Page 16
PKCS 12: Personal Information Exchange Syntax Standard

Note on ITAR
Page 17

PKCS #12: Personal Information Exchange Syntax Standard

Version 1.0 DRAFT, 30 April 1997

Acknowledgements: Many thanks to Dan Simon of Microsoft Corporation; Jim Spring of Netscape Communications Corporation; Sergei Ivanov; and Ari Juels of RSA Data Security, Inc. for their assistance in preparing this document. Especial thanks to Brian Beckman of Microsoft Corporation for writing the document that this document is based on—most of this document was taken almost straight from his work.

Implementation status: Reference implementation in progress (contact sivanov@sundn.de).

Author’s email address: pkcs-editor@rsa.com.

Table of Contents

2

1. Scope

2. References
2

3. Definitions
3

4. Overview
5

4.1 Direct exchange modes
5

4.2 Mode choice policies
5

4.3 Trusted public keys
6

4.4 The AuthenticatedSafe
6

5. PFX PDU syntax
7

5.1 AuthenticatedSafes
8

5.2 SafeBags
9

5.2.1 KeyBags
9

5.2.2 Pkcs-8ShroudedKeyBags
11

5.2.3 CertCRLBags
11

5.2.4 SecretBags
12

5.2.5 SafeContents
12

5.3 PKCS #12 Object Identifier
12

6. Deriving keys and IVs from passwords and salt
13

6.1 General method
13

6.2 More on the ID byte
14

6.3 Keys and IVs for password privacy mode
14

6.4 Keys for password integrity mode
15

7. Message Authentication Codes (MACs)
15

8. Creating and using a PFX
16

8.1 Exporting keys, etc., with a PFX PDU
16

8.2 Importing keys, etc., from a PFX PDU
17

9. Note on ITAR
17

1.
Scope

This standard describes a transfer syntax for personal identity information, including private keys, certificates, miscellaneous secrets, and extensions. Machines, applications, browsers, Internet kiosks, and so on, that support this standard will allow a user to import, export, and exercise a single set of personal identity information.

This standard supports direct transfer of personal information under several privacy and integrity modes. The most secure of the privacy and integrity modes requires the source and destination platforms to have trusted public/private key pairs usable for digital signatures and encryption, respectively. The standard also supports lower security, password-based privacy and integrity modes for those cases where trusted public/private key pairs are not available.

This standard should be amenable to both software and hardware implementations. Hardware implementations offer physical security on diskettes and hand-held or laptop computing devices in tamper-resistant tokens such as smart cards and PCMCIA devices.

This standard can be viewed as building on PKCS #8 by including essential but ancillary identity information along with private keys and by instituting higher security through public-key privacy and integrity modes.

This document is based on “PFX: Personal Exchange Syntax and Protocol Standard” version 0.020 by Brian Beckman of Microsoft Corporation.

2. References

Subject
Source

HMAC
Krawczyk, Bellare, and Canetti. HMAC: Keyed-Hashing for Message Authentication. IETF RFC 2104, February 1997.

MD5Break
Hans Dobbertin. "The status of MD5 after a recent attack", CryptoBytes, RSA Laboratories. Vol.2, #2, summer 1996.

PFX
Microsoft Corporation. PFX: Personal Exchange Syntax and Protocol Standard. Version 0.020, January 1997.

PKCS #1
RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #5
RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #7
RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, Revised November 1, 1993.

PKCS #8
RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2, Revised November 1, 1993.

SDSI
Rivest and Lampson. Simple Distributed Security Infrastructure, http://theory.lcs.mit.edu/~rivest/sdsi.ps, 1996.

X.501
CCITT. Recommendation X.501: The Directory–Models. 1988.

X.509
CCITT. Recommendation X.509: The Directory–Authentication Framework. 1988.

X.680
ITU-T. Recommendation X.680: Information Technology – Abstract Syntax Notation One (ASN.1): Specification of Basic Notation. July 1994.

X.690
ITU-T. Recommendation X.690: Information Technology – ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules. July 1994.

