Package ‘ChIPpeakAnno’

May 29, 2024

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,
ChIP-chip experiments, or any experiments that result in large
number of genomic interval data

Version 3.38.0
Encoding UTF-8

Author Lihua Julie Zhu,
Jianhong Ou,
Jun Yu,

Kai Hu,

Haibo Liu,
Junhui Li,

Hervé Pages,
Claude Gazin,
Nathan Lawson,
Ryan Thompson,
Simon Lin,
David Lapointe,
Michael Green

Maintainer Jianhong Ou <jianhong.ou@duke.edu>,
Lihua Julie Zhu <julie.zhu@umassmed. edu>,
Kai Hu <kai . hu@umassmed. edu>,
Junhui Li <junhui.li@umassmed.edu>

Depends R (>= 3.5), methods, IRanges (>= 2.13.12), GenomicRanges (>=
1.31.8), S4Vectors (>= 0.17.25)

Imports AnnotationDbi, BiocGenerics (>= 0.1.0), Biostrings (>=
2.47.6), pwalign, DBI, dplyr, GenomeInfoDb, GenomicAlignments,
GenomicFeatures, RBGL, Rsamtools, SummarizedExperiment,
VennDiagram, biomaRt, ggplot2, grDevices, graph, graphics,
grid, InteractionSet, KEGGREST, matrixStats, multtest,
regioneR, rtracklayer, stats, utils, universalmotif, stringr,
tibble, tidyr, data.table, scales, ensembldb

Suggests AnnotationHub, BSgenome, limma, reactome.db, BiocManager,
BiocStyle, BSgenome.Ecoli. NCBI.20080805,

1

2 Contents

BSgenome.Hsapiens.UCSC.hg19, org.Ce.eg.db, org.Hs.eg.db,
BSgenome.Celegans.UCSC.cel0, BSgenome.Drerio.UCSC.danRer7,
BSgenome.Hsapiens.UCSC.hg38, DelayedArray, idr, seqint,
EnsDb.Hsapiens.v75, EnsDb.Hsapiens.v79, EnsDb.Hsapiens.v86,
TxDb.Hsapiens.UCSC.hg18.knownGene,
TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Hsapiens.UCSC.hg38.knownGene, GO.db, gplots, UpSetR,
knitr, rmarkdown, reshape2, testthat, track Viewer, motifStack,
OrganismDbi, BiocFileCache

Description The package encompasses a range of functions for identifying the
closest gene, exon, miRNA, or custom features—such as highly conserved
elements and user-supplied transcription factor binding sites.

Additionally, users can retrieve sequences around the peaks and obtain
enriched Gene Ontology (GO) or Pathway terms. In version 2.0.5 and beyond,
new functionalities have been introduced. These include features for
identifying peaks associated with bi-directional promoters along with
summary statistics (peaksNearBDP), summarizing motif occurrences in

peaks (summarizePatternInPeaks), and associating additional identifiers

with annotated peaks or enrichedGO (addGenelDs). The package integrates
with various other packages such as biomaRt, IRanges, Biostrings, BSgenome,
GO.db, multtest, and stat to enhance its analytical capabilities.

License GPL (>=2)

LazyLoad yes

LazyData true

LazyDataCompression xz

biocViews Annotation, ChIPSeq, ChIPchip
VignetteBuilder knitr

RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/ChIPpeak Anno
git_ branch RELEASE_3_19
git_last_commit 26e03e3
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29

Contents
ChIPpeakAnno-package 4
addAnCestors e e e e e e 6
addGenelDs e e e e e e 7
addMetadata e e 9
annoGR-class e e e 10

