Tor Disk

Windows NT driver

Usage with cryptographic driver as �NT Secure File System�

Software version 1.00

This file version 1.00�from � SAVEDATE * MERGEFORMAT �02.06.97 20:11�.

�Copyright: 1997, Alexander G. Tormasov, Moscow, Russia�<tor@crec.mipt.ru>, http://www.crec.mipt.ru/~tor

�Table of contents

� TOC \o "1-4" �About this documentation	� GOTOBUTTON _Toc389917805 � PAGEREF _Toc389917805 �3��

What is TorDisk	� GOTOBUTTON _Toc389917806 � PAGEREF _Toc389917806 �3��

Legal information and copyrights	� GOTOBUTTON _Toc389917807 � PAGEREF _Toc389917807 �3��

Disclaimer of warranty	� GOTOBUTTON _Toc389917808 � PAGEREF _Toc389917808 �4��

Requirements	� GOTOBUTTON _Toc389917809 � PAGEREF _Toc389917809 �4��

Installation	� GOTOBUTTON _Toc389917810 � PAGEREF _Toc389917810 �5��

Installer usage	� GOTOBUTTON _Toc389917811 � PAGEREF _Toc389917811 �5��

Hand-made installation (for advanced users only)	� GOTOBUTTON _Toc389917812 � PAGEREF _Toc389917812 �5��

Disk Image	� GOTOBUTTON _Toc389917813 � PAGEREF _Toc389917813 �6��

Application usage	� GOTOBUTTON _Toc389917814 � PAGEREF _Toc389917814 �8��

GUI module	� GOTOBUTTON _Toc389917815 � PAGEREF _Toc389917815 �9��

Disk image creation	� GOTOBUTTON _Toc389917816 � PAGEREF _Toc389917816 �10��

Disk image mounting	� GOTOBUTTON _Toc389917817 � PAGEREF _Toc389917817 �12��

Disk image parameters changing and unmounting	� GOTOBUTTON _Toc389917818 � PAGEREF _Toc389917818 �14��

Disk image password changing	� GOTOBUTTON _Toc389917819 � PAGEREF _Toc389917819 �15��

Creation of encrypted CD-ROM	� GOTOBUTTON _Toc389917820 � PAGEREF _Toc389917820 �15��

Registration information:	� GOTOBUTTON _Toc389917821 � PAGEREF _Toc389917821 �16��

Technical notes	� GOTOBUTTON _Toc389917822 � PAGEREF _Toc389917822 �18��

Current TorDisk restrictions:	� GOTOBUTTON _Toc389917823 � PAGEREF _Toc389917823 �18��

Performance	� GOTOBUTTON _Toc389917824 � PAGEREF _Toc389917824 �19��

Future plans	� GOTOBUTTON _Toc389917825 � PAGEREF _Toc389917825 �19��

Appendix A. Usage of Cryptlib driver and data Encryption scheme	� GOTOBUTTON _Toc389917826 � PAGEREF _Toc389917826 �20��

General security consideration	� GOTOBUTTON _Toc389917827 � PAGEREF _Toc389917827 �20��

Is it possible to crack encoded data?	� GOTOBUTTON _Toc389917828 � PAGEREF _Toc389917828 �21��

Supported encryption algorithms	� GOTOBUTTON _Toc389917829 � PAGEREF _Toc389917829 �22��

Standards Conformance	� GOTOBUTTON _Toc389917830 � PAGEREF _Toc389917830 �22��

Encryption scheme details	� GOTOBUTTON _Toc389917831 � PAGEREF _Toc389917831 �24��

Master key encryption scheme	� GOTOBUTTON _Toc389917832 � PAGEREF _Toc389917832 �24��

Initialization vector	� GOTOBUTTON _Toc389917833 � PAGEREF _Toc389917833 �25��

Key setup procedures	� GOTOBUTTON _Toc389917834 � PAGEREF _Toc389917834 �26��

Sector encryption / decryption	� GOTOBUTTON _Toc389917835 � PAGEREF _Toc389917835 �26��

�

�Documentation is a text written by Russian �on English for Chinese :-)

About this documentation

This is description for TorDisk Windows NT kernel driver.

Authors will be very graceful to any comments about this software.

What is TorDisk

TorDisk is a universal Windows NT low-level kernel driver. It serves upper level NT file system requests.

With CryptLib Windows NT driver this product can be used as a cryptographic data storage. You can place your files with critical information inside and be sure that no one can access it without passphrase (see "Security" chapter below). All files data will be encrypted on every write operation and will be decrypted on every read operation.

Legal information and copyrights

In Russia, government restrict any cryptography investigations (including encryption software, secure storage, channels defense and so on) without Federal Government Communications Agency (FAPSI, a KGB successor) license. I do not want to discuss this topic, and I have not such a license (and, probably, will never obtain it due to FAPSI policy).

