OpenPGP Working Group M. Elkins draft-ietf-openpgp-mime-02.txt Network Associates, Inc. Obsoletes: 2015 D. Del Torto CryptoRights Foundation R. Levien University of California at Berkeley T. Roessler August 2000 MIME Security with OpenPGP Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet- Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Copyright (C) The Internet Society 2000. All Rights Reserved. Abstract This document describes how the OpenPGP Message Format [1] can be used to provide privacy and authentication using the Multipurpose Internet Mail Extensions (MIME) security content types described in RFC1847 [2]. This draft is being discussed on the "ietf-openpgp" mailing list. To join the list, send a message to with the single word "subscribe" in the subject. An archive of the working group's list is located at . Elkins, et al. Expires February 2001 [Page 1] INTERNET-DRAFT MIME Security with OpenPGP August 2000 1. Introduction Work on integrating PGP (Pretty Good Privacy) with MIME [3] (including the since withdrawn "application/pgp" content type) prior to RFC 2015 suffered from a number of problems, the most significant of which is the inability to recover signed message bodies without parsing data structures specific to PGP. RFC 2015 makes use of the elegant solution proposed in RFC1847, which defines security multipart formats for MIME. The security multiparts clearly separate the signed message body from the signature, and have a number of other desirable properties. This document revises RFC 2015 to adopt the integration of PGP and MIME to the needs which emerged during the work on the OpenPGP specification. This document defines three content types for implementing security and privacy with OpenPGP: "application/pgp-encrypted", "application/pgp-signature" and "application/pgp-keys". The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119. 2. OpenPGP data formats OpenPGP implementations can generate either ASCII armor (described in [1]) or 8-bit binary output when encrypting data, generating a digital signature, or extracting public key data. The ASCII armor output is the REQUIRED method for data transfer. This allows those users who do not have the means to interpret the formats described in this document to be able to extract and use the OpenPGP information in the message. When the amount of data to be transmitted requires that it be sent in many parts, the MIME message/partial mechanism SHOULD be used rather than the multipart ASCII armor OpenPGP format. 3. Content-Transfer-Encoding restrictions Multipart/signed and multipart/encrypted are to be treated by agents as opaque, meaning that the data is not to be altered in any way [2], [7]. However, many existing mail gateways will detect if the next hop does not support MIME or 8-bit data and perform conversion to either Quoted-Printable or Base64. This presents serious problems for multipart/signed, in particular, where the signature is invalidated when such an operation occurs. For this reason all data signed according to this protocol MUST be constrained to 7 bits (8-bit data MUST be encoded using either Quoted-Printable or Base64). Note that this also includes the case where a signed object is also encrypted Elkins, et al. Expires February 2001 [Page 2] INTERNET-DRAFT MIME Security with OpenPGP August 2000 (see section 6). This restriction will increase the likelihood that the signature will be valid upon receipt. Additionally, if body parts to be signed contain trailing whitespace, or lines beginning with the five characters "From ", implementations SHOULD use either Quoted-Printable or Base64 to protect these body parts against corruption by transport or delivery agents. Applying this rule also ensures that trailing whitespace in the data encoded cannot be modified without invalidating the signature. Data that is ONLY to be encrypted is allowed to contain 8-bit characters and therefore need not be converted to a 7-bit format. Implementor's note: It cannot be stressed enough that applications using this standard follow MIME's suggestion that you "be conservative in what you generate, and liberal in what you accept." In this particular case it means it would be wise for an implementation to accept messages with any content-transfer- encoding, but restrict generation to the 7-bit format required by this memo. This will allow future compatibility in the event the Internet SMTP framework becomes 8-bit friendly. 