Scientific computing in python is well-established. This package takes advantage of new work at Rstudio that fosters python-R interoperability. Identifying good practices of interface design will require extensive discussion and experimentation, and this package takes an initial step in this direction.
A key motivation is experimenting with an incremental PCA implementation with very large out-of-memory data. We have also provided an interface to the sklearn.cluster.KMeans procedure.
The package includes a list of references to python modules.
We can acquire python documentation of included modules with
reticulate’s py_help
: The following result could
get stale:
skd = reticulate::import("sklearn")$decomposition
py_help(skd)
Help on package sklearn.decomposition in sklearn:
NAME
sklearn.decomposition
FILE
/Users/stvjc/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/__init__.py
DESCRIPTION
The :mod:`sklearn.decomposition` module includes matrix decomposition
algorithms, including among others PCA, NMF or ICA. Most of the algorithms of
this module can be regarded as dimensionality reduction techniques.
PACKAGE CONTENTS
_online_lda
base
cdnmf_fast
dict_learning
factor_analysis
fastica_
incremental_pca
...
The reticulate package is designed to limit the amount of effort required to convert data from R to python for natural use in each language.
np = reticulate::import("numpy", convert=FALSE, delay_load=TRUE)
irloc = system.file("csv/iris.csv", package="BiocSklearn")
irismat = np$genfromtxt(irloc, delimiter=',')
To examine a submatrix, we use the take method from numpy. The bracket format seen below notifies us that we are not looking at data native to R.
## array([[5.1, 3.5, 1.4, 0.2],
## [4.9, 3. , 1.4, 0.2],
## [4.7, 3.2, 1.3, 0.2]])
We’ll use R’s prcomp as a first test to demonstrate performance of the sklearn modules with the iris data.
We have a python representation of the iris data. We compute the PCA as follows:
## + '/home/biocbuild/.cache/R/basilisk/1.8.0/0/bin/conda' 'create' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.8.0/BiocSklearn/1.18.2/bsklenv' 'python=3.7.7' '--quiet' '-c' 'conda-forge'
## + '/home/biocbuild/.cache/R/basilisk/1.8.0/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.8.0/BiocSklearn/1.18.2/bsklenv' 'python=3.7.7'
## + '/home/biocbuild/.cache/R/basilisk/1.8.0/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.8.0/BiocSklearn/1.18.2/bsklenv' '-c' 'conda-forge' 'python=3.7.7' 'scikit-learn=1.0.2' 'h5py=3.6.0' 'pandas=1.2.4'
## SkDecomp instance, method: PCA
## use getTransformed() to acquire projected input.
This returns an object that can be reused through python methods.
The numerical transformation is accessed via getTransformed
.
## [1] 150 4
## [,1] [,2] [,3] [,4]
## [1,] -2.684126 0.3193972 -0.02791483 -0.002262437
## [2,] -2.714142 -0.1770012 -0.21046427 -0.099026550
## [3,] -2.888991 -0.1449494 0.01790026 -0.019968390
## [4,] -2.745343 -0.3182990 0.03155937 0.075575817
## [5,] -2.728717 0.3267545 0.09007924 0.061258593
## [6,] -2.280860 0.7413304 0.16867766 0.024200858
Concordance with the R computation can be checked:
## PC1 PC2 PC3 PC4
## [1,] 1 0 0 0
## [2,] 0 -1 0 0
## [3,] 0 0 -1 0
## [4,] 0 0 0 -1
A computation supporting a priori bounding of memory consumption is available. In this procedure one can also select the number of principal components to compute.
ippca = skIncrPCA(iris[,1:4]) #mat) #
ippcab = skIncrPCA(iris[,1:4], batch_size=25L)
round(cor(getTransformed(ippcab), fullpc),3)
## PC1 PC2 PC3 PC4
## [1,] 1.000 0 0.00 0.000
## [2,] -0.001 -1 -0.01 -0.001
This procedure can be used when data are provided in chunks, perhaps from a stream. We iteratively update the object, for which there is no container at present. Again the number of components computed can be specified.
ta = np$take # provide slicer utility
ipc = skPartialPCA_step(ta(irismat,0:49,0L))
ipc = skPartialPCA_step(ta(irismat,50:99,0L), obj=ipc)
ipc = skPartialPCA_step(ta(irismat,100:149,0L), obj=ipc)
ipc$transform(ta(irismat,0:5,0L))
## [,1] [,2] [,3] [,4]
## [1,] -2.684126 0.3193972 -0.02791483 0.002262437
## [2,] -2.714142 -0.1770012 -0.21046427 0.099026550
## [3,] -2.888991 -0.1449494 0.01790026 0.019968390
## [4,] -2.745343 -0.3182990 0.03155937 -0.075575817
## [5,] -2.728717 0.3267545 0.09007924 -0.061258593
## [6,] -2.280860 0.7413304 0.16867766 -0.024200858
## PC1 PC2 PC3 PC4
## [1,] -2.684126 -0.3193972 0.02791483 0.002262437
## [2,] -2.714142 0.1770012 0.21046427 0.099026550
## [3,] -2.888991 0.1449494 -0.01790026 0.019968390
## [4,] -2.745343 0.3182990 -0.03155937 -0.075575817
## [5,] -2.728717 -0.3267545 -0.09007924 -0.061258593
We have extracted methylation data for the Yoruban
subcohort of CEPH from the yriMulti package. Data
from chr6 and chr17 are available in an HDF5 matrix
in this BiocSklearn package. A reference to the
dataset through the h5py File interface is created by
H5matref
.
See skPartialPCA_h5 for basilisk interface, and example(H5matref)
for working directly with HDF5.
We need more applications and profiling.