annoPeaks 11

Contents

3
annotatedPeak oo 13
annotatePeakInBatch oL oL 14
assignChromosomeRegion o 21
bdp . . 23
bindist-class 24
binOverFeature e 25
binOverGene 26
binOverRegions 27
ChIPpeakAnno-deprecated 29
cntOverlaps e 30
condenseMatrixByColnames Lo o 30
convert2EntrezID 31
countPatternInSeqs L L 32
cumulativePercentageo 33
downstreams e 34
egOrgMap e 35
enrichedGO 35
enrichmentPlot 37
EnsDb2GR 38
estFragmentlLength L 38
estLibSize L 40
ExonPlusUtrhuman.GRCh37 o 41
featureAlignedDistribution oL oL 42
featureAlignedExtendSignal oL oL 43
featureAlignedHeatmap 45
featureAlignedSignal oL 46
findEnhancers 47
findMotifsInPromoterSeqs o 49
findOverlappingPeaks 52
findOverlapsOfPeaks 54
genomicElementDistribution 0oL 56
genomicElementUpSetR 58
getAllPeakSequence 59
GEtANNOLAtION e e e 61
getEnrichedGO oL 62
getEnrichedPATH e 65
getGeneSeq o e e e e 67
getGO . . . e 68
getUniqueGOidCount e e 69
getVennCounts 70
HOT.spots o o e e 72
hyperGtest o e e e e e e e e e 73
IDRfilter 74
makeVennDiagram L 76
mergePlusMinusPeaks L o 78
metagenePlot 80
myPeakList 81

oligoFrequency 81

4 ChIPpeakAnno-package

oligoSummary e e e e e 82
peakPermTest 83
Peaks.Stel2.Replicatel 85
Peaks.Stel2.Replicate2 86
Peaks.Stel2.Replicate3 86
peaksl . . . Lo 87
peaks2 . . .o 88
peaksd . . .o e 88
peaksNearBDP 89
permPool-class e 90
plel .o 91
plotBinOverRegions e 93
preparePool 94
reCenterPeaks L e 95
summarizeOverlapsByBins Lo 96
summarizePatternInPeaks 0oL oo 97
tileCount 99
tileGRanges L e 100
toGRanges e 101
translatePattern L. L e 104
TSS.human.GRCh37 e 105
TSS.human.GRCh38 e 105
TSS.human.NCBI36 106
TSS.mouse. GRCm38 107
TSS.mouse. NCBIM37 e 107
TSSratRGSC3.4 e 108
TSS.ratRnor 5.0 e 109
TSS.zebrafish.Zv8 109
TSS.zebrafish.ZvO 110
TxDb2GR e 111
wgEncodeTfbsV3 oL 111
write2FASTA e 113
XZEL o o v e e 114
Index 115

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChlP-seq or ChIP-
chip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene On-
tology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved
elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome,
GO.db, hypergeometric test phyper and multtest package.

ChIPpeakAnno-package 5

Details
Package: ChIPpeakAnno
Type: Package
Version: 3.0.0
Date: 2014-10-24
License: LGPL
LazyLoad: yes

Author(s)

Lihua Julie Zhu, Jianhong Ou, Hervé Pages, Claude Gazin, Nathan Lawson, Simon Lin, David
Lapointe and Michael Green

Maintainer: Jianhong Ou <jianhong.ou @umassmed.edu>, Lihua Julie Zhu <julie.zhu @umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypoth-
esis testing under dependency. Annals of Statistics. Accepted.

3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.

5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hy-
pothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc

6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.

7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol.
6: 65-70.

8. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

9. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

Examples

if(interactive()){
data(myPeakList)
library(ensembldb)
library(EnsDb.Hsapiens.v75)
anno <- annoGR(EnsDb.Hsapiens.v75)
annotatedPeak <-
annotatePeakInBatch(myPeakList[1:6], AnnotationData=anno)

6 addAncestors

addAncestors Add GO IDs of the ancestors for a given vector of GO ids

Description

Add GO IDs of the ancestors for a given vector of GO IDs leveraging GO.db

Usage

n n

addAncestors(go.ids, ontology = c("bp”, "cc”", "mf"))

Arguments
go.ids A matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.
ontology bp for biological process, cc for cellular component and mf for molecular func-
tion.
Value

A vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added.

Author(s)

Lihua Julie Zhu

Examples

go.ids = cbind(c("G0:0008150", "GO:0005576", "GO:0003674"),
c(”"ND", "IDA", "ND"),
c("BP", "BP", "BP"),
C(I,1", II‘III’ II-IIV))

library(GO.db)

addAncestors(go.ids, ontology="bp")

addGenelDs 7

addGenelDs Add common IDs to annotated peaks such as gene symbol, entrez ID,
ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and
refseq id leveraging organism annotation dataset. For example, org.Hs.eg.db is the dataset from
orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db pack-
age for mouse.

Usage
addGenelIDs(
annotatedPeak,
orgAnn,
IDs2Add = c("symbol"),
feature_id_type = "ensembl_gene_id",
silence = TRUE,
mart
)
Arguments

annotatedPeak GRanges or a vector of feature IDs.
orgAnn organism annotation dataset such as org.Hs.eg.db.