3. Definitions

AlgorithmIdentifier: An ASN.1 type that identifies an algorithm (by an Object Identifier) and any associated parameters. This type is defined in [X.509].

ASN.1: Abstract Syntax Notation One, as defined in [X.680].

Certificate: A digitally signed data unit binding a public key to identity information. A specific format for identity certificates is defined in [X.509]. Another format is described in SDSI.

Certificate Chain: An collection of certificates such that the signature key in each “higher” certificate certify the public key on a lower certificate. All but the leaf certificate must contain signature keys. Typically, such chains represent hierarchies of certifying authorities. The entire certificate chain provides a “complete” certification of the public key on the leaf certificate in the chain.

Certificate Revocation List (CRL): A digitally signed list of certificates that should no longer be honored, having been revoked by the issuers or a higher authority. One format for CRLs is defined in [X.509].

ContentInfo: An ASN.1 type used to hold data which may have been cryptographically enhanced. This type is defined in [PKCS #7].
DER: Distinguished Encoding Rules, as defined in [X.690].

Destination platform: The ultimate, final target platform for the personal information originating from the source platform. Even though certain information may be transported from the destination platform to the source platform, the ultimate target for personal information is always called the destination platform.

DigestInfo: An ASN.1 type used to hold a message digest. This type is defined in [PKCS #7].
Encryption Key Pair (DestEncK): An public/private key pair used for the public-key privacy mode of this standard. The public half is called PDestEncK (TPDestEncK when emphasizing that the public key is “trusted”), and the private half is called VDestEncK.

Export time: The time that a user reads personal information from a source platform and transforms the information into an interoperable, secure protocol data unit (PDU).

Externally Shrouded Private Keys (ESPVKs): Keys shrouded by other standards, such as [PKCS #8].

Import time: The time that a user writes personal information from a Safe PDU, to a destination platform.

Leaf Certificate: The end of a certificate chain, typically containing the public key that corresponds to a private key protected by this standard.

Message Authentication Code (MAC): A type of collision-resistant, “unpredictable” function of a message and a secret key. MACs are used for data authentication, and are akin to secret-key digital signatures in many respects.

OBJECT IDENTIFIER: A sequence of integers which uniquely identifies an associated data object in a global name space administrated by a hierarchy of naming authorities. Both Microsoft Corporation and RSADSI maintain subtrees in this name space. This is a primitive data type in ASN.1.

PFX: The top-level exchange PDU defined in this standard.

Platform: A combination of machine, operating system, and applications software within which the user exercises personal identity. An application, in this context, is software that uses personal information. Two platforms differ if their machine types differ or if their applications software differs. There is at least one platform per user in multi-user systems.

Protocol Data Unit (PDU): A sequence of bits in machine-independent format constituting a message in a protocol.

Shrouding: Encryption as applied to private keys, possibly in concert with a policy that prevents the plaintext of the key from ever being visible beyond a certain, well-defined interface.

Signature Key Pair (SrcSigK): A platform-specific signature key pair used for the public-key integrity mode of this standard. The public half is called PSrcSigK (TPSrcSigK when emphasizing that the public key is “trusted”), and the private half is called VSrcSigK.

Source platform: The origin platform of the personal information ultimately intended for the destination platform. Even though certain information may be transported from the destination platform to the source platform, the platform that is the origin of personal information is always called the source platform.

Thumbprint: The SHA-1 hash of a leaf certificate or a CRL. This standard permits a set of thumbprints to be associated with private keys to ease their installation on the destination platform at import time.

4. Overview

4.1 Direct exchange modes

Direct exchange comprises four combinations of privacy modes and integrity modes. The privacy modes use encryption to protect personal information from exposure, and the integrity modes protect personal information from tampering. Without protection from tampering, an adversary could conceivably substitute invalid information for the user’s personal information without the user being aware of the substitution.

The following are the privacy modes:

· Public-key privacy mode: Personal information is enveloped on the source platform using a trusted encryption public key of a known destination platform (see Section 4.3). The envelope is opened with the corresponding private key.

· Password privacy mode: Personal information is encrypted with a symmetric key derived from a user name and a privacy password, as in PKCS #5. If password integrity mode is also used, the privacy password and the integrity password may or may not be the same.