4. OpenPGP encrypted data Before OpenPGP encryption, the data is written in MIME canonical format (body and headers). OpenPGP encrypted data is denoted by the "multipart/encrypted" content type, described in [2], and MUST have a "protocol" parameter value of "application/pgp-encrypted". Note that the value of the parameter MUST be enclosed in quotes. The multipart/encrypted MIME body MUST consist of exactly two body parts, the first with content type "application/pgp-encrypted". This body contains the control information. A message complying with this standard MUST contain a "Version: 1" field in this body. Since the OpenPGP packet format contains all other information necessary for decrypting, no other information is required here. The second MIME body part MUST contain the actual encrypted data. It MUST be labeled with a content type of "application/octet-stream". Example message: Elkins, et al. Expires February 2001 [Page 3] INTERNET-DRAFT MIME Security with OpenPGP August 2000 From: Michael Elkins To: Michael Elkins Mime-Version: 1.0 Content-Type: multipart/encrypted; boundary=foo; protocol="application/pgp-encrypted" --foo Content-Type: application/pgp-encrypted Version: 1 --foo Content-Type: application/octet-stream -----BEGIN PGP MESSAGE----- Version: 2.6.2 hIwDY32hYGCE8MkBA/wOu7d45aUxF4Q0RKJprD3v5Z9K1YcRJ2fve87lMlDlx4Oj eW4GDdBfLbJE7VUpp13N19GL8e/AqbyyjHH4aS0YoTk10QQ9nnRvjY8nZL3MPXSZ g9VGQxFeGqzykzmykU6A26MSMexR4ApeeON6xzZWfo+0yOqAq6lb46wsvldZ96YA AABH78hyX7YX4uT1tNCWEIIBoqqvCeIMpp7UQ2IzBrXg6GtukS8NxbukLeamqVW3 1yt21DYOjuLzcMNe/JNsD9vDVCvOOG3OCi8= =zzaA -----END PGP MESSAGE----- --foo-- 5. OpenPGP signed data OpenPGP signed messages are denoted by the "multipart/signed" content type, described in [2], with a "protocol" parameter which MUST have a value of "application/pgp-signature" (MUST be quoted). The "micalg" parameter for the "application/pgp-signature" protocol MUST contain exactly one hash-symbol of the format "pgp-", where identifies the Message Integrity Check (MIC) algorithm used to generate the signature. Hash-symbols are constructed from the text names registered in [1] or according to the mechanism defined in that document by converting the text name to lower case and prefixing it with the four characters "pgp-". Currently defined values are "pgp-md5", "pgp-sha1", "pgp-ripemd160", "pgp-md2", "pgp-tiger192", and "pgp-haval-5-160". The multipart/signed body MUST consist of exactly two parts. The first part contains the signed data in MIME canonical format, including a set of appropriate content headers describing the data. Elkins, et al. Expires February 2001 [Page 4] INTERNET-DRAFT MIME Security with OpenPGP August 2000 The second body MUST contain the OpenPGP digital signature. It MUST be labeled with a content type of "application/pgp-signature". Implementations MUST generate a "signature of a canonical text document" as defined in [1]. Implementations MAY accept "signatures of a binary document" as defined in [1] in order to preserve interoperability with implementations of [6]. To encapsulate multiple signatures with possibly different hash algorithms, the method specified in [8] should be used. When the OpenPGP digital signature is generated: (1) The data to be signed MUST first be converted to its content- type specific canonical form. For text/plain, this means conversion to an appropriate character set and conversion of line endings to the canonical sequence. (2) An appropriate Content-Transfer-Encoding is then applied; see section 3. In particular, line endings in the encoded data MUST use the canonical sequence where appropriate (note that the canonical line ending may or may not be present on the last line of encoded data and MUST NOT be included in the signature if absent). (3) MIME content headers are then added to the body, each ending with the canonical sequence. (4) As described in [2], the digital signature MUST be calculated over both the data to be signed and its set of content headers. (5) The signature MUST be generated detached from the signed data so that the process does not alter the signed data in any way. Note: The accepted OpenPGP convention is for signed data to end with a sequence. Note that the sequence immediately preceding a MIME boundary delimiter line is considered to be part of the delimiter in [3], 5.1. Thus, it is not part of the