IDs2Add a vector of annotation identifiers to be added
feature_id_type
type of ID to be annotated, default is ensembl_gene_id

silence TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.
mart mart object, see useMart of biomaRt package for details
Details

One of orgAnn and mart should be assigned.

* If orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id, gene_symbol,
gene_alias or refseq_id. And parameter IDs2Add can be set to any combination of identifiers

non non "non non

such as "accnum", "ensembl", "ensemblprot”, "ensembltrans”, "entrez_id", "enzyme", "gene-

non non non "non

name", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene" and "uniprot”. Some IDs are
unique to an organism, such as "omim" for org.Hs.eg.db and "mgi" for org.Mm.eg.db.

Here is the definition of different IDs :
— accnum: GenBank accession numbers
— ensembl: Ensembl gene accession numbers
— ensemblprot: Ensembl protein accession numbers

8 addGenelDs

— ensembltrans: Ensembl transcript accession numbers

— entrez_id: entrez gene identifiers

— enzyme: EC numbers

— genename: gene name

— pfam: Pfam identifiers

— pmid: PubMed identifiers

— prosite: PROSITE identifiers

- refseq: RefSeq identifiers

— symbol: gene abbreviations

— unigene: UniGene cluster identifiers

— uniprot: Uniprot accession numbers

— omim: OMIM(Mendelian Inheritance in Man) identifiers

— mgi: Jackson Laboratory MGI gene accession numbers

 If mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add pa-

rameters, please refer to getBM in bioMart package. Parameter feature_id_type should be
one valid filter name listed by listFilters(mart) such as ensemble_gene_id. And parameter

IDs2Add should be one or more valid attributes name listed by listAttributes(mart) such as
external_gene_id, entrezgene, wikigene_name, or mirbase_transcript_name.

Value

GRanges if the input is a GRanges or dataframe if input is a vector.

Author(s)
Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also
getBM, AnnotationDb

Examples

data(annotatedPeak)
library(org.Hs.eg.db)
addGenelIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db",
IDs2Add=c("symbol”, "omim"))
##addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",
IDs2Add=c("symbol”, "genename"))
if(interactive()){
mart <- useMart("ENSEMBL_MART_ENSEMBL", host="www.ensembl.org",
dataset="hsapiens_gene_ensembl")
##mart <- useMart(biomart="ensembl”,6 dataset="hsapiens_gene_ensembl")
addGeneIDs(annotatedPeak[1:6,], mart=mart,

addMetadata 9

IDs2Add=c("hgnc_symbol”, "entrezgene"))

addMetadata Add metadata of the GRanges objects used for findOverlapsOfPeaks

Description

Add metadata to to overlapping peaks after calling findOverlapsOfPeaks.

Usage
addMetadata(ol, colNames = NULL, FUN = ¢, ...)
Arguments
ol An object of overlappingPeaks, which is output of findOverlapsOfPeaks.
colNames Names of metadata column to be added. If it is NULL, addMetadata will guess
what to add.
FUN A function to be called
Arguments to the function call.
Value

return value is An object of overlappingPeaks.

Author(s)

Jianhong Ou

See Also

See Also as findOverlapsOfPeaks

Examples

peaks1 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200,1563000,1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),
strand="+",
score=1:5, id=letters[1:5])
peaks2 <- GRanges(segnames=c(6,6,6,6,5),
IRanges(start=c (1549800, 1554400, 1565000,1569400,167888600),
end=c (1550599, 1560799, 1565399,1571199,167888999),
names=c("f1","f2","f3","f4" "f5")),
strand="+",
score=6:10, id=LETTERS[1:5])

10 annoGR-class

ol <- findOverlapsOfPeaks(peaks1, peaks2)
addMetadata(ol)

annoGR-class Class annoGR

Description

An object of class annoGR represents the annotation data could be used by annotationPeakInBatch.

Usage

S4 method for signature 'annoGR'
info(object)

S4 method for signature 'GRanges'
annoGR(ranges, feature = "group”, date, ...)