The following are the integrity modes:

· Public-key integrity mode: Integrity is guaranteed through a digital signature on the Safe PDU, which is produced using the source platform’s private signature key. The signature is verified on the destination platform by using the corresponding public key (see Section 4.3).

· Password integrity mode: Integrity is guaranteed through a message authentication code (MAC) derived from a secret integrity password. If password privacy mode is also used, the privacy password and the integrity password may or may not be the same.

4.2 Mode choice policies

All combinations of the privacy and integrity modes are permitted in this standard. Of course, good security policy suggests that certain practices be avoided, e.g., it can be unwise to transport private keys without physical protection when using password privacy mode or when using public-key privacy mode with weak symmetric encryption. Unfortunately, weak symmetric encryption may be required for products exported from the U.S. under ITAR (see Section 9).

In general, the public key modes for both privacy and integrity are preferable to the password modes (from a security viewpoint). However, it is not always possible to use the public key modes. For example, it may not be known at export time what the destination platform is; if this is the case, then the use of the public-key privacy mode is precluded.
4.3 Trusted public keys

Asymmetric key pairs may be used in this standard in two ways: public-key privacy mode and public-key integrity mode. For public-key privacy mode, an encryption key pair is required; for public-key integrity mode, a signature key pair is required.

It may be appropriate for the keys discussed in this section to be platform-specific keys dedicated solely for the purpose of transporting a user’s personal information. Whether or not that is the case, though, the keys discussed here should not be confused with the user’s personal keys that the user wishes to transport from one platform to another (these latter keys are stored within the PDU).

For public-key privacy mode, the private key from the encryption key pair is kept on the destination platform, where it is ultimately used to open a private envelope. The corresponding trusted public key is called TPDestEncK.

For public-key integrity mode, the private key from the signature pair is kept on the source platform, where it is used to sign personal information. The corresponding trusted public key is called TPSrcSigK.

For both uses of public/private key pairs, the public key from the key pair must be transported to the other platform such that it is trusted to have originated at the correct platform. Judging whether or not a public key is trusted in this sense must ultimately be left to the user. There are a variety of methods for ensuring that a public key is trusted.

The processes of imbuing keys with trust and of verifying trustworthiness of keys are not discussed further in this document. Whenever asymmetric keys are discussed in what follows, the public keys are assumed to be trusted.

4.4 The AuthenticatedSafe

Each compliant platform can import and export AuthenticatedSafe PDUs.

For integrity, the AuthenticatedSafe is either signed (if public-key integrity mode is used) or MACed (if password integrity mode is used) to produce a PFX PDU. If the AuthenticatedSafe is signed, then it is accompanied by a digital signature, which was produced on the source platform with a a private signature key, VSrcSigK, corresponding to a trusted public signature key, TPSrcSigK. TPSrcSigK must accompany the PFX to the destination platform, where the user can verify the trust in the key and can verify the signature on the AuthenticatedSafe. If the AuthenticatedSafe is MACed, then it is accompanied by a Message Authentication Code computed from a secret integrity password; salt bits; and the contents of the AuthenticatedSafe.

The AuthenticatedSafe itself has two parts, one of which is plaintext, and the other of which is either enveloped (if public-key privacy mode is used) or encrypted (if password privacy mode is used). If the contents are enveloped, then they are encrypted with a symmetric cipher under a freshly-generated key, which is in turn encrypted with RSA asymmetric encryption. The RSA public key used to encrypt the symmetric key is called TPDestEncK, and corresponds to an RSA private key, VDestEncK, on the destination key. TPDestEncK needs to be trusted by the user when it is used at export time. If the contents are encrypted, then they are encrypted with a symmetric cipher under a key derived from a secret privacy password and salt bits.

Both parts of the AuthenticatedSafe consist of a collection of SafeBags. Each SafeBag contains either a private key, a PKCS #8 shrouded key, a certificate chain and/or CRL, a secret, or a lower-level collection of SafeBags.