signed data preceding the delimiter line. An implementation which elects to adhere to the OpenPGP convention has to make sure it inserts a pair on the last line of the data to be signed and transmitted (signed message and transmitted message MUST be identical). Example message: Elkins, et al. Expires February 2001 [Page 5] INTERNET-DRAFT MIME Security with OpenPGP August 2000 From: Michael Elkins To: Michael Elkins Mime-Version: 1.0 Content-Type: multipart/signed; boundary=bar; micalg=pgp-md5; protocol="application/pgp-signature" --bar & Content-Type: text/plain; charset=iso-8859-1 & Content-Transfer-Encoding: quoted-printable & & =A1Hola! & & Did you know that talking to yourself is a sign of senility? & & It's generally a good idea to encode lines that begin with & From=20because some mail transport agents will insert a greater- & than (>) sign, thus invalidating the signature. & & Also, in some cases it might be desirable to encode any =20 & trailing whitespace that occurs on lines in order to ensure =20 & that the message signature is not invalidated when passing =20 & a gateway that modifies such whitespace (like BITNET). =20 & & me --bar Content-Type: application/pgp-signature -----BEGIN PGP MESSAGE----- Version: 2.6.2 iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC// jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn HOxEa44b+EI= =ndaj -----END PGP MESSAGE----- --bar-- The "&"s in the previous example indicate the portion of the data over which the signature was calculated. Upon receipt of a signed message, an application MUST: Elkins, et al. Expires February 2001 [Page 6] INTERNET-DRAFT MIME Security with OpenPGP August 2000 (1) Convert line endings to the canonical sequence before the signature can be verified. This is necessary since the local MTA may have converted to a local end of line convention. (2) Pass both the signed data and its associated content headers along with the OpenPGP signature to the signature verification service. 6. Encrypted and Signed Data Sometimes it is desirable to both digitally sign and then encrypt a message to be sent. This protocol allows for two methods of accomplishing this task. 6.1. RFC1847 Encapsulation In [2], it is stated that the data is first signed as a multipart/signature body, and then encrypted to form the final multipart/encrypted body. This is most useful for standard MIME- compliant message forwarding. Example: Elkins, et al. Expires February 2001 [Page 7] INTERNET-DRAFT MIME Security with OpenPGP August 2000 Content-Type: multipart/encrypted; protocol="application/pgp-encrypted"; boundary=foo --foo Content-Type: application/pgp-encrypted Version: 1 --foo Content-Type: application/octet-stream -----BEGIN PGP MESSAGE----- & Content-Type: multipart/signed; micalg=pgp-md5 & protocol="application/pgp-signature"; boundary=bar & & --bar & Content-Type: text/plain; charset=us-ascii & & This message was first signed, and then encrypted. & & --bar & Content-Type: application/pgp-signature & & -----BEGIN PGP MESSAGE----- & Version: 2.6.2 & & iQCVAwUBMJrRF2N9oWBghPDJAQE9UQQAtl7LuRVndBjrk4EqYBIb3h5QXIX/LC// & jJV5bNvkZIGPIcEmI5iFd9boEgvpirHtIREEqLQRkYNoBActFBZmh9GC3C041WGq & uMbrbxc+nIs1TIKlA08rVi9ig/2Yh7LFrK5Ein57U/W72vgSxLhe/zhdfolT9Brn & HOxEa44b+EI= & =ndaj & -----END PGP MESSAGE----- & & --bar-- -----END PGP MESSAGE----- --foo-- (The text preceded by '&' indicates that it is really encrypted, but presented as text for clarity.) 6.2. Combined method The OpenPGP packet format [1] describes a method for signing and encrypting data in a single OpenPGP message. This method is allowed in order to reduce processing overhead and increase compatibility with non-MIME implementations of OpenPGP. The resulting data is Elkins, et al. Expires February 2001 [Page 8] INTERNET-DRAFT MIME Security with OpenPGP August 2000 formatted as a "multipart/encrypted" object as described in Section 4. Messages which are encrypted and signed in this combined fashion are REQUIRED to follow the same canonicalization rules as for multipart/signed objects. It is explicitly allowed for an agent to decrypt a combined message and rewrite it as a multipart/signed object using the signature data embedded in the encrypted version. 7. Distribution of OpenPGP public keys Content-Type: application/pgp-keys Required parameters: none Optional parameters: none This is the content type which SHOULD be used for relaying public key blocks. 