S4 method for signature 'TxDb'
annoGR(
ranges,
feature = c("gene”, "transcript”, "exon”, "CDS", "fiveUTR", "threeUTR", "microRNA",
"tRNAs", "geneModel"),
date,
source,
mdata,
OrganismDb

S4 method for signature 'EnsDb'
annoGR(
ranges,
feature = c("gene"”, "transcript”, "exon”, "disjointExons"),
date,
source,
mdata

Arguments

object annoGR object.

ranges an object of GRanges, TxDb or EnsDb
feature annotation type

date a Date object

could be following parameters

annoPeaks 11

source character, where the annotation comes from
mdata data frame, metadata from annotation
OrganismDb an object of OrganismDb. It is used for extracting gene symbol for geneModel
group for TxDb
Slots

segnames, ranges, strand, elementMetadata, seqinfo slots inherit from GRanges. The ranges
must have unique names.

source character, where the annotation comes from
date a Date object

feature annotation type, could be "gene", "exon", "transcript”, "CDS", "fiveUTR", "threeUTR",
"microRNA", "tRNAs", "geneModel" for TxDb object, or "gene", "exon", "transcript" for
EnsDb object

mdata data frame, metadata from annotation

Objects from the Class

Objects can be created by calls of the form new("”annoGR", date, elementMetadata, feature,
mdata, ranges, seqinfo, segnames, source, strand)

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jianhongou"){
library(EnsDb.Hsapiens.v79)
anno <- annoGR(EnsDb.Hsapiens.v79)

annoPeaks Annotate peaks

Description

Annotate peaks by annoGR object in the given range.

12 annoPeaks

Usage

annoPeaks (
peaks,
annoData,
bindingType = c("nearestBiDirectionalPromoters”, "startSite"”, "endSite”, "fullRange"),
bindingRegion = c(-5000, 5000),
ignore.peak.strand = TRUE,
select = c("all”, "bestOne"),

Arguments
peaks peak list, GRanges object
annoData annotation data, GRanges object
bindingType Specifying the criteria to associate peaks with annotation. Here is how to use it

together with the parameter bindingRegion

* To obtain peaks within 5kb upstream and up to 3kb downstream of TSS
within the gene body, set bindingType = "startSite" and bindingRegion =
¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of gene/Exon End, set bindingType = "endSite" and bindingRegion
= ¢(-5000, 3000)

* To obtain peaks from Skb upstream to 3kb downstream of genes/Exons , set
bindingType = "fullRange" and bindingRegion = c(-5000, 3000)

* To obtain peaks with nearest bi-directional promoters within Skb upstream
and 3kb downstream of TSS, set bindingType = "nearestBiDirectionalPro-
moters" and bindingRegion = c(-5000, 3000)

startSite start position of the feature (strand is considered)

endSite end position of the feature (strand is considered)

fullRange whole range of the feature

nearestBiDirectionalPromoters nearest promoters from both direction of the
peaks (strand is considered). It will report bidirectional promoters if there
are promoters in both directions in the given region (defined by bindingRe-
gion). Otherwise, it will report the closest promoter in one direction.

bindingRegion Annotation range used together with bindingType, which is a vector with two
integer values, default to ¢ (-5000, 5000). The first one must be no bigger than
0, which means upstream. And the sec ond one must be no less than 1, which
means downstream (1 is the site position, 2 is the next base of the site position).
For details, see bindingType.

ignore.peak.strand
ignore the peaks strand or not.

select "all" or "bestOne". Return the annotation containing all or the best one. The
"bestOne" is selected by the shortest distance to the sites and then similarity
between peak and annotations. Ignored if bindingType is nearestBiDirectional-
Promoters.

annotatedPeak 13

Not used.

Value

Output is a GRanges object of the annotated peaks.

Author(s)

Jianhong Ou

See Also

See Also as annotatePeakInBatch

Examples

library(ensembldb)

library(EnsDb.Hsapiens.v75)

data("myPeakList")

annoGR <- toGRanges(EnsDb.Hsapiens.v75)
seqlevelsStyle(myPeakList) <- seqlevelsStyle(annoGR)
annoPeaks(myPeakList, annoGR)

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT1-binding regions that are identified in un-stimulated cells using ChIP-
seq technology (Robertson et al., 2007)

Usage

annotatedPeak

Format

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot names holding the id of the peak, slot strand holding the strands and slot space
holding the chromosome location where the peak is located. In addition, the following variables are
included.

list("'feature'') id of the feature such as ensembl gene ID

list("'insideFeature'') upstