To install and load the package, run:
peco
uses SingleCellExperiment
class objects.
library(peco)
library(SingleCellExperiment)
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: 'MatrixGenerics'
#> The following objects are masked from 'package:matrixStats':
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: 'BiocGenerics'
#> The following objects are masked from 'package:stats':
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from 'package:base':
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: 'S4Vectors'
#> The following objects are masked from 'package:base':
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: 'Biobase'
#> The following object is masked from 'package:MatrixGenerics':
#>
#> rowMedians
#> The following objects are masked from 'package:matrixStats':
#>
#> anyMissing, rowMedians
library(doParallel)
#> Loading required package: foreach
#> Loading required package: iterators
#> Loading required package: parallel
library(foreach)
peco
is a supervised approach for PrEdicting cell cycle phase in a COntinuum using single-cell RNA sequencing data. The R package provides functions to build training dataset and also functions to use existing training data to predict cell cycle on a continuum.
Our work demonstrated that peco is able to predict continuous cell cylce phase using a small set of cylcic genes: CDK1, UBE2C, TOP2A, HISTH1E, and HISTH1C (identified as cell cycle marker genes in studies of yeast (Spellman et al., 1998) and HeLa cells (Whitfield et al., 2002)).
Below we provide two use cases. Vignette 1 shows how to use the built-training dataset to predict continuous cell cycle. Vignette 2 shows how to make a training datast and build a predictor using training data.
Users can also view the vigenettes via browseVignettes("peco")
.
training_human
stores built-in training data of 101 significant cyclic genes. Below are the slots contained in training_human
:
predict.yy
: a gene by sample matrix (101 by 888) that stores predict cyclic expression values.cellcycle_peco_reordered
: cell cycle phase in a unit circle (angle), ordered from 0 to 2\(pi\)cellcycle_function
: lists of 101 function corresponding to the top 101 cyclic genes identified in our datasetsigma
: standard error associated with cyclic trends of gene expressionpve
: proportion of variance explained by the cyclic trendpeco
is integrated with SingleCellExperiment
object in Bioconductor. Below shows an example of inputting SingleCellExperiment
object to perform cell cycle phase prediction.
sce_top101genes
includes 101 genes and 888 single-cell samples and one assay slot of counts
.
Transform the expression values to quantile-normalizesd counts-per-million values. peco
uses the cpm_quantNormed
slot as input data for predictions.
sce_top101genes <- data_transform_quantile(sce_top101genes)
#> computing on 2 cores
assays(sce_top101genes)
#> List of length 3
#> names(3): counts cpm cpm_quantNormed
Apply the prediction model using function cycle_npreg_outsample
and generate prediction results contained in a list object pred_top101genes
.
pred_top101genes <- cycle_npreg_outsample(
Y_test=sce_top101genes,
sigma_est=training_human$sigma[rownames(sce_top101genes),],
funs_est=training_human$cellcycle_function[rownames(sce_top101genes)],
method.trend="trendfilter",
ncores=1,
get_trend_estimates=FALSE)
The pred_top101genes$Y
contains a SingleCellExperiment object with the predict cell cycle phase in the colData
slot.
head(colData(pred_top101genes$Y)$cellcycle_peco)
#> 20170905-A01 20170905-A02 20170905-A03 20170905-A06 20170905-A07 20170905-A08
#> 1.099557 4.680973 2.544690 4.303982 4.052655 1.413717
Visualize results of prediction for one gene. Below we choose CDK1 (“ENSG00000170312”). Because CDK1 is a known cell cycle gene, this visualization serves as a sanity check for the results of fitting. The fitted function training_human$cellcycle_function[[1]]
was obtained from our training data.
plot(y=assay(pred_top101genes$Y,"cpm_quantNormed")["ENSG00000170312",],
x=colData(pred_top101genes$Y)$theta_shifted, main = "CDK1",
ylab = "quantile normalized expression")
points(y=training_human$cellcycle_function[["ENSG00000170312"]](seq(0,2*pi, length.out=100)),
x=seq(0,2*pi, length.out=100), col = "blue", pch =16)
Visualize results of prediction for the top 10 genesone genes. Use fit_cyclical_many
to estimate cyclic function based on the input data.