8. Security Considerations Signatures of a canonical text document as defined in [1] ignore trailing white space in signed material. If data to be signed contains trailing white space which should not be modified without user notification, implementations should make sure to protect this trailing white space by using either the Quoted-Printable, or the Base64 Content-Transfer-Encoding, as pointed out in section 3 of the present document. See [3], [4] for more information on the security considerations concerning the underlying protocols. 9. Notes "PGP" and "Pretty Good Privacy" are registered trademarks of Network Associates, Inc. 10. Acknowledgements This draft document relies on the work of the IETF's OpenPGP Working Group's definitions of the OP Message Format. The OP message format is currently described in RFC 2440 [1]. Special thanks are due: to Philip Zimmermann for his original and ongoing work on PGP; to Charles Breed, Jon Callas and Dave Del Torto for originally proposing the formation of the OpenPGP Working Group; and to Steve Schoenfeld for helpful feedback during the draft Elkins, et al. Expires February 2001 [Page 9] INTERNET-DRAFT MIME Security with OpenPGP August 2000 process. The authors would also like to thank the engineers at Pretty Good Privacy, Inc (now Network Associates, Inc), including Colin Plumb, Hal Finney, Jon Callas, Mark Elrod, Mark Weaver and Lloyd Chambers, for their technical commentary. Additional thanks are due to Jeff Schiller and Derek Atkins for their continuing support of strong cryptography and PGP freeware at MIT; to Rodney Thayer of Sable Technology; to John Noerenberg, Steve Dorner and Laurence Lundblade of the Eudora team at QUALCOMM, Inc; John Gilmore, Hugh Daniel and Fred Ringel (at Rivertown) and Ian Bell (at Turnpike) for their timely critical commentary; and to the international members of the IETF's OpenPGP mailing list, including William Geiger, Lutz Donnerhacke and Kazu Yamamoto. The idea to use multipart/mixed with multipart/signed has been attributed to James Galvin. Finally, our gratitude is due to the many members of the "Cypherpunks," "Coderpunks" and "pgp-users" mailing lists and the many users of PGP worldwide for helping keep the path to privacy open. 11. Addresses of the Authors and OpenPGP Working Group Chair The OpenPGP working group can be contacted via the current chair: John W. Noerenberg II Qualcomm, Inc. 5775 Morehouse Dr. San Diego CA 92121 USA Tel: +1 619 658 3510 Email: jwn2@qualcomm.com The principal authors of this draft are: Dave Del Torto CryptoRights Foundation 80 Alviso Street, Mailstop: CRF San Francisco CA 94127 USA Tel: +1.415.334.5533, vm: #2 Email: ddt@cryptorights.org, ddt@openpgp.net Michael Elkins Network Associates, Inc. 3415 S. Sepulveda Blvd Suite 700 Los Angeles CA 90034 USA Tel: +1.310.737.1623 Fax: +1.310.737.1755 Email: michael_elkins@nai.com Elkins, et al. Expires February 2001 [Page 10] INTERNET-DRAFT MIME Security with OpenPGP August 2000 Raph Levien University of California at Berkeley 579 Soda Hall Berkeley CA 94720 USA Tel: +1.510.642.6509 Email: raph@acm.org Thomas Roessler Nordstrasse 99 D-53111 Bonn Germany Tel: +49-228-638007 Email: roessler@does-not-exist.org References [1] Callas, J., Donnerhacke, L., Finney, H., Thayer, R., "OpenPGP Message Format", RFC 2440, November 1998. [2] Galvin, J., Murphy, G., Crocker, S., and N. Freed, "Security Multiparts for MIME: Multipart/Signed and Multipart/Encrypted", RFC 1847, October 1995. [3] Freed, N., Borenstein, N., "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, November 1996 [4] Galvin, J., Murphy, G., Crocker, S., and N. Freed, "MIME Object Security Services", RFC 1848, October 1995. [5] Atkins, D., Stallings, W., and P. Zimmermann, "PGP Message Exchange Formats", RFC 1991, August 1996. [6] Elkins, M., "MIME Security with Pretty Good Privacy (PGP)", RFC 2015, October 1996. [7] Freed, N., "Gateways and MIME Security Multiparts", RFC 2480, January 1999. [8] Roessler, T., Del Torto, D., Levien, R., "Multiple Signatures using Security Multiparts", draft-ietf-multsig-00.txt, January 2000. Full Copyright Notice Copyright (C) The Internet Society 2000. All Rights Reserved. Elkins, et al. Expires February 2001 [Page 11] INTERNET-DRAFT MIME Security with OpenPGP August 2000 This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Elkins, et al. Expires February 2001 [Page 12]