The raison d’être for the unencrypted part of the AuthenticatedSafe is that the United States Government Commerce Department International Trade in Arms Regulations (see Section 9) restrict certain uses of cryptography. Having two parts in an AuthenticatedSafe keeps implementors’ options open. For example, it may be the case that strong cryptography can be used to make PKCS #8-shrouded keys, but then these shrouded keys should not be further encrypted, because superencryption can limit a product’s exportability. The two-part AuthenticatedSafe design permits this possibility.

Around the AuthenticatedSafe is the integrity-mode wrapper, which protects the entire contents of the AuthenticatedSafe (including the unencrypted part, if it is present). This is the reverse of the wrapping order in many protocols, in which privacy is the outermost protection. This latter, more common wrapping order avoids signatures on encrypted data, which are undesirable under certain circumstances; however, these circumstances do not apply to this document, and it is t
herefore preferable to protect the integrity of as much information as possible.

5. PFX PDU syntax

This format corresponds to the data model presented above, with wrappers for privacy and integrity. This section makes free reference to PKCS #7 (Cryptographic Message Syntax), and assumes the reader is familiar with the terms defined in that document.

All modes of direct exchange use the same PDU format. ASN.1 and DER-encoding ensure platform-independence.

This standard has one ASN.1 export: PFX. This is the outer integrity wrapper. Instances of PFX contain:

1.
A PKCS #7 ContentInfo named authSafe, whose contentType is signedData in public-key integrity mode, and is data in password integrity mode.

2.
An optional instance of MacData, present only in password integrity mode. This object, in turn, contains a PKCS #7 DigestInfo, which holds the MAC of the entire DER-encoded authSafe, and a macSalt. As described in section 6.4, the MAC key is derived from the password and macSalt; as described in Section 7, the MAC is computed from the DER-encoded authSafe and the MAC key via HMAC [HMAC]. The password and the MAC key are not actually present anywhere in the PFX. The salt thwarts dictionary attacks against the integrity password.

PFX ::= SEQUENCE {

 authSafe ContentInfo,

 -- signedData in public-key integrity mode, and

 -- data in password integrity mode. See PKCS #7

 macData MacData OPTIONAL

 -- present only in password integrity mode

}

MacData ::= SEQUENCE {

 safeMac DigestInfo, -- see PKCS #7

 macSalt OCTET STRING

}

5.1 AuthenticatedSafes

The content field of the authSafe contains an encrypted or enveloped instance of a DER-encoded AuthenticatedSafe, which in turn contains:

1.
A Version integer serving to break backward compatibility; software shall abort if it does not explicitly handle the version in any given instance of this type. Its value for this version of the standard is 2.

2.
An optional PKCS #7 ContentInfo named safe, whose contentType is envelopedData in public-key privacy mode and encryptedData in password privacy mode.

3. An optional SafeContents containing information which is not encrypted by this standard.

AuthenticatedSafe ::= SEQUENCE {

 version Version,

 safe [0] ContentInfo OPTIONAL,

 -- contentType is encryptedData in password privacy mode,

 -- and envelopedData in public-key privacy mode

 baggage [1] SafeContents OPTIONAL,

 -- stuff that’s not subject to PFX encryption

}

Version ::= INTEGER (v2(2))

The content field of the AuthenticatedSafe’s ContentInfo contains either encrypted or enveloped data, in the sense of PKCS #7. The plaintext of this data holds the DER-encoding of an instance of SafeContents, which holds a SEQUENCE OF SafeBags.

SafeContents ::= SEQUENCE OF SafeBag

5.2 SafeBags

A SafeContents is made up of SafeBags. Each SafeBag holds one piece of information—a key, a certificate chain, etc.—which is identified by an Object Identifier.

SafeBag ::= SEQUENCE {

 safeBagType OBJECT IDENTIFIER,

 safeBagContent [0] EXPLICIT ANY DEFINED BY safeBagType,

 safeBagName BMPString OPTIONAL

}

The optional name allows the user to assign nicknames to keys, etc., and permits visual tools to display meaningful strings of some sort to the user.