So, I do not produce any kind of cryptographic software, cryptographic storage or crypto channel defense products. There are NO any cryptographic sources or binaries encapsulated into TorDisk driver or executable (even in documentation :). The primary purpose of this driver is to serve distributed Windows NT-based file system.

AUTHOR IS NOT RESPONSIBLE FOR ANY USE OF THIS DRIVER, AND POSSIBLE LOCAL LAWS VIOLATIONS BY USERS DUE TO UTILIZATION OF THIS DRIVER WITH THIRD PARTY SOFTWARE.

Author of this software, Alexander G. Tormasov, is available via E-mail tor@crec.mipt.ru or http://www.crec.mipt.ru/~tor. Here also there is a home page for this application - http://www.crec.mipt.ru:8081/TorDisk. PGP key is available from home page or in some PGP keyservers.

I will describe usage of this driver with some kind of 3-rd party software. This is mostly for users living in places where utilization of such a software is legal.

In particular, this driver is compatible with crypto API of kernel cryptographic driver (CryptLib) from Peter Gutmann (http://www.cs.auckland.ac.nz/~pgut001/cryptlib.html). All crypto descriptions below make a reference to this driver.

Also, the significant portion of this documentation is taken from his excellent documentation for SFS - Secure File System for DOS/Windows.

MS Windows, MS Windows NT is a trade marks of Microsoft Corp.

PGP is a trademark of PGP Inc.

Whole copyrights and patent information about encryption algorithms is contained in the CryptLib documentation.

Disclaimer of warranty

TorDisk AND ITS ACCOMPANYING FILES ARE PROVIDED "AS IS" AND WITHOUT ANY WARRANTIES OF ANY KIND. NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. YOU MUST USE TorDisk AT YOUR OWN RISK--THE AUTHOR WILL NOT BE HELD RESPONSIBLE FOR ANY PROBLEMS, INCLUDING LEGAL ONES, OR DAMAGES CAUSED BY THE USE OF THIS SOFTWARE.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE PRODUCT.

Requirements

TorDisk checked for Windows NT version 4.0 (build 1381) with Service Pack 3 (it should work on 3.51/SP5, but I don’t check it). You need only any computer on which you are able to install Windows NT 3.5x/4.x.

To install and register it you need a user with administrative privileges (Administrator, for instance). To use it later you will need any user account with interactive access rights (usually any user on workstation and special users on Windows NT server, check server administration documentations).

There are two version of TorDisk software: for workstation (mostly for personal use) and for server (mostly for business). Workstation version could run ONLY on Windows NT workstation, and will refuse to register on the Windows NT server. Server version could run on both Windows NT workstation and server.

You can use kernel cryptographic driver from Peter Gutmann, information is available on TorDisk home page http://www.crec.mipt.ru:8081/TorDisk (or on some mirrors).

Installation

Installer usage

To install TorDisk you should have an Administrator privileges. After installation any local user can use it.

Unpack zip file with distribution to temporary directory and run setup.exe. Follow instruction of installer, and read readme.txt file containing last minute notes and precautions.

You have to load 2 separate install sets to use this software as a encrypted storage - td_??.zip from http://www.crec.mipt.ru:8081/TorDisk, and Crypt2pa.zip from ftp://ftp.relcom.ru/windows/crypto/crypt2pa.zip (for Pentium optimized version) and from ftp://ftp.relcom.ru/windows/nt/crypter2.zip (for blend optimized version) or from some mirrors of this site (US mirror currently is a http://www.bpdconsulting.com/TorDisk).

! you should install any crypter.sys driver - with real encryption (available separately)�! or with dummy encryption enclosed into main TorDisk distribution; without it your�! NT will hang while reboot (Blue Screen with 0xC0000034 code).

Hand-made installation (for advanced users only)

Recommended way is a installer usage. But if you need you can make necessary operations ‘by hands’ performing following steps (assume that system root in \winnt):

Take a crypter.sys driver and crypt32b.dll dynalibrary from crypter distribution site.

move crypter.sys to \winnt\system32\drivers directory

move crypt32b.dll to \winnt\system32 directory

put executable file TorDisk.exe and help TorDisk.hlp somewhere

move driver tordisk.sys to \winnt\system32\drivers directory

Login as Administrator (or similar user), start regedt32 (on WinNT 3.51) or regedit (on WinNT 4.0)

goto HKEY_LOCAL_MACHINE --> SYSTEM -->CurrentControlSet entry, and select Services entry

