 -- Simple Encapsulation with Signature and a Provided Key --

2028

2029 EncK { Key, Signer, T } ::= EK {

2030 Key,

2031 S { Signer, T }

2032 } (WITH COMPONENTS { ..., encryptedContentInfo

2033 (WITH COMPONENTS { ..., contentType (signedData) }) })

2034

2035

2036 -- Extra Encapsulation with Signature --

2037

2038 EncX { Signer, Recipient, T, Parameter } ::= E {

2039 Recipient,

2040 SEQUENCE {

2041 t T,

2042 s SO { Signer, SEQUENCE { t T, p Parameter } }

2043 }

2044 } (CONSTRAINED BY { Parameter -- data, which must contain a fresh --

2045 -- nonce 'n', is included in the OAEP block. -- })

2046 (WITH COMPONENTS { ..., encryptedContentInfo

2047 (WITH COMPONENTS { ..., contentType (id-set-data) }) })

2048

2049

2050 -- Simple Encapsulation with Signature and Baggage --

2051

2052 EncB { Signer, Recipient, T, Baggage } ::= SEQUENCE {

2053 enc Enc { Signer, Recipient, L { T, Baggage } },

2054 baggage Baggage

2055 }

2056

2057

2058 -- Extra Encapsulation with Signature and Baggage --

2059

2060 EncBX { Signer, Recipient, T, Baggage, Parameter } ::= SEQUENCE {

2061 encX EncX { Signer, Recipient, L { T, Baggage }, Parameter },

2062 baggage Baggage

2063 }

2064

2065

2066 -- Other Cryptographic Messages --

2067

2068 E { Recipient, ToBeEnveloped } ::= EnvelopedData

2069 (CONSTRAINED BY { ToBeEnveloped, -- is encrypted, and the --

2070 -- fresh session key is encrypted using the --

2071 -- public key of -- Recipient })

2072 (WITH COMPONENTS {..., encryptedContentInfo

2073 (WITH COMPONENTS { ..., encryptedContent PRESENT }) } ^

2074 WITH COMPONENTS { ..., recipientInfos (SIZE(1)) })

2075

2076 EH { Recipient, ToBeEnveloped } ::= E {

2077 Recipient,

2078 ToBeEnveloped

2079 } (CONSTRAINED BY { -- H(ToBeEnveloped) included in the OAEP block -- })

2080

2081 EX { Recipient, ToBeEnveloped, Parameter } ::= E {

2082 Recipient,

2083 L { ToBeEnveloped, Parameter }

2084 }(CONSTRAINED BY { Parameter -- data is included in the OAEP block -- })

2085 (WITH COMPONENTS { ..., encryptedContentInfo

2086 (WITH COMPONENTS { ..., contentType (id-set-data) }) })

2087

2088 EXH { Recipient, ToBeEnveloped, Parameter } ::= EX {

2089 Recipient,

2090 ToBeEnveloped,

2091 Parameter

2092 } (CONSTRAINED BY { -- H(ToBeEnveloped) included in the OAEP block -- })

2093

2094 EK { Key, ToBeEnveloped } ::= EnvelopedData

2095 (CONSTRAINED BY { ToBeEnveloped, -- encrypted with session -- Key })

2096 (WITH COMPONENTS { ..., encryptedContentInfo

2097 (WITH COMPONENTS { ..., encryptedContent PRESENT}) } ^

2098 WITH COMPONENTS { ..., recipientInfos (SIZE(0)) })

2099

2100 ENTITY-IDENTIFIER ::= TYPE-IDENTIFIER -- Generic placeholder

2101

2102 C ::= ENTITY-IDENTIFIER -- Cardholder

2103 M ::= ENTITY-IDENTIFIER -- Merchant

2104 P ::= ENTITY-IDENTIFIER -- Payment Gateway

2105 EE ::= ENTITY-IDENTIFIER -- End Entity

2106 CA ::= ENTITY-IDENTIFIER -- Certifying Authority

2107 P1 ::= ENTITY-IDENTIFIER -- Gateway One

2108 P2 ::= ENTITY-IDENTIFIER -- Gateway Two

2109

2110 -- Object Identifiers --

2111

2112 secsig OBJECT IDENTIFIER ::= {

2113 iso(1) identified-organization(3) oiw(14) secsig(3) }

2114

2115 pkcs-1 OBJECT IDENTIFIER ::= {

2116 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }

2117

2118 rsaOAEPEncryptionSET OBJECT IDENTIFIER ::= {

2119 pkcs-1 6 }

2120

2121 id-rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1 }

2122

2123 id-sha1-with-rsa-signature OBJECT IDENTIFIER ::= { pkcs-1 5 }

2124

2125 id-sha1 OBJECT IDENTIFIER ::= { secsig 2 26 }

2126

2127 id-desCBC OBJECT IDENTIFIER ::= { secsig 2 7 }

2128

2129 id-desCDMF OBJECT IDENTIFIER ::= {

2130 secsig 2 99 } -- A real one to be supplied by IBM

2130 iso(1) member-body(2) us(840) rsadsi(113549) encryptionAlgorithm(3) 10}

2131

2132 pkcs-7 OBJECT IDENTIFIER ::= {

2133 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 7 }

2134

2135 data OBJECT IDENTIFIER ::= { pkcs-7 1 }

2136 signedData OBJECT IDENTIFIER ::= { pkcs-7 2 }

2137 envelopedData OBJECT IDENTIFIER ::= { pkcs-7 3 }

2138 digestedData OBJECT IDENTIFIER ::= { pkcs-7 5 }

2139

2140 pkcs-9 OBJECT IDENTIFIER ::= {

2141 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 9 }

2142

2143 contentType OBJECT IDENTIFIER ::= { pkcs-9 3 }

2144

2145 messageDigest OBJECT IDENTIFIER ::= { pkcs-9 4 }

2146

2147 id-set-data OBJECT IDENTIFIER ::= { id-set 99 }

2148

2149

2150 END

2151 SetAttribute DEFINITIONS EXPLICIT TAGS ::= BEGIN

2152

2153 --

2154 -- This module defines types from ISO/IEC 9594-2:1995(E), Annex B, known

2155 -- as the Information Framework. A minimal number of types have been

2156 -- copied in order to constrain certificate names in SET. Specific SET

2157 -- implementations may wish to copy additional X.501 types as necessary

2158 -- to facilitate directory manipulation. National language support is

2159 -- achieved through the DirectoryString type, copied from the X-500

2160 -- series SelectedAttributeTypes module, and restricted for use in SET.

2161 --

2162

2163 -- EXPORTS All;

2164

2165 IMPORTS

2166

2167 CertificatePoliciesSyntax, KeyUsage

2168 FROM SetCertificateExtensions;

2169

2170

2171 -- attributes

2172

2173 commonName ATTRIBUTE ::= {

2174 WITH SYNTAX DirectoryString { ub-common-name }

2175 ID { id-at-commonName }

2176 }

2177

2178 countryName ATTRIBUTE ::= { -- SET requires three characters

2179 WITH SYNTAX PrintableString(SIZE(32))

2180 ID { id-at-countryName }

2181 }

2182

2183 organizationName ATTRIBUTE ::= {

2184 WITH SYNTAX DirectoryString { ub-organization-name }

2185 ID { id-at-organizationName }

2186 }

2187

2188 organizationalUnitName ATTRIBUTE ::= {

2189 WITH SYNTAX DirectoryString { ub-organizational-unit-name }

2190 ID { id-at-organizationalUnitName }

2191 }

2192

2193 -- attribute data types

2194

2195 Attribute ::= SEQUENCE {

2196 type ATTRIBUTE.&id({SupportedAttributes}),

2197 values SET SIZE(1) OF ATTRIBUTE.&Type({SupportedAttributes}{@type})

2198 }

2199

2200 AttributeTypeAndValue ::= SEQUENCE {

2201 type ATTRIBUTE.&id({SupportedAttributes}),

2202 value ATTRIBUTE.&Type({SupportedAttributes}{@type})

2203 }

2204

2205 -- The following information object set is required to specify a table

2206 -- constraint on the values component of Attribute, and the value

2207 -- component of AttributeTypeAndValue. SET conformant applications will

2208 -- support certificates which only contain these attributes.

2209

2210 SupportedAttributes ATTRIBUTE ::= {

2211 countryName |

2212 organizationName |

2213 organizationalUnitName |

2214 commonName

2215 }

2216

2217 SupportedAlgorithm ::= SEQUENCE {

2218 algorithm AlgorithmIdentifier,

2219 intendedUsage [0] KeyUsage OPTIONAL,

2220 intendedCertificatePolicies [1] CertificatePoliciesSyntax OPTIONAL

2221 }

2222

2223 ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER

2224

2225 AlgorithmIdentifier ::= SEQUENCE {

2226 algorithm ALGORITHM-IDENTIFIER.&id({SupportedAlgorithms}),

2227 parameters ALGORITHM-IDENTIFIER.&Type({SupportedAlgorithms}

2228 {@algorithm}) OPTIONAL

2229 }

2230

2231 SupportedAlgorithms ALGORITHM-IDENTIFIER ::= { ... }

2232

2233 -- naming data types

2234

2235 Name ::= CHOICE { -- only one possibility for now --

2236 distinguishedName [0] RDNSequence }

2237

2238 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

2239

2240 RelativeDistinguishedName ::= SET SIZE(1..MAX) OF AttributeTypeAndValue

2241

2242 ATTRIBUTE ::= CLASS {

2243 &derivation ATTRIBUTE OPTIONAL,

2244 &Type OPTIONAL, -- &Type or &derivation required

2245 &equality-match MATCHING-RULE OPTIONAL,

2246 &ordering-match MATCHING-RULE OPTIONAL,

2247 &substrings-match MATCHING-RULE OPTIONAL,

2248 &single-valued BOOLEAN DEFAULT FALSE,

2249 &collective BOOLEAN DEFAULT FALSE,

2250 -- operational extensions

2251 &no-user-modification BOOLEAN DEFAULT FALSE,

2252 &usage AttributeUsage DEFAULT userApplications,

2253 &id OBJECT IDENTIFIER UNIQUE

2254 }

2255 WITH SYNTAX {

2256 [SUBTYPE OF &derivation]

2257 [WITH SYNTAX &Type]

2258 [EQUALITY MATCHING RULE &equality-match]

2259 [ORDERING MATCHING RULE &ordering-match]

2260 [SUBSTRINGS MATCHING RULE &substrings-match]

2261 [SINGLE VALUE &single-valued]

2262 [COLLECTIVE &collective]

2263 [NO USER MODIFICATION &no-user-modification]

2264 ID &id

2265 }

2266

2267 AttributeUsage ::= ENUMERATED {

2268 userApplications (0),

2269 directoryOperation (1),

2270 distributedOperation (2),

2271 dSAOperation (3)

2272 }

2273

2274 -- MATCHING-RULE information object class specification

2275

2276 MATCHING-RULE ::= CLASS {

2277 &AssertionType OPTIONAL,

2278 &id OBJECT IDENTIFIER UNIQUE

2279 }

2280 WITH SYNTAX {

2281 [SYNTAX &AssertionType]

2282 ID &id

2283 }

2284

2285 --

2286

2287 DirectoryString { INTEGER:maxSIZE } ::= CHOICE {

2288 --

2289 -- Note that SET supports only the type PrintableString and BMPString

2290 -- alternatives of DirectoryString, and disallows the use of types

2291 -- TelexString or UniversalString. Implementations should use the

2292 -- PrintableString alternative when possible, and type BMPString to

2293 -- support national languages.

2294 --

2295 teletexString TeletexString (SIZE(1..maxSIZE)),

2296 printableString PrintableString (SIZE(1..maxSIZE)), -- ASCII subset

2297 universalString UniversalString (SIZE(1..maxSIZE)),

2298 bmpString BMPString (SIZE(1..maxSIZE)) -- UNICODE --

2299

2300 } (WITH COMPONENTS { printableString PRESENT } |

2301 WITH COMPONENTS { bmpString PRESENT })

2302

2303 -- Upper bounds of type Name components

2304

2305 ub-common-name INTEGER ::= 64

2306 ub-name INTEGER ::= 64

2307 ub-organization-name INTEGER ::= 64

2308 ub-organizational-unit-name INTEGER ::= 64

2309 ub-match INTEGER ::= 128

2310

2311 ds OBJECT IDENTIFIER ::= { joint-iso-ccitt ds(5) }

2312

2313 id-at OBJECT IDENTIFIER ::= { ds 4 }

2314 id-at-commonName OBJECT IDENTIFIER ::= { id-at 3 }

2315 id-at-countryName OBJECT IDENTIFIER ::= { id-at 6 }

2316 id-at-organizationName OBJECT IDENTIFIER ::= { id-at 10 }

2317 id-at-organizationalUnitName OBJECT IDENTIFIER ::= { id-at 11 }

2318 id-at-supportedAlgorithms OBJECT IDENTIFIER ::= { id-at 52 }

2319

2320

2321 END

PC

Changes Approved for Testing		Secure Electronic Transactions

Page � PAGE �124�		January 17, 1997

Secure Electronic Transactions		Changes Approved for Testing

January 17, 1997		Page � PAGE �123�

Changes approved for testing

Changes approved for testing

Changes approved for testing

