This document describes how to use the R-package IPO
to optimize xcms
parameters. Code examples on how to use IPO
are provided. Additional to IPO
the R-packages xcms
and rsm
are required. The R-package msdata
andmtbls2
are recommended. The optimization process looks as following:
# try http:// if https:// URLs are not supported
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("IPO")
Installing main suggested packages
xcms
handles the file processing hence all files can be used that can be processed by xcms
.
To optimize parameters different values (levels) have to tested for these parameters. To efficiently test many different levels design of experiment (DoE) is used. Box-Behnken and central composite designs set three evenly spaced levels for each parameter. The method getDefaultXcmsSetStartingParams
provides default values for the lower and upper levels defining a range. Since the levels are evenly spaced the middle level or center point is calculated automatically. To edit the starting levels of a parameter set the lower and upper level as desired. If a parameter should not be optimized, set a single default value for xcms
processing, do not set this parameter to NULL.
The method getDefaultXcmsSetStartingParams
creates a list with default values for the optimization of the peak picking methods centWave
or matchedFilter
. To choose between these two method set the parameter accordingly.
The method optimizeXcmsSet
has the following parameters:
xcms
peak picking methods parameters. A default list is created by getDefaultXcmsSetStartingParams()
.BiocParallelParam
-object (see ?BiocParallel::BiocParallelParam
) to controll the use of parallelisation of xcms
. Defaults to bpparam()
.NULL
if no rsm’s should be saved.The optimization process starts at the specified levels. After the calculation of the DoE is finished the result is evaluated and the levels automatically set accordingly. Then a new DoE is generated and processed. This continues until an optimum is found.
The result of peak picking optimization is a list consisting of all calculated DoEs including the used levels, design, response, rsm and best setting. Additionally the last list item is a list (\$best_settings
) providing the optimized parameters (\$parameters
), an xcmsSet object (\$xset
) calculated with these parameters and the response this xcms
-object gives.
peakpickingParameters <- getDefaultXcmsSetStartingParams('matchedFilter')
#setting levels for step to 0.2 and 0.3 (hence 0.25 is the center point)
peakpickingParameters$step <- c(0.2, 0.3)
peakpickingParameters$fwhm <- c(40, 50)
#setting only one value for steps therefore this parameter is not optimized
peakpickingParameters$steps <- 2
time.xcmsSet <- system.time({ # measuring time
resultPeakpicking <-
optimizeXcmsSet(files = datafiles[1:2],
params = peakpickingParameters,
nSlaves = 1,
subdir = NULL,
plot = TRUE)
})
#>
#> starting new DoE with:
#> fwhm: c(40, 50)
#> snthresh: c(3, 17)
#> step: c(0.2, 0.3)
#> steps: 2
#> sigma: 0
#> max: 5
#> mzdiff: 0
#> index: FALSE
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
#> 11
#> 12
#> 13
#> 14
#> 15
#> 16
#>
#> starting new DoE with:
#> fwhm: c(45, 55)
#> snthresh: c(1, 15)
#> step: c(0.22, 0.3)
#> steps: 2
#> sigma: 0
#> max: 5
#> mzdiff: 0
#> index: FALSE
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
#> 11
#> 12
#> 13
#> 14
#> 15
#> 16
#>
#> starting new DoE with:
#> fwhm: c(50, 60)
#> snthresh: c(1, 15)
#> step: c(0.26, 0.34)
#> steps: 2
#> sigma: 0
#> max: 5
#> mzdiff: 0
#> index: FALSE
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> 7
#> 8
#> 9
#> 10
#> 11
#> 12
#> 13
#> 14
#> 15
#> 16
#> no increase, stopping
#> best parameter settings:
#> fwhm: 50
#> snthresh: 3
#> step: 0.26
#> steps: 2
#> sigma: 21.2332257516562
#> max: 5
#> mzdiff: 0.28
#> index: FALSE
resultPeakpicking$best_settings$result
#> ExpId #peaks #NonRP #RP PPS
#> 0.000 3228.000 2264.000 569.000 143.004
optimizedXcmsSetObject <- resultPeakpicking$best_settings$xset
The response surface models of all optimization steps for the parameter optimization of peak picking are shown above.
Currently the xcms
peak picking methods centWave
and matchedFilter
are supported. The parameter peakwidth
of the peak picking method centWave
needs two values defining a minimum and maximum peakwidth. These two values need separate optimization and are therefore split into min_peakwidth
and max_peakwidth
in getDefaultXcmsSetStartingParams
. Also for the centWave
parameter prefilter two values have to be set. To optimize these use set prefilter
to optimize the first value and prefilter_value
to optimize the second value respectively.