Use Edit -> AddKey name: Crypter�Use Edit -> AddValue name: DisplayName type: STRING value: Crypter�Use Edit -> AddValue name: Type type: DWORD value: 1�Use Edit -> AddValue name: Start type: DWORD value: 1�Use Edit -> AddValue name: ErrorControl type: DWORD value: 1�Use Edit -> AddValue name: Group type: STRING value: Primary Disk�Use Edit -> AddKey name: Parameters (and select it)�Use Edit -> AddValue name: BreakOnEntry type: DWORD value: 0�Use Edit -> AddValue name: DebugLevel type: DWORD value: 0

goto HKEY_LOCAL_MACHINE --> SYSTEM ->CurrentControlSet entry, and select Services entry

Use Edit -> AddKey name: TorDisk�Use Edit -> AddValue name: DisplayName type: STRING value: TorDisk�Use Edit -> AddValue name: Type type: DWORD value: 2�Use Edit -> AddValue name: Start type: DWORD value: 1�Use Edit -> AddValue name: ErrorControl type: DWORD value: 1�Use Edit -> AddValue name: Group type: STRING value: File system�Use Edit -> AddKey name: Parameters (and select it)�Use Edit -> AddValue name: BreakOnEntry type: DWORD value: 0�Use Edit -> AddValue name: DebugLevel type: DWORD value: 0�check registry entries

Reboot computer (do not forget to do it, NT registry cache is updated while rebooting only!)

login as user

Now you are ready to use this driver.

Disk Image

Generally, there are 3 basic schemes for encryption data storage in Windows NT.

Standard approach is to use disk partition as a storage (I will name this approach later as “partition scheme”). In Windows NT this scheme can be implemented as “drive filter”. In this case I insert my driver into drivers chain between low level hardware drivers like ATDISK.SYS and upper-level file system drivers (like FastFAT.SYS) to allow transparent data processing.

Second scheme for data encryption is a file-based, approximately the same as used in CFS - UNIX - based Cryptographic File System. In this case we use encryption in the same way as build-in Windows NT file compression mechanism. We are able to use different passwords for different files in the same directory, which can make problems for us in file organization. Also, we do not hide file names, and can significantly loose performance on a set of small files.

Third scheme (called “image file scheme”) is a modification of a first one. The whole image of file system is stored (encapsulated) inside the only file. This file is placed in standard file system (this file I will call "disk image" below).

Current version of tordisk.sys driver store whole image of file system in the only file.

All data in image file stored in encrypted form. This means that there are no ways to read data from this image without password knowledge�.

The very beginning of the image file (disk image header - 512 bytes) contains VERY important information. Without this information decryption is absolutely impossible (or... see footnote above), so, make a copy of this portion of the file and store it somewhere. It is possible to repair image file only if first 512 bytes are consistent. And, you cannot swap this bytes between disk image images - even you use the same password.

One important disadvantage of image file scheme is possibility of accidental damage and whole file erasing. So, keep a backup copy of this file, and run such utilities as chkdsk.exe to ensure image file consistency (both “outside” - for file system where image file is stored and “inside” - after this image mounting). Also, use a special access mode for your file (of course, on NTFS) and enjoy NT “semi-C2” security level�.

Another disadvantage is an absence of ability to restore one particular user file “from inside backup” - because we hide all file names May be, this is not a bug, but a great feature?

“One image file scheme” advantages:

You can secure backup whole encrypted image using your favorite backup utility (in case of “partition scheme” you should use special backup utility with raw partition data access possibility or with own encryption scheme)

you can access file via network transparently, so, you can store image file somewhere and use TorDisk to access it absolutely secure - all traffic will be automatically encrypted, because all decryption and password checking will be on your own computer, not on a network server

You can easily resize disk image

You can emulate “partition scheme” by placing your image file as the only file in partition. Moreover, you can transparently utilize such NT abilities as stripped disk image, mirrors, RAID, clusters, etc.

You will avoid such possible “insecurity” as auto network administration share (named C$, D$, etc.) - using this share any user with admin right can access your NON-ENCRYPTED data

Application usage

There are 3 main parts of this application:

data processing Windows NT kernel driver (.sys file) and user-mode .dll library - for example, cryptographic driver;

tordisk.sys - main Windows NT kernel driver;

Tordisk.exe - Graphical User Interface (GUI) and other staff (TorDisk.hlp, etc).

Usually user interact only with GUI.

Also there are some registry entry which can be modified by regedt32 (or regedit in NT 4.x).

Basic user operations with tordisk is following:

Disk image creation

Disk image mounting

Disk image unmounting

Miscellaneous operations (registration, parameters changing, password maintaining, timeouts, etc.).

GUI module

All user operations can be performed in GUI program called TorDisk.exe. This is a Win32 executable module using MFC4.x features.

This module have the only main window with TAB control. There are 4 main dialog boxes (tabstops) named «Create», «Mount», «Info», «Change» and, optionally, a couple of tabstops named by drive letters (for example, «F:»).