Five types of safeBagContent are defined in this version of the standard, and are labeled in the following OID subspace, which provides values for the field safeBagType, above:

pkcs-12BagIds OBJECT IDENTIFIER ::= {pkcs-12 3}

keyBagId OBJECT IDENTIFIER ::= {pkcs-12BagIds 1}

certAndCRLBagId OBJECT IDENTIFIER ::= {pkcs-12BagIds 2}

secretBagId OBJECT IDENTIFIER ::= {pkcs-12BagIds 3}

safeContentsId OBJECT IDENTIFIER ::= {pkcs-12BagIds 4}

pkcs-8ShroudedKeyBagId OBJECT IDENTIFIER ::= {pkcs-12BagIds 5}

As new bag types become recognized in future versions of this standard, their Object Identifiers may be added to this subspace.

5.2.1 KeyBags

A KeyBag is a PKCS #8 PrivateKeyInfo, together with an instance of PVKSupportingData. Note that a KeyBag contains only one key.

KeyBag ::= SEQUENCE {

 pvkData PVKSupportingData,

 pkcs8data PrivateKeyInfo -- see PKCS #8

}

PVKSupportingData ::= SEQUENCE {

 assocCerts [0] SEQUENCE OF Thumbprint OPTIONAL,

 regenInfo [1] RegenInfo OPTIONAL,

 pvkAdditional [2] SEQUENCE OF PVKAdditional OPTIONAL

}

The Thumbprints are hashes of leaf certificates of the public key corresponding to the private key, or of CRLs indicating the certificate of the public key; these thumbprints aid in the installation of certificates, CRLs, and keys on the destination platform without requiring mathematical association of the private and public keys. The details of certificate and CRL formats are, however, outside the scope of this standard.

The type of all Thumbprints in this standard is PKCS #7 DigestInfo. The present version of this standard requires SHA‑1 as the digestAlgorithm in the thumbprint. Note that MD5, another hashing algorithm, has been demonstrated to have some weaknesses [MD5Break], and should not be used in new applications.

Thumbprint ::= DigestInfo -- see PKCS #7

secsig OBJECT IDENTIFIER ::=

 {iso(1) identified-organization(3) oiw(14) secsig(3)}

id-sha1 OBJECT IDENTIFIER ::= {secsig 2 26}

The optional regenInfo field holds information (regenParams, whose meaning is determined by an Object Identifier regenOID) which specifies how this key can be regenerated. What this means will not be explored in detail here; an example of how a key can be regenerated is given in [PFX]. Essentially, it is possible that a particular private key can be “re-created” from some secret information and some help from (say) a server of some sort; the regenInfo field allows the method and parameters for “re-creation” to be specified with the key. No Object Identifiers for key-regeneration methods are presented in this version of this document.

RegenInfo ::= SEQUENCE {

 regenOID OBJECT IDENTIFIER,

 regenParams [0] EXPLICIT ANY DEFINED BY regenOID

}

This standard also permits implementation-specific, key-labeling information to be transported in the pvkAdditional slot for the convenience of implementers. These labels and their Object Identifiers are not specified here, however. Interoperable implementations shall not require them to be present, and any implementation is free to ignore them.

PVKAdditional ::= SEQUENCE {

 pvkAdditionalType OBJECT IDENTIFIER,

 pvkAdditionalContent [0] EXPLICIT ANY DEFINED BY pvkAdditionalType

}

5.2.2 Pkcs-8ShroudedKeyBags

A Pkcs-8ShroudedKeyBag holds a private key which has been shrouded in accordance with PKCS #8. Note that a Pkcs-8ShroudedKeyBag holds only one shrouded private key.

Pkcs-8ShroudedKeyBag ::= SEQUENCE {

 pvkData PVKSupportingData,

 shroudedpkcs8data EncryptedPrivateKeyInfo -- see PKCS #8

}

5.2.3 CertCRLBags

A CertCRLBag contains a certificate chain and/or CRLs. In this version of the standard, it contains either a X509Bag or a SDSIBag. In future versions, it will most likely contain other certificate types, so the certificate subtypes are explicitly identified by Object Identifiers. It is expected that each CertCRLBag contains only certificates and/or CRLs relevant to certifying some single specific public key.

