LoomExperiment 1.14.0
LoomExperiment
classThe LoomExperiment
family of classes inherits from the main class
LoomExperiment
as well as the Experiment class that they are named
after. For example, the SingleCellLoomExperiment
class inherits from
both LoomExperiment
and SingleCellExperiment
.
The purpose of the LoomExperiment
class is to act as an intermediary
between Bioconductor’s Experiment classes and the Linnarson Lab’s Loom
File Format (http://linnarssonlab.org/loompy/index.html). The Loom
File Format uses HDF5 to store Experiment data.
The LoomExperiment
family of classes contain the following slots.
colGraphs
rowGraphs
Both of these slots are LoomGraphs
objects that describe the
col_graph
and row_graph
attributes as specified by the Loom File
Format.
There are several ways to create instances of a LoomExperiment
class
of object. One can plug an existing SummarizedExperiment type class
into the appropriate constructor:
library(LoomExperiment)
counts <- matrix(rpois(100, lambda = 10), ncol=10, nrow=10)
sce <- SingleCellExperiment(assays = list(counts = counts))
scle <- SingleCellLoomExperiment(sce)
## OR
scle <- LoomExperiment(sce)
One can also simply plug the arguments into the appropriate
constructor, since all LoomExperiment
constructors call the
applicable class’s constructor
scle <- SingleCellLoomExperiment(assays = list(counts = counts))
Also, it is also possible to create a LoomExperiment
extending class
via coercion:
scle <- as(sce, "SingleCellLoomExperiment")
scle
## class: SingleCellLoomExperiment
## dim: 10 10
## metadata(0):
## assays(1): counts
## rownames: NULL
## rowData names(0):
## colnames: NULL
## colData names(0):
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## rowGraphs(0): NULL
## colGraphs(0): NULL
Finally, one can create a LoomExperiment
object from importing a
Loom File.
We will use the following SingleCellLoomExperiment
for the remainder
of the vignette.
l1_file <-
system.file("extdata", "L1_DRG_20_example.loom", package = "LoomExperiment")
scle <- import(l1_file, type="SingleCellLoomExperiment")
scle
## class: SingleCellLoomExperiment
## dim: 20 20
## metadata(4): CreatedWith LOOM_SPEC_VERSION LoomExperiment-class
## MatrixName
## assays(1): matrix
## rownames: NULL
## rowData names(7): Accession Gene ... X_Total X_Valid
## colnames: NULL
## colData names(103): Age AnalysisPool ... cDNA_Lib_Ok ngperul_cDNA
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## rowGraphs(0): NULL
## colGraphs(2): KNN MKNN
All the following methods apply to all LoomExperiment
classes.
LoomGraph
classThe colGraphs
and rowGraphs
slots of LoomExperiments correspond to
the col_graphs
and row_graphs
fields in the Loom File format.
Both of these slots require LoomGraphs
objects.
A LoomGraph
class extends the SelfHits
class from the S4Vectors
package with the requirements that a LoomGraph
object must:
integer
and non-negativeLoomExperiment
object (if attached to a LoomExperiment
object)The columns to
and from
correspond to either row
or col
indices in the LoomExperiment
object while w
is an optional column
that specifies the weight.
A LoomGraph can be constructed in two ways:
a <- c(1, 2, 3)
b <- c(3, 2, 1)
w <- c(100, 10, 1)
df <- DataFrame(a, b, w)
lg <- as(df, "LoomGraph")
## OR
lg <- LoomGraph(a, b, weight = w)
lg
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 3
LoomGraph
objects can be subset by the ‘row’/‘col’ indices.
lg[c(1, 2)]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## -------
## nnode: 3
lg[-c(2)]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 3 1 | 1
## -------
## nnode: 3
LoomGraphs
classA LoomGraphs
object extends the S4Vectors:SimpleList
object. It
contains multiple LoomGraph
objects with its only requirement being
that it must contain LoomGraph
objects.
