if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("glmSparseNet")
library(futile.logger)
library(ggplot2)
library(glmSparseNet)
library(survival)
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- loose.rock::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
data('cancer', package = 'survival')
xdata <- survival::ovarian[,c('age', 'resid.ds')]
ydata <- data.frame(
time = survival::ovarian$futime,
status = survival::ovarian$fustat
)
(group cutoff is median calculated relative risk)
res.age <- separate2GroupsCox(c(age = 1, 0), xdata, ydata)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 13 4 NA 638 NA
## High risk 13 8 464 268 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below or equal the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
res.age.40.60 <-
separate2GroupsCox(c(age = 1, 0),
xdata,
ydata,
probs = c(.4, .6)
)
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 11 3 NA 563 NA
## High risk 10 7 359 156 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
This is a special case where you want to use a cutoff that includes some sample on both high and low risks groups.
res.age.60.40 <- separate2GroupsCox(
chosen.btas = c(age = 1, 0),
xdata,
ydata,
probs = c(.6, .4),
stop.when.overlap = FALSE
)
## Warning in separate2GroupsCox(chosen.btas = c(age = 1, 0), xdata, ydata, : The cutoff values given to the function allow for some over samples in both groups, with:
## high risk size (15) + low risk size (16) not equal to xdata/ydata rows (31 != 26)
##
## We are continuing with execution as parameter stop.when.overlap is FALSE.
## note: This adds duplicate samples to ydata and xdata xdata
## Kaplan-Meier results
## Call: survfit(formula = survival::Surv(time, status) ~ group, data = prognostic.index.df)
##
## n events median 0.95LCL 0.95UCL
## Low risk 16 5 NA 638 NA
## High risk 15 9 475 353 NA
A individual is attributed to low-risk group if its calculated relative risk (using Cox Proportional model) is below the median risk.
The opposite for the high-risk groups, populated with individuals above the median relative-risk.
sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] VennDiagram_1.6.20 reshape2_1.4.4
## [3] forcats_0.5.1 glmSparseNet_1.12.0
## [5] glmnet_4.1-2 Matrix_1.3-4
## [7] TCGAutils_1.14.0 curatedTCGAData_1.15.1
## [9] MultiAssayExperiment_1.20.0 SummarizedExperiment_1.24.0
## [11] Biobase_2.54.0 GenomicRanges_1.46.0
## [13] GenomeInfoDb_1.30.0 IRanges_2.28.0
## [15] S4Vectors_0.32.0 BiocGenerics_0.40.0
## [17] MatrixGenerics_1.6.0 matrixStats_0.61.0
## [19] futile.logger_1.4.3 loose.rock_1.2.0
## [21] survival_3.2-13 ggplot2_3.3.5
## [23] dplyr_1.0.7 BiocStyle_2.22.0
##
## loaded via a namespace (and not attached):
## [1] readxl_1.3.1 backports_1.2.1
## [3] AnnotationHub_3.2.0 BiocFileCache_2.2.0
## [5] plyr_1.8.6 splines_4.1.1
## [7] sparsebn_0.1.2 BiocParallel_1.28.0
## [9] digest_0.6.28 foreach_1.5.1
## [11] htmltools_0.5.2 magick_2.7.3
## [13] fansi_0.5.0 magrittr_2.0.1
## [15] memoise_2.0.0 openxlsx_4.2.4
## [17] tzdb_0.1.2 Biostrings_2.62.0
## [19] readr_2.0.2 prettyunits_1.1.1
## [21] colorspace_2.0-2 blob_1.2.2
## [23] rvest_1.0.2 rappdirs_0.3.3
## [25] haven_2.4.3 xfun_0.27
## [27] crayon_1.4.1 RCurl_1.98-1.5
## [29] jsonlite_1.7.2 zoo_1.8-9
## [31] iterators_1.0.13 glue_1.4.2
## [33] survminer_0.4.9 GenomicDataCommons_1.18.0
## [35] gtable_0.3.0 zlibbioc_1.40.0
## [37] XVector_0.34.0 DelayedArray_0.20.0
## [39] car_3.0-11 ccdrAlgorithm_0.0.5
## [41] shape_1.4.6 abind_1.4-5
## [43] discretecdAlgorithm_0.0.7 scales_1.1.1
## [45] futile.options_1.0.1 DBI_1.1.1
## [47] rstatix_0.7.0 Rcpp_1.0.7
## [49] xtable_1.8-4 progress_1.2.2
## [51] foreign_0.8-81 bit_4.0.4
## [53] km.ci_0.5-2 httr_1.4.2
## [55] ellipsis_0.3.2 pkgconfig_2.0.3
## [57] XML_3.99-0.8 farver_2.1.0
## [59] sass_0.4.0 dbplyr_2.1.1
## [61] utf8_1.2.2 tidyselect_1.1.1
## [63] labeling_0.4.2 rlang_0.4.12
## [65] later_1.3.0 AnnotationDbi_1.56.0
## [67] cellranger_1.1.0 munsell_0.5.0
## [69] BiocVersion_3.14.0 tools_4.1.1
## [71] cachem_1.0.6 cli_3.0.1
## [73] generics_0.1.1 RSQLite_2.2.8
## [75] ExperimentHub_2.2.0 broom_0.7.9
## [77] evaluate_0.14 stringr_1.4.0
## [79] fastmap_1.1.0 yaml_2.2.1
## [81] knitr_1.36 bit64_4.0.5
## [83] zip_2.2.0 survMisc_0.5.5
## [85] purrr_0.3.4 KEGGREST_1.34.0
## [87] mime_0.12 formatR_1.11
## [89] xml2_1.3.2 biomaRt_2.50.0
## [91] compiler_4.1.1 filelock_1.0.2
## [93] curl_4.3.2 png_0.1-7
## [95] interactiveDisplayBase_1.32.0 ggsignif_0.6.3
## [97] tibble_3.1.5 bslib_0.3.1
## [99] stringi_1.7.5 highr_0.9
## [101] sparsebnUtils_0.0.8 GenomicFeatures_1.46.0
## [103] lattice_0.20-45 KMsurv_0.1-5
## [105] vctrs_0.3.8 pillar_1.6.4
## [107] lifecycle_1.0.1 BiocManager_1.30.16
## [109] jquerylib_0.1.4 data.table_1.14.2
## [111] bitops_1.0-7 httpuv_1.6.3
## [113] rtracklayer_1.54.0 R6_2.5.1
## [115] BiocIO_1.4.0 bookdown_0.24
## [117] promises_1.2.0.1 gridExtra_2.3
## [119] rio_0.5.27 codetools_0.2-18
## [121] lambda.r_1.2.4 assertthat_0.2.1
## [123] rjson_0.2.20 withr_2.4.2
## [125] GenomicAlignments_1.30.0 Rsamtools_2.10.0
## [127] GenomeInfoDbData_1.2.7 hms_1.1.1
## [129] tidyr_1.1.4 rmarkdown_2.11
## [131] carData_3.0-4 ggpubr_0.4.0
## [133] pROC_1.18.0 shiny_1.7.1
## [135] restfulr_0.0.13