CertCRLBag ::= SEQUENCE {

 BagId OBJECT IDENTIFIER,

 value ANY DEFINED BY BagId

}

Note that a nickname slot is not supplied here. Visual tools may display the key nickname if the certificate chain or CRLs are associated with a private key, or they may choose from among the many textual attributes of the certificate chain or CRLs, or they may display the safeBagName of the bag (if the bag has a value for this field).

The following ID subspace and values are defined for Certificates and CRLs:

pkcs-12CertBagIds ::= OBJECT IDENTIFIER {pkcs-12 4}

x509CertCRLBagId ::= OBJECT IDENTIFIER {pkcs-12CertBagIds 1}

SDSICertBagId ::= OBJECT IDENTIFIER {pkcs-12CertBagIds 2}

Each X.509 certificate in a certificate chain and/or each CRL is captured in the certificates and/or crls field of an instance of a PKCS #7 ContentInfo containing an empty signedData and no signatures, as explicitly and idiomatically allowed in PKCS #7.

X509Bag ::= ContentInfo -- see PKCS #7

A SDSI certificate is an ASCII string. A SDSI certificate chain is therefore a sequence of ASCII strings.

SDSIBag ::= SEQUENCE OF IA5String

Each Thumbprint associated with any key should correspond to a leaf certificate or a CRL. A leaf certificate is the end of a signature chain of certificates and should contain the public key corresponding to the private key that has the thumbprint. We refer to a certificate chain whose leaf certificate is thumbprinted as a thumbprinted chain.

5.2.4 SecretBags

Each of the user’s miscellaneous personal secrets is contained in an instance of SecretBag, which holds an Object Identifier-dependent value. Note that a SecretBag contains only one secret.

SecretBag ::= SEQUENCE {

 secretType OBJECT IDENTIFIER,

 secretContent [0] EXPLICIT ANY DEFINED BY secretType

}
5.2.5 SafeContents

The fourth type of bag that can be held in a SafeBag is a SafeContents. This recursive structure allows for arbitrary nesting of multiple KeyBags, CertCRLBags, and SecretBags within the top-level SafeContents. At each level of nesting, a name can be present in the SafeBag in the SafeContents.

5.3 PKCS #12 Object Identifier

The following Object Identifier completes the definitions above:

pkcs-12 OBJECT IDENTIFIER ::=

 {iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) 12}

6. Deriving keys and IVs from passwords and salt

We present here a general method for using a hash function to produce various types of pseudo-random bits from a password and a string of salt bits. This method is used for password privacy mode and password integrity mode in the present standard.

This procedure more properly belongs in PKCS #5, and may eventually be placed there; for the moment, however, it is necessary to specify it here.

6.1 General method

Let H be a hash function built around a compression function f: Z2u (Z2v (Z2u (that is, H has a chaining variable and output of length u bits, and the message input to the compression function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and v=512.

We assume here that u and v are both multiples of 8, as are the lengths of the password and salt strings (which we denote by p and s, respectively) and the number n of pseudo-random bits required. In addition, u and v are of course non-zero.

The following procedure can be used to produce pseudo-random bits for a particular “purpose” which is identified by a byte, ID. The meaning of this ID byte will be discussed later.

1. Construct a string, D (the “diversifier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the salt together to create a string S of length v((s/v(bits (the final copy of the salt may be truncated to create S). Note that if the salt is the empty string, then so is S.

3. Concatenate copies of the password together to create a string P of length v((p/v(bits (the final copy of the password may be truncated to create P). Note that if the password is the empty string, then so is P.

4. Set I=S||P to be the concatenation of S and P.

5. Set c=(n/u(.

6. For i=1, 2, …, c, do the following:

a) Set Ai=H(D||I).

b) Concatenate copies of Ai to create a string B of length v bits (the final copy of Ai may be truncated to create B).

c) Treating I as a concatenation I0, I1, …, Ik-1 of v-bit blocks, where k=(s/v(+(p/v(, modify I by setting Ij=(Ij+B+1) mod 2v for each j.