You can use Tordisk features on workstation only when this application is running. When you close this application (or logout and close it) all mounted disk are automatically unmounted.

Only TorDisk server edition allows you use a TorDisk drives without logging onto computer.

"Create" tabstop is responsible for all procedures related with disk image, including initial disk creation, password encoding mode changing, password access control (in future versions),etc.

«Mount» tabstop is responsible for mounting procedures, including timeout settings.

«Info» tabstop give you an information about program and registration.

«Change» tabstop is responsible for disk image password changing.

All other tabstops are named by drive letters and appears after mounting procedures. Using it you can unmount drives manually, or reset timeout, or make some additional procedures. After drive unmount the appropriate tabstop disappears from the main window.

Disk image creation

To create a disk image you have to select a "Create" tabstop in TorDisk GUI application and fill all fields in dialog box.

�

To create a volume:

select a file with file system image (to «File name» edit box, using «Browse» button)

select an available encryption options for user passphrase (should be strong) and for disk sectors encryption (should be fast)

select an iterations number for each encryption option (-1 means default; bigger values takes a bigger mount time, but improve encryption strength, typical values 200-1000)

write a required disk size in megabytes («Default» button set this value to all available free space on the drive with selected in «File name» file) You can use a float values, for example, 1.5 means one and half megabytes. Remember, that NTFS don’t support drives less than 3 Mb

«Fill» check button fills the whole image by random data (improve security for FAT image); if you don’t use it and select a quick formatting and FAT image type later in format control you will obtain a growthable disk image

finally press a «Create» button

Disk image creation procedure consists of two parts: first - a creation of empty image of file system, and a second - a format of this image using standard Windows NT control. If encryption option is selected you will receive a dialog box with prompt for passphrase. You have to write your passphrase twice to avoid misspelling errors. You don’t see your passphrase chars on the screen, only asterisks. You have to choose good passphrase (at least, 6 characters in length), and, PLEASE, don't use general words from dictionary like your or your dog name, words like "password", your second name, etc. (see appendix talking about cryptography).

In standard Windows NT format drive control you can select type of file system inside disk (FAT or NTFS with 4Gb maximum size), allocation unit size (cluster size) and a quick/normal formatting mode. Quick formatting mode allows you store a file system image of smaller size that total available for FAT file system.

If you select a quick formatting option and FAT in format dialog box your just created image will be smaller size that expected (depends upon the requested size of the image; typical values for 100Mb disk size about 200-300k, for 2Gb disk - 9Mb). In this case your image will be dynamically growthable.

!CAUTION!	Version of user-mode .dll library and .sys kernel mode driver SHOUD coincide. If some modes are available in .dll library and not available in .sys driver, you will receive "Insufficient Resources" message while creation or mount process.

For encryption data processing mode scheme with master key is used. This means that all disk data are stored in encoding form using "master key". Image file creation procedure generate "master key" as a cryptographically strong random data. Then this key are encoded by user passphrase and stored in encoded form in the file header. Mount procedure decode master key using user passphrase and use it later for sector data processing. In this case we have to choose 2 encoding modes: for disk data processing and for master key processing.

To understand a difference between modes and to find additional information about cryptography please, read appropriate appendixes.

Any user (with any rights) can create image file. The only restrictions is that you have to obtain a directory with write (for you) permissions. After file creation you can select an additional security features for this file (of course, if this option is available on your file system - that's why I recommend to use NTFS instead of FAT), for example, on NTFS you can restrict usage of this file by selecting appropriate permission. To do it please, select this file in file manager or explorer, and select "Security -> Permissions" submenu on NT3.xx or simply press Alt+Enter and select a "Security" tabstop and "Permissions" button. Than observe current right, and revise it - by removing "Everyone read access", for example. See your Windows NT documentation for more details about file security.

Disk image mounting

You can mount your file image as a DOS drive letter like, for example, S:.

After mounting procedure ANY processes in your session can transparently access this file system�.

Moreover, after mounting you can share your file system across the network (non-securely), as any usual local DOS drive.

You can mount only created disk images (see Image creation topic). To mount en encrypted volume you should know a passphrase. This passphrase you define while disk image creation procedure (or while password changing).

�

To mount a volume:

select a file with file system image (to «Image file» edit box, using «Browse» button). You can't mount one file more than one times (you will receive "Sharing violation" error message in this case).

select a drive letter from «Mount as» list box

select a permanent mount option in «Restore during login» check box

select a read-only mode in «Read only» check box (if required)

finally press a «Mount» button

A «Restore during login» box permanently store mount information (excluding password, of course), so you will receive a prompt for a passwords for a appropriate disk image while consequent logins.

«Read only» mount option is available only for FAT disk images (Windows NT currently don’t support a read-only NTFS drives). This means that if you plan to use your drive image in read-only mode (for example, place it to CD-ROM) you should format a FAT file system inside.