It can be created simply by using LoomGraph
objects in the
LoomGraphs
constructor
lgs <- LoomGraphs(lg, lg)
names(lgs) <- c('lg1', 'lg2')
lgs
## LoomGraphs of length 2
## names(2): lg1 lg2
LoomExperiment
The LoomGraphs
assigned to these colGraphs
and rowGraphs
slots
can be obtained by their eponymous methods:
colGraphs(scle)
## LoomGraphs of length 2
## names(2): KNN MKNN
rowGraphs(scle)
## LoomGraphs of length 0
The same symbols can also be used to replace the respective LoomGraphs
colGraphs(scle) <- lgs
rowGraphs(scle) <- lgs
colGraphs(scle)
## LoomGraphs of length 2
## names(2): lg1 lg2
rowGraphs(scle)
## LoomGraphs of length 2
## names(2): lg1 lg2
colGraphs(scle)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
rowGraphs(scle)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
LoomExperiment
objects can be subsetting in such a way that the
assays
, colGraphs
, and rowGraphs
will all be subsetted.
assays
will will be subsetted as any matrix
would. The i
element in the subsetting operation will subset the rowGraphs
slot
and the j
element in the subsetting operation will subset the
colGraphs
slot, as we’ve seen from the subsetting method from
LoomGraphs
.
scle2 <- scle[c(1, 3), 1:2]
colGraphs(scle2)[[1]]
## LoomGraph object with 1 hit and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 2 2 | 10
## -------
## nnode: 2
rowGraphs(scle2)[[1]]
## LoomGraph object with 2 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 2 | 100
## [2] 2 1 | 1
## -------
## nnode: 2
scle3 <- rbind(scle, scle)
scle3
## class: SingleCellLoomExperiment
## dim: 40 20
## metadata(8): CreatedWith LOOM_SPEC_VERSION ... LoomExperiment-class
## MatrixName
## assays(1): matrix
## rownames: NULL
## rowData names(7): Accession Gene ... X_Total X_Valid
## colnames: NULL
## colData names(103): Age AnalysisPool ... cDNA_Lib_Ok ngperul_cDNA
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## rowGraphs(2): lg1 lg2
## colGraphs(4): lg1 lg2 lg1 lg2
colGraphs(scle3)
## LoomGraphs of length 4
## names(4): lg1 lg2 lg1 lg2
rowGraphs(scle3)
## LoomGraphs of length 2
## names(2): lg1 lg2
colGraphs(scle3)[[1]]
## LoomGraph object with 3 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## -------
## nnode: 20
rowGraphs(scle3)[[1]]
## LoomGraph object with 6 hits and 1 metadata column:
## from to | w
## <integer> <integer> | <numeric>
## [1] 1 3 | 100
## [2] 2 2 | 10
## [3] 3 1 | 1
## [4] 21 23 | 100
## [5] 22 22 | 10
## [6] 23 21 | 1
## -------
## nnode: 40
Finally, the LoomExperiment
object can be exported.
temp <- tempfile(fileext='.loom')
export(scle2, temp)
sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] LoomExperiment_1.14.0 BiocIO_1.6.0
## [3] rhdf5_2.40.0 SingleCellExperiment_1.18.0
## [5] SummarizedExperiment_1.26.0 Biobase_2.56.0
## [7] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0
## [9] IRanges_2.30.0 MatrixGenerics_1.8.0
## [11] matrixStats_0.62.0 S4Vectors_0.34.0
## [13] BiocGenerics_0.42.0 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] bslib_0.3.1 compiler_4.2.0 BiocManager_1.30.17
## [4] jquerylib_0.1.4 XVector_0.36.0 rhdf5filters_1.8.0
## [7] bitops_1.0-7 tools_4.2.0 zlibbioc_1.42.0
## [10] digest_0.6.29 jsonlite_1.8.0 evaluate_0.15
## [13] lattice_0.20-45 rlang_1.0.2 Matrix_1.4-1
## [16] DelayedArray_0.22.0 cli_3.3.0 yaml_2.3.5
## [19] xfun_0.30 fastmap_1.1.0 GenomeInfoDbData_1.2.8
## [22] stringr_1.4.0 knitr_1.38 sass_0.4.1
## [25] grid_4.2.0 R6_2.5.1 HDF5Array_1.24.0
## [28] rmarkdown_2.14 bookdown_0.26 Rhdf5lib_1.18.0
## [31] magrittr_2.0.3 htmltools_0.5.2 stringi_1.7.6
## [34] RCurl_1.98-1.6