In this short tutorial it is shown how to execute CIMICE’s analysis
To load the input use CIMICE::read
family functions or
the pair CIMICE::make_dataset
,
CIMICE::update_df
in the following manner:
# read from file
read_CAPRI(system.file("extdata", "example.CAPRI", package = "CIMICE", mustWork = TRUE))
# from a string
read_CAPRI_string("
s\\g A B C D
S1 0 0 0 1
S2 1 0 0 0
S3 1 0 0 0
S4 1 0 0 1
S5 1 1 0 1
S6 1 1 0 1
S7 1 0 1 1
S8 1 1 0 1
")
## 8 x 4 sparse Matrix of class "dgCMatrix"
## A B C D
## S1 . . . 1
## S2 1 . . .
## S3 1 . . .
## S4 1 . . 1
## S5 1 1 . 1
## S6 1 1 . 1
## S7 1 . 1 1
## S8 1 1 . 1
# using CIMICE::make_dataset and CIMICE::update_df
# genes
make_dataset(A,B,C,D) %>%
# samples
update_df("S1", 0, 0, 0, 1) %>%
update_df("S2", 1, 0, 0, 0) %>%
update_df("S3", 1, 0, 0, 0) %>%
update_df("S4", 1, 0, 0, 1) %>%
update_df("S5", 1, 1, 0, 1) %>%
update_df("S6", 1, 1, 0, 1) %>%
update_df("S7", 1, 0, 1, 1) %>%
update_df("S8", 1, 1, 0, 1)
## 8 x 4 Matrix of class "dgeMatrix"
## A B C D
## S1 0 0 0 1
## S2 1 0 0 0
## S3 1 0 0 0
## S4 1 0 0 1
## S5 1 1 0 1
## S6 1 1 0 1
## S7 1 0 1 1
## S8 1 1 0 1
This last dataset will be use in this example, under the name of
example_dataset()
. Input dataset analysis and feature
selection should be done at this point.
This early phase reorganizes the dataset to simplify further analysis.
preproc <- dataset_preprocessing(example_dataset())
samples <- preproc[["samples"]]
freqs <- preproc[["freqs"]]
labels <- preproc[["labels"]]
genes <- preproc[["genes"]]
The default method to organize genotypes in a graph in CIMICE is based on the “subset” relation among them.
g <- graph_non_transitive_subset_topology(samples,labels)
CIMICE provides a strategy to estimate transition probabilities among genotypes. This phase is divided in four different subphases that can be executed together in this way:
W <- compute_weights_default(g, freqs)
CIMICE supports many different output options, the recommended one is based on “visNetwork”.
out <- quick_run(example_dataset()) # quick_run summarizes all the previous steps
draw_visNetwork(out)