7. Concatenate A1, A2, …, Ac together to form a pseudo-random bit string, A.

8. Use the first n bits of A as the output of this entire process.

If the above process is being used to generate a DES key, the process should be used to create 64 random bits, and the key’s parity bits should be set after the 64 bits have been produced. Similar concerns hold for 2-key and 3-key triple-DES keys, for CDMF keys, and for any similar keys with parity bits “built into them”.

6.2 More on the ID byte

This standard specifies 3 different values for the ID byte mentioned above:

1. If ID=1, then the pseudo-random bits being produced are to be used as key material for performing encryption or decryption.

2. If ID=2, then the pseudo-random bits being produced are to be used as an IV (Initial Value) for encryption or decryption.

3. If ID=3, then the pseudo-random bits being produced are to be used as an integrity key for MACing.

6.3 Keys and IVs for password privacy mode

When password privacy mode is used to encrypt a PFX PDU, a password (typically entered by the user) and salt are used to derive a key (and an IV, if necessary). The password is a Unicode string, and as such, each character in it is represented by 2 bytes. The salt is a byte string, and so can be represented directly as a sequence of bytes.

This standard does not prescribe a length for the password. As usual, however, too short a password might compromise privacy. A particular application might well require a user-entered privacy password for creating a PFX PDU to have a password exceeding some specific length.

This standard also does not prescribe a length for the salt. Ideally, the salt is as long as the output of the hash function being used, and consists of completely random bits.

PKCS #5 provides a number of AlgorithmIdentifiers for deriving keys and IVs; here, we specify a few more Object Identifiers, all of which use the procedure detailed in Section 6.1 and Section 6.2 to construct keys (and IVs, where needed). As is implied by their names, all of the Object Identifiers below use the hash function SHA-1.

pkcs-12PbeIds OBJECT IDENTIFIER ::= {pkcs-12 1}

pbeWithSHAAnd128BitRC4 OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 1}

pbeWithSHAAnd40BitRC4 OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 2}

pbeWithSHAAnd3-KeyTripleDES-CBC OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 3}

pbeWithSHAAnd2-KeyTripleDES-CBC OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 4}

pbeWithSHAAnd128BitRC2-CBC OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 5}

pbewithSHAAnd40BitRC2-CBC OBJECT IDENTIFIER ::=

 {pkcs-12PbeIds 6}

Each of the four PBE Object Identifiers above has the following ASN.1 type for parameters:

pkcs-12PbeParams ::= OCTET STRING

The pkcs-12PbeParams holds the salt which is used to generate the key (and IV, if needed).

Note that the first two AlgorithmIdentifiers above (the AlgorithmIdentifiers for RC4) only derive keys; it is unnecessary to derive an IV for RC4.

6.4 Keys for password integrity mode

When password integrity mode is used to protect a PFX PDU, a password and salt are used to derive a MAC key. As with password privacy mode, the password is a Unicode string, and the salt is a byte string; no particular lengths are prescribed in this standard for either the password or the salt, but the general advice about passwords and salt that was given in Section 6.3 applies here, as well.

The hash function used to derive MAC keys is whatever hash function is going to be used for MACing. The MAC keys that are derived have the same length as the hash function’s output. In this version of this standard, SHA-1 is used for performing all MACing, and so all MAC keys are 160 bits. See Section 7 for more information on MACing.

7. Message Authentication Codes (MACs)

A MAC is a special type of function of a message (data bits) and an integrity key. It can be computed or checked only by someone possessing both the message and the integrity key. Its security follows from the secrecy of the integrity key. In this standard, MACing is used in password integrity mode.

This standard uses a particular type of MAC called HMAC [HMAC], which can be constructed from any of a variety of hash functions. Note that the specification in [HMAC] differs somewhat from the specification in [PFX]. The hash function HMAC is based on is identified in the MacData which holds the MAC; for this version of this standard, the hash function should be SHA-1. As indicated in Section 6.4, this implies that SHA-1 is also used to derive the MAC key itself in password integrity mode, and that the MAC key has 160 bits.