Optimization of retention time correction and grouping parameters is done simultaneously. The method getDefaultRetGroupStartingParams
provides default optimization levels for the xcms
retention time correction method obiwarp
and the grouping method density
. Modifying these levels should be done the same way done for the peak picking parameter optimization.
The method getDefaultRetGroupStartingParams
only supports one retention time correction method (obiwarp
) and one grouping method (density
) at the moment.
The method optimizeRetGroup
provides the following parameter: - xset: an xcmsSet
-object used as basis for retention time correction and grouping. - params: a list consisting of items named according to xcms
retention time correction and grouping methods parameters. A default list is created by getDefaultRetGroupStartingParams
. - nSlaves: the number of experiments of an DoE processed in parallel - subdir: a directory where the response surface models are stored. Can also be NULL if no rsm’s should be saved.
A list is returned similar to the one returned from peak picking optimization. The last list item consists of the optimized retention time correction and grouping parameters (\$best_settings
).
retcorGroupParameters <- getDefaultRetGroupStartingParams()
retcorGroupParameters$profStep <- 1
retcorGroupParameters$gapExtend <- 2.7
time.RetGroup <- system.time({ # measuring time
resultRetcorGroup <-
optimizeRetGroup(xset = optimizedXcmsSetObject,
params = retcorGroupParameters,
nSlaves = 1,
subdir = NULL,
plot = TRUE)
})
#>
#> starting new DoE with:
#> distFunc: cor_opt
#> gapInit: c(0, 0.4)
#> gapExtend: 2.7
#> profStep: 1
#> plottype: none
#> response: 1
#> factorDiag: 2
#> factorGap: 1
#> localAlignment: 0
#> retcorMethod: obiwarp
#> bw: c(22, 38)
#> minfrac: c(0.3, 0.7)
#> mzwid: c(0.015, 0.035)
#> minsamp: 1
#> max: 50
#> center: 2
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ...
#> OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 53233 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 31940 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#>
#>
#>
#> starting new DoE with:
#>
#> gapInit: c(0.16, 0.64)
#> bw: c(12.4, 31.6)
#> minfrac: c(0.46, 0.94)
#> mzwid: c(0.023, 0.047)
#> distFunc: cor_opt
#> gapExtend: 2.7
#> profStep: 1
#> plottype: none
#> response: 1
#> factorDiag: 2
#> factorGap: 1
#> localAlignment: 0
#> retcorMethod: obiwarp
#> minsamp: 1
#> max: 50
#> center: 2
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 34718 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 22815 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> profStep or minfrac greater 1, decreasing to 0.54 and 1
#>
#>
#>
#> starting new DoE with:
#>
#> gapInit: c(0.352, 0.928)
#> bw: c(0.879999999999999, 23.92)
#> minfrac: c(0.54, 1)
#> mzwid: c(0.0326, 0.0614)
#> distFunc: cor_opt
#> gapExtend: 2.7
#> profStep: 1
#> plottype: none
#> response: 1
#> factorDiag: 2
#> factorGap: 1
#> localAlignment: 0
#> retcorMethod: obiwarp
#> minsamp: 1
#> max: 50
#> center: 2
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 24494 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 13006 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 16990 mz slices ... OK
#> center sample: ko16
#> Processing: ko15
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Create profile matrix with method 'bin' and step 1 ... OK
#> Processing 15135 mz slices ... OK
#> no increase stopping
The response surface models of all optimization steps for the retention time correction and grouping parameters are shown above.
Currently the xcms
retention time correction method obiwarp
and grouping method density
are supported.
A script which you can use to process your raw data can be generated by using the function writeRScript
.
writeRScript(resultPeakpicking$best_settings$parameters,
resultRetcorGroup$best_settings)
#> library(xcms)
#> library(Rmpi)
#> xset <- xcmsSet(
#> method = "matchedFilter",
#> fwhm = 50,
#> snthresh = 3,
#> step = 0.26,
#> steps = 2,
#> sigma = 21.2332257516562,
#> max = 5,
#> mzdiff = 0.28,
#> index = FALSE)
#> xset <- retcor(
#> xset,
#> method = "obiwarp",
#> plottype = "none",
#> distFunc = "cor_opt",
#> profStep = 1,
#> center = 2,
#> response = 1,
#> gapInit = 0.64,
#> gapExtend = 2.7,
#> factorDiag = 2,
#> factorGap = 1,
#> localAlignment = 0)
#> xset <- group(
#> xset,
#> method = "density",
#> bw = 12.4,
#> mzwid = 0.047,
#> minfrac = 0.94,
#> minsamp = 1,
#> max = 50)
#> xset <- fillPeaks(xset)
Above calculations proceeded with following running times.