You can mount the same file image several times simultaneously (for example, a couple of users can mount the same file image from network server). But only one of them can mount it in read/write mode, others may mount it with read-only permissions.

After successful mounting you will see additional tabstop entitled with selected drive letter. In this tabstop you can set disk auto-timeout, set disk as a permanent and unmount disk.

Remember, that all mounted drive letters are valid only if you run a TorDisk.exe applications. After logout (and TorDisk closing) you can’t use this drives.

You can mount file across the network - mount the network drive (for instance as k:) using your favorite network software, create image file, for instance, image.dat, and, later, mount tordisk as k:\image.dat. This operations are as secure as mounting it from the local drive.

Logout or reboot process unconditionally unmount disk, and this mount point will be NOT automatically restored while next user login.

Disk image parameters changing and unmounting

After successful mounting procedure in the main window you can see an additional tabstop with mounted drive letter. This tabstop dialog can be used for parameters manipulation and for manual drive unmount.

�

To unmount disk image:

select an appropriate drive letter tabstop

press «Unmount» button.

Don’t forget to close all applications working with this drive before unmounting!

To change volume timeout:

select an appropriate drive letter tabstop

specify a drive inactivity timeout in seconds in «Timeout» group box (don’t forget: 10 minutes is 600 sec, 1 hour is a 3600 sec, and so on)

press «Set» button in «Timeout» group box

By default inactivity timeout is not installed (0 seconds).

To remove a timeout specify 0 in «Timeout» edit box.

To change a «permanent» state of the drive:

select an appropriate drive letter tabstop

check in «Restore during logon» check box

Permanent drive is drive which will be restored during TorDisk.exe application start. This is not means that this drive will be valid after user logout or before login.

Remember, that all mounted drive letters are valid only if you run a TorDisk.exe applications. After logout (and TorDisk closing) you can’t use this drives.

Disk image password changing

You can change a passphrase for disk image only if it is not mounted.

�

To change a disk image passphrase:

select a file with disk image in «File name» box

type old password in «Old passphrase» box

type a new password to «New passphrase» and «Verify passphrase» edit boxes.

press «Change» button to implement changes.

Creation of encrypted CD-ROM

You can create an encrypted CD-ROM disks. After that you can use it (mount as read-only) or send it to another TorDisk owner. In the last case you also should send him a passphrase to this disk.

The only restriction is a FAT file system inside (because Windows NT currently don’t support a read-only NTFS volumes).

To create encrypted CDROM:�

free about 650 MB space on your hard drive

create a TorDisk image on that space with FAT file system inside (select a «FAT» option in drive format dialog box)

copy all files inside just created TorDisk drive (please, check the available space!)

unmount it

write this disk image to CD-ROM

To use encrypted CD-ROM mount it in read-only mode. You can securely share this disk image across a network to allow its mounting for any users who know the passphrase.

Registration information:

Unregistered version has a disk size restriction (2mb).

All information about registration cost is available at TorDisk homepage.

There are 2 types of registration: temporary (for evaluation purposes) and permanent.

�

To register your installation for evaluation purposes:

install a TorDisk distribution

run TorDisk.exe and go to Info tabstop

send full information in «Your Reg ID» to tor@crec.mipt.ru

receive a letter with registration information

Example of registration information:

For ID: 5f2a9d23

Workstation time ID: 105b7d

Registration key:

c83ad1711039497c

3dd5ccaaad55810f

0aec5a0f6a6e585b

80a6f80f1b072f89

220e549ff1ba4c17

fa25dd8b41047935

41ac923faa0544a4

de2cab8b7ca4057b

run TorDisk.exe under user with Administrator privileges and go to Info tabstop

copy a time id from second line to «exp date» edit box

copy a whole registration information (containing only 8 lines of digits excluding first 3 lines) to edit box

finally press a "Register" button

You will see a change of the message about registration.

To permanently register your installation:

install a TorDisk distribution

run TorDisk.exe and go to Info tabstop

send full information in «Your Reg ID» to tor@crec.mipt.ru

receive a letter with registration information

For ID: 5e0e9bad

Workstation

Registration key:

4d9c37adf3a797e0

153c3dc271e6e134

0c891f1d1c5dbd3f

9142416ffa2488a8

ee19353f24ea089c

f4a4580671761adc

82539938544bc0a5

e151b90f2897e1b2

run TorDisk.exe under user with Administrator privileges and go to Info tabstop

copy a whole registration information (containing only 8 lines of digits excluding first 3 lines) to edit box

ignore a «exp date» edit box (keep it as it is - with date or blank)

finally press a "Register" button

You will see a change of the message about registration.

Registration don’t make any influence to disk image security, and don’t used for passphrase checks. You can send your disk image to another TorDisk owner, and he can mount your disk image (of course if he know passphrase).