When password integrity mode is used to secure a PFX PDU, a SHA-1 HMAC is computed on the DER-encoding of the authSafe field in the PFX PDU. It is imperative to note that the tag and value octets (see [X.690]) of the authSafe field are included in the DER-encoding which is MACed.

8. Creating and using a PFX

8.1 Exporting keys, etc., with a PFX PDU

Here we describe how to create a PFX PDU to export personal information.

1. Put each key to be exported either in its own KeyBag as plaintext, or in its own Pkcs-8ShroudedKeyBag as PKCS #8-shrouded ciphertext.

2. Put each certificate chain and each CRL in its own CertCRLBag. X509Bags may contain both a certificate chain and a CRL.

3. Put each miscellaneous secret in its own SecretBag.

4. Put each of the various bags created above into its own SafeBag. Each SafeBag can have a name, which presumably describes its contents somehow.

5. Build two SEQUENCEs OF SafeBags out of all the SafeBags. By using SafeContents as a bag, the two collections of SafeBags can each have a hierarchical structure. At each level of the hierarchy, a name can be present in the safeBagName field of the SafeBag.

6. One of the two SEQUENCEs OF SafeBags will be the safe of the AuthenticatedSafe:
a. If public-key privacy mode is being used, then make a PKCS #7 ContentInfo of type envelopedData from the SEQUENCE OF SafeBags which will be the safe.

b. If password privacy mode is being used, then generate random salt bits and combine them with a password from the user to create an encryption key (and an IV, if appropriate). Use this key (and IV, if appropriate) to produce a PKCS #7 ContentInfo of type encryptedData from the SEQUENCE OF SafeBags which will be the safe.

7. Put the version number (2 for this document), the safe produced in step 6, and the other SEQUENCE OF SafeBags together to form the AuthenticatedSafe (the other SEQUENCE OF SafeBags makes up the baggage).

8. The AuthenticatedSafe, together with authentication information, makes up the PFX. Make a PKCS #7 ContentInfo of type data from the AuthenticatedSafe.

a. If public-key integrity mode is being used, then make a PKCS #7 ContentInfo of type signedData from the ContentInfo just made. This ContentInfo is the sole component present in the final PFX.

b. If password integrity mode is being used, then generate random salt bits and combine them with a password from the user to create a MAC key. Use this key to compute HMAC of the DER-encoding of the ContentInfo just made (remember to include the tag and length octets in the DER-encoding). Package this with the salt bits to make the MacData, and put the ContentInfo and the MacData together to make the final PFX.

8.2 Importing keys, etc., from a PFX PDU

Importation from a PFX is accomplished essentially by reversing the procedure for creating a PFX. In general, when an application imports keys, etc., from a PFX, it should ignore any Object Identifiers that it is not familiar with. At times, it may be appropriate to alert the user to the presence of such Object Identifiers.

Special care may be taken by the application when importing an item in the PFX would require overwriting an item which already exists locally. The behavior of the application when such an item is encountered may depend on what the item is (i.e., it may be that a PKCS #8-shrouded private key and a CRL should be treated differently here). Appropriate behavior may be to ask the user what action should be taken for this item.

9. Note on ITAR

The U. S. Government restricts the export of products containing encryption capability under its International Trade in Arms Regulations (ITAR). Implementers are responsible for their own adherence to these regulations. This standard makes reference to ITAR and offers unauthoritative guidelines to assist implementers in adhering to the regulations. However, this standard cannot make authoritative recommendations or statements regarding ITAR. No person or organization connected with this standard accepts any responsibility or liability with respect to implementers’ adherence to ITAR.

In pursuing export permission for their products, implementers should argue that PFX is not a generic encryption facility; that it is intended for exchange of authentication information only; that their products cannot be used to exchange arbitrary information (as evidenced by their source code); and that, therefore, they should be allowed to export products with strong encryption in this context and this context only.

�SEITE \# "'Page: '#'�'" ��

Copyright © 1997 RSA Laboratories
This is a DRAFT document.

This is a DRAFT document.
Copyright © 1997 RSA Laboratories