time.xcmsSet # time for optimizing peak picking parameters
#> user system elapsed
#> 290.461 69.287 184.503
time.RetGroup # time for optimizing retention time correction and grouping parameters
#> user system elapsed
#> 636.151 3.769 640.661
sessionInfo()
#> R version 4.1.1 (2021-08-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] IPO_1.20.0 CAMERA_1.50.0 rsm_2.10.3
#> [4] faahKO_1.33.0 xcms_3.16.0 MSnbase_2.20.0
#> [7] ProtGenerics_1.26.0 S4Vectors_0.32.0 mzR_2.28.0
#> [10] Rcpp_1.0.7 Biobase_2.54.0 BiocGenerics_0.40.0
#> [13] BiocParallel_1.28.0
#>
#> loaded via a namespace (and not attached):
#> [1] TH.data_1.1-0 colorspace_2.0-2
#> [3] ellipsis_0.3.2 htmlTable_2.3.0
#> [5] estimability_1.3 XVector_0.34.0
#> [7] GenomicRanges_1.46.0 base64enc_0.1-3
#> [9] rstudioapi_0.13 clue_0.3-60
#> [11] affyio_1.64.0 fansi_0.5.0
#> [13] mvtnorm_1.1-3 codetools_0.2-18
#> [15] splines_4.1.1 ncdf4_1.17
#> [17] doParallel_1.0.16 impute_1.68.0
#> [19] robustbase_0.93-9 knitr_1.36
#> [21] Formula_1.2-4 jsonlite_1.7.2
#> [23] cluster_2.1.2 vsn_3.62.0
#> [25] png_0.1-7 graph_1.72.0
#> [27] BiocManager_1.30.16 compiler_4.1.1
#> [29] backports_1.2.1 emmeans_1.7.0
#> [31] assertthat_0.2.1 Matrix_1.3-4
#> [33] fastmap_1.1.0 limma_3.50.0
#> [35] htmltools_0.5.2 tools_4.1.1
#> [37] igraph_1.2.7 coda_0.19-4
#> [39] gtable_0.3.0 glue_1.4.2
#> [41] GenomeInfoDbData_1.2.7 affy_1.72.0
#> [43] RANN_2.6.1 dplyr_1.0.7
#> [45] MALDIquant_1.20 jquerylib_0.1.4
#> [47] vctrs_0.3.8 preprocessCore_1.56.0
#> [49] iterators_1.0.13 xfun_0.27
#> [51] stringr_1.4.0 lifecycle_1.0.1
#> [53] XML_3.99-0.8 DEoptimR_1.0-9
#> [55] zlibbioc_1.40.0 MASS_7.3-54
#> [57] zoo_1.8-9 scales_1.1.1
#> [59] pcaMethods_1.86.0 MatrixGenerics_1.6.0
#> [61] parallel_4.1.1 SummarizedExperiment_1.24.0
#> [63] RBGL_1.70.0 sandwich_3.0-1
#> [65] MassSpecWavelet_1.60.0 RColorBrewer_1.1-2
#> [67] yaml_2.2.1 gridExtra_2.3
#> [69] ggplot2_3.3.5 MsFeatures_1.2.0
#> [71] sass_0.4.0 rpart_4.1-15
#> [73] latticeExtra_0.6-29 stringi_1.7.5
#> [75] highr_0.9 foreach_1.5.1
#> [77] checkmate_2.0.0 GenomeInfoDb_1.30.0
#> [79] rlang_0.4.12 pkgconfig_2.0.3
#> [81] matrixStats_0.61.0 bitops_1.0-7
#> [83] mzID_1.32.0 evaluate_0.14
#> [85] lattice_0.20-45 purrr_0.3.4
#> [87] htmlwidgets_1.5.4 tidyselect_1.1.1
#> [89] plyr_1.8.6 magrittr_2.0.1
#> [91] R6_2.5.1 IRanges_2.28.0
#> [93] generics_0.1.1 Hmisc_4.6-0
#> [95] multcomp_1.4-17 DelayedArray_0.20.0
#> [97] DBI_1.1.1 foreign_0.8-81
#> [99] pillar_1.6.4 MsCoreUtils_1.6.0
#> [101] nnet_7.3-16 survival_3.2-13
#> [103] RCurl_1.98-1.5 tibble_3.1.5
#> [105] crayon_1.4.1 utf8_1.2.2
#> [107] rmarkdown_2.11 jpeg_0.1-9
#> [109] grid_4.1.1 data.table_1.14.2
#> [111] digest_0.6.28 xtable_1.8-4
#> [113] munsell_0.5.0 bslib_0.3.1