Technical notes

I can imagine a lot of ways to steal your files while you mount your secure drive, so, don’t think that you are in full safety while this put all your files inside this storage (don’t forget about Internet hackers, FBI, your network administrator, etc.) But I hope, than you can feel yourself much more secure;

Current TorDisk restrictions:

security compromises:	�- absence of control of password quality;�All other operations are as secure as it is possible (I think so :) - see encryption scheme description below.

This software is not tested on NT v 3.51

Required Windows NT 4.0 with Service Pack 3

You can’t mount one file twice in read/write mode

If you mount file image in read/write mode and the same image simultaneously in read-only mode, the changes inside file system will be not visible for read-only mount point (due to NT file system caching)

You can use files only from mapped drives (both local or network) and unable to use file named as, for example, \\myhost.mycomp.com\myshare\myfile.

Disk image shrink are not implemented

You could obtain a Windows NT message "Lazy write - unable to flush data" due to available space shortage on the drive with disk image

Read-only mount for NTFS file system inside disk image is not supported

Disk images with NTFS inside should be less than 2 Gb

Some disk-monitoring utilities like Microsoft FindFast can report you a «inaccessible drive problem» after TorDisk drives unmount

The same password for user login and for disk drive is not supported (and, probably, will never be supported due to security reasons)

Performance

In CryptLib version 2.0 you could use following algorithms for master key and sector encryption/decryption:

Algorithm�Relative performance�key size (bits)��DES�2.20�64��triple DES�1.0�112��SAFER�2.20�64��BlowFish�3.15�128��

Other algorithms is under development now (in particular, CAST-128, faster DES implementation).

Typical speed of encryption on Pentium 120 MHz computer with 32 Mb RAM, Maxtor 71260A EIDE hard drive and PCI EIDE controller:

non-encrypted speed is about 3.3 Mb/s,

encryption speed (using BlowFish 128 bit key) is about 1.5 Mb/s.

Future plans

Of course, I will try to remove any bugs from my driver.

And, make a following improvements:

Server edition with NT service to support a drives without logging onto server

Volume header backup/restore utility

Port to Alpha (drop me a letter if you really need it)

Smartcard usage (not in the nearest future)

Implement Public Key encryption scheme to allow network multiuser access for granted users

Disk key data storing in separate file

Secure splitting for non-encrypted user key

Free read-only version for encrypted CDROM distribution.

Implement a set of security levels:�0 - lowest - no password quality control,�I - standard password quality control (length, different chars, etc.), session handshaking to encrypt processed user key while passing it to drivers chain - similar to Kerberos scheme�II - high level - password expiration, access auditing (process which request access to this mounted drive should be logged)�III - highest - password generation

Appendix A. Usage of Cryptlib driver and data Encryption scheme

This appendix describes usage TorDisk driver with Cryptlib driver library from Peter Gutmann and general security questions.

General security consideration

The main goal of cryptography is a data hiding. Because of the data nature you cannot restrict security only to used algorithms or passphrase. To obtain a reasonable security level you have to take in mind all aspects of data processing - data obtaining, temporary , permanent and backup data storage, encryption choosing, passphrase and it's storage, external channels of information, etc.

In this document we will take into account only computer-related problems (because the discussion of such hardware as bugs for retranslation of all the keyboard typing to external receiver is definitely not a topic of this document).

The main goal of the TorDisk application with encryption capabilities is a cryptographic data defense against intruder with all (administrative) privileges. I don't mean an official administrator of your computer (but, of course, I don't see any reason to give access to your critical data even for this person). Mostly it is against the hacker with all rights on your computer or domain - the Microsoft Windows NT have a good but breakable security...

Of course, in general it is impossible. User with admin right can possibly write a Trojan Horse which subclass an application password request dialog, or even substitute a critical system dll like w32k.dll. But this is a complex way to do it, and I want to make a work of such a hacker as hard as it is possible.

Is it possible to crack encoded data?

The proper answer is, without any doubts, YES. Yes, there are NO unbreakable encryption algorithms. But you have to spend a some resources in your attempt to break a particular encrypted data. This resources can be huge and expensive, or small.

Every time when you try to break some data encryption you have to estimate your expenses and income. To break 128 bit RSA encryption it is necessary to obtain a resources (work time) from hundreds of powerful workstations, or even use a dedicated computers for encryption-break with a cost of couple of $1M. It's a really costly procedure.

Very often the results for such a break processes are necessary in a particular time�. In this case there are some algorithms which are theoretically unbreakable in a current state of crypto science and computer industry.

On the other side, usually there is a way to go around without direct attack to data (you can steal a passphrase, or force it's owner to give it, or, for example, install a hidden video camera and observe a passphrase typing on the keyboard).

And, the theoretical strongness of used algorithms don't guarantee you a biggest security level. If you choose a bad and easy predictable password, you will obtain a weak security independent of used algorithm. Treat the security as a chain: the weakness of whole chain is equal to the weakness of most weak chain ring in it. Even if you select a strong password but write it on the peace of paper and stick it to the monitor, the whole security of your data is broken.

Later in this chapter we will discuss a possible attacks types, and other problems of security.

Here I want to make the only conclusion: in TorDisk application we make a efforts to do a cracker job as hard as it is possible. But user of this application can break all our defense by the many ways. Please, think about it and don't feel yourself "too secure". Big brother is still watching you...

Supported encryption algorithms

For master key and sector encryption/decryption any supported algorithms can be used - in CryptLib version 2.0 they are:

DES,

triple DES,

SAFER,

Blowfish,

Also, in country which has a problem with algorithm patents (like RSA patent in USA) you can select a reduced version of library covering only allowed algorithms.

Standards Conformance

General:

The encryption subsystem has been implemented at a level equivalent to level 1 of the standard given in:

FIPS PUB 140-1, "Security Requirements for Cryptographic Modules", 1993.

The random-data acquisition routines follow the guidelines laid out in:

"Randomness Recommendations for Security", RFC 1750, Donald Eastlake, Stephen Crocker, and Jeffrey Schiller, December 1994.

"Cryptographic Random Numbers", IEEE P1363 Appendix E, Draft version 1.0, 11 November 1995.

Blowfish:

Blowfish has been implemented as per:

"Description of a New Varible-Length Key, 64-bit Block Cipher (Blowfish)", Bruce Schneier, "Fast Software Encryption", Lecture Notes in Computer Science No. 809, Springer-Verlag 1994.

The Blowfish modes of operation are given in:

ISO/IEC 8372, "Information Technology - Modes of Operation for a 64-bit Block Cipher Algorithm".

The Blowfish code has been validated against the Blowfish reference implementation test vectors.

DES:

DES has been implemented as per:

ANSI X3.92, "American National Standard, Data Encryption Algorithm", 1981.

FIPS PUB 46-2, "Data Encryption Standard", 1994.

FIPS PUB 74, "Guidelines for Implementing and Using the NBS Data Encryption Standard", 1981.

ISO/IEC 8731:1987, "Banking - Approved Algorithms for Message Authentication - Part 1: Data Encryption Algorithm (DEA)".

The DES modes of operation are given in:

ANSI X3.106, "American National Standard, Information Systems - Data Encryption Algorithm - Modes of Operation", 1983.

FIPS PUB 81, "DES Modes of Operation", 1980.

ISO/IEC 8372, "Information Technology - Modes of Operation for a 64-bit Block Cipher Algorithm".

The DES code has been validated against the test vectors given in:

NIST Special Publication 500-20, "Validating the Correctness of Hardware Implementations of the NBS Data Encryption Standard".

Triple DES:

Triple DES has been implemented as per:

ANSI X9.17, "American National Standard, Financial Institution Key Management (Wholesale)", 1985.

ISO/IEC 8732:1987, "Banking - Key Management (Wholesale)".

The triple DES modes of operation are given in:

ISO/IEC 8372, "Information Technology - Modes of Operation for a 64-bit Block Cipher Algorithm".

Safer:

The Safer code has been implemented as per:

"SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm", James L.Massey, "Fast Software Encryption", Lecture Notes in Computer Science No. 809, Springer-Verlag 1994.

The Safer-SK code has been implemented as per:

"SAFER K-64: One Year Later", James L.Massey, "Fast Software Encryption II", Lecture Notes in Computer Science No.1008, Springer-Verlag 1995.

The Safer/Safer-SK modes of operation are given in:

ISO/IEC 8372, "Information Technology - Modes of Operation for a 64-bit Block Cipher Algorithm".

The Safer/Safer-SK code has been validated against the ETH reference implementation test vectors.

Please, consult with CryptLib documentation (and source codes) for algorithms implementation details and appropriate copyrights.

Passphrase selection

[To be written]

Sector encryption algorithms choosing

[To be written]

Master key algorithms choosing

[To be written]

Precautions

[To be written]

Possible attacks

What happened if you will powerdown your computer (you hear knock-knock in the door :)? The only place where intruder can find a peace's of your files in non-encrypted form is file cache (because of upper level file system caching), but, as far as I know, in NT file cache is not swapped to pagefile. So, it is impossible to find unencrypted portions of your files.

[To be written]

Encryption scheme details

This chapter describes some technical details of encryption implementation.

Master key encryption scheme

For disk image encoding I use master key encryption scheme similar to described in Secure File System (SFS) document by Peter Gutmann.