# predicted cell time in the input data
theta_predict = colData(pred_top101genes$Y)$cellcycle_peco
names(theta_predict) = rownames(colData(pred_top101genes$Y))
# expression values of 10 genes in the input data
yy_input = assay(pred_top101genes$Y,"cpm_quantNormed")[1:6,]
# apply trendfilter to estimate cyclic gene expression trend
fit_cyclic <- fit_cyclical_many(Y=yy_input,
theta=theta_predict)
#> computing on 2 cores
gene_symbols = rowData(pred_top101genes$Y)$hgnc[rownames(yy_input)]
par(mfrow=c(2,3))
for (i in 1:6) {
plot(y=yy_input[i,],
x=fit_cyclic$cellcycle_peco_ordered,
main = gene_symbols[i],
ylab = "quantile normalized expression")
points(y=fit_cyclic$cellcycle_function[[i]](seq(0,2*pi, length.out=100)),
x=seq(0,2*pi, length.out=100), col = "blue", pch =16)
}
sessionInfo()
#> R version 4.1.1 (2021-08-10)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] doParallel_1.0.16 iterators_1.0.13
#> [3] foreach_1.5.1 SingleCellExperiment_1.16.0
#> [5] SummarizedExperiment_1.24.0 Biobase_2.54.0
#> [7] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0
#> [9] IRanges_2.28.0 S4Vectors_0.32.0
#> [11] BiocGenerics_0.40.0 MatrixGenerics_1.6.0
#> [13] matrixStats_0.61.0 peco_1.6.0
#>
#> loaded via a namespace (and not attached):
#> [1] bitops_1.0-7 tools_4.1.1
#> [3] bslib_0.3.1 utf8_1.2.2
#> [5] R6_2.5.1 irlba_2.3.3
#> [7] vipor_0.4.5 DBI_1.1.1
#> [9] colorspace_2.0-2 tidyselect_1.1.1
#> [11] gridExtra_2.3 compiler_4.1.1
#> [13] BiocNeighbors_1.12.0 DelayedArray_0.20.0
#> [15] sass_0.4.0 scales_1.1.1
#> [17] mvtnorm_1.1-3 stringr_1.4.0
#> [19] digest_0.6.28 rmarkdown_2.11
#> [21] geigen_2.3 XVector_0.34.0
#> [23] scater_1.22.0 pkgconfig_2.0.3
#> [25] htmltools_0.5.2 sparseMatrixStats_1.6.0
#> [27] highr_0.9 fastmap_1.1.0
#> [29] conicfit_1.0.4 rlang_0.4.12
#> [31] circular_0.4-93 DelayedMatrixStats_1.16.0
#> [33] jquerylib_0.1.4 generics_0.1.1
#> [35] jsonlite_1.7.2 BiocParallel_1.28.0
#> [37] dplyr_1.0.7 RCurl_1.98-1.5
#> [39] magrittr_2.0.1 BiocSingular_1.10.0
#> [41] GenomeInfoDbData_1.2.7 scuttle_1.4.0
#> [43] Matrix_1.3-4 Rcpp_1.0.7
#> [45] ggbeeswarm_0.6.0 munsell_0.5.0
#> [47] fansi_0.5.0 viridis_0.6.2
#> [49] lifecycle_1.0.1 stringi_1.7.5
#> [51] yaml_2.2.1 zlibbioc_1.40.0
#> [53] grid_4.1.1 ggrepel_0.9.1
#> [55] crayon_1.4.1 lattice_0.20-45
#> [57] beachmat_2.10.0 knitr_1.36
#> [59] pillar_1.6.4 igraph_1.2.7
#> [61] boot_1.3-28 codetools_0.2-18
#> [63] ScaledMatrix_1.2.0 glue_1.4.2
#> [65] evaluate_0.14 genlasso_1.5
#> [67] vctrs_0.3.8 gtable_0.3.0
#> [69] purrr_0.3.4 assertthat_0.2.1
#> [71] ggplot2_3.3.5 xfun_0.27
#> [73] rsvd_1.0.5 pracma_2.3.3
#> [75] viridisLite_0.4.0 tibble_3.1.5
#> [77] beeswarm_0.4.0 ellipsis_0.3.2