There are 2 keys for data encoding in master key scheme: 1 key, named master key, is generated during disk image setup procedure as a cryptographically strong random data and used later for sector data encoding/decoding. The second key, named user key, used only for encryption of master key. The result of encryption of master key by user key stored in the disk image header. In this case we can frequently change a user key without encrypted data processing. Also, it is impossible to predict master key using dictionary. An amount of data encoded by user key is also very small (only master key). That means that other type of attacks is also harder for attacker.

Another advantage for master key encryption scheme is a controllable possibility of "back door" without any security compromise - you can copy a master key after image creation and store it securely (using, for instance, secure split package). This is important for business users which are want to have an "additional controllable key" for "Boss access". But, of course, if you don't want to do it, noone able to access your data without passphrase knowledge.

As some books mention, such a scheme was really used by Russian External Intelligence Agency for message propagation by couriers.

Significant difference between scheme used in SFS and in TorDisk is that SFS utilize the only encoding mode - MDC/SHS, but TorDisk can use any encryption supported in CryptLib, and even Public Key algorithms (PKC) Schemes for master key encoding. Such a schemes, for example, RSA, used in famous PGP package for message exchange. In general, PKC encoding is too slow for use as a disk sector processing (up to 1000 times than conventional algorithms as DES). But PKC utilization for disk image protection is very convenient for administrative purposes - administrator can add or remove disk access for any peoples without changing of passwords of other users and without knowledge of their passphrases.

Even a sector encryption/decryption algorithm selected by user is included into master key data (that means that the disk data encryption method for particular disk image is unknown without user passphrase).

Initialization vector

To avoid problem of usage the same Initialization Vector (IV) for each sector I use a word-wise scrambler polynomial like the one used in SHA.

During file image initialization we create a random data used lately as a IV and key for sector data encryption/decryption. Cryptographically strong random data generation is implemented in Cryptlib as a complex slow polling process (please, read appropriate Cryptlib documentation for detailes).

IV and generated random key is stored in disk image header in encrypted form. This encryption is made by user password.

Key setup procedures

The key setup for the encryption algorithms is performed by running a special procedure called DeriveKey which produce a good (non-weak for particular algorithm) key from user entered text passphrase.

The number of iterations of key encryption is controlled by the user, and is generally done some hundreds of times. The setup process in TorDisk has been tuned to take approximately half a second on a workstation rated at around 60 MIPS (corresponding to 200 iterations of the encryption process) by default, making a brute-force password attack very time-consuming. Note that the key IV is injected at the earliest possible moment in the key schedule rather than at the very end, making the use of a precomputed data attack impossible. The standard method of injecting the encryption IV at the end of the key schedule process offers very little protection against an attack using precomputed data, as it is still possible to precompute the key schedules and simply drop in the encryption IV at the last possible moment.

Sector encryption / decryption

The overall en/decryption process used by TorDisk, in the case of 512-byte sectors and 32-bit words (so that each sector contains 128 words), is:

Encryption:

using sectorIV[0]...sectorIV[1] as the scrambler IV �scramble data[0]...data[127]

using data[127-2]...data[127-1] as the encryption IV�encrypt data[0]...data[127]

Decryption:

using data[0]...data[1] as the encryption IV�decrypt data[2]...data[127] (starting from data[0])

using data[127-2]...data[127-1] as the encryption IV�decrypt data[0]...data[1]

using sectorIV[0]...sectorIV[1] as the scrambler IV�scramble data[0]...data[127]

where the scrambling operation is:

 data[i] ^= data[i-1] + data[i-2]

as outlined above. Note that the i-1 and i-2 the values referred to here are the original, scrambled values, not the descrambled values. The easiest way to implement this is to cache the last 2 scrambled values and cyclically overwrite them as each word in the data buffer is processed.

Appendix B. Encryption data formats

To avoid alignment problem I use 512 byte disk image header.

[To be written]

� This is generally true. But, maybe someone want to spend a couple of $1M to crack this passwords (ANS, ex-KGB, mafia)? I think, that there is no way to make an absolutely "bullet proof" defence. But for such case I and my friends make a lot efforts to ensure that this procedure will be as hard and expensive as it is possible - even for ANS or KGB.

� The very first "non-C2" feature in Windows NT is a network. If you don't belive me, just take a C2 document from Microsoft. First recomendation is "remove network" - all network connections are unsecure. But you can put your image file for TorDisk onto shared network volume "as secure as a local TorDisk" - see “One image file scheme” advantages.

� Even any “Trojan horse” process can access your data transparently, so, check your memory. General overview of possible security problems considered in "Security" chapter.

� One old short story:	�One man create a computer which predict future. He ask them: "What I will do during closest hour?". This computer works for a week and reply: "You will seat and wait for my answer".

�PAGE �25�

�PAGE �19�

TorDisk manual 	http://www.crec.mipt.ru:8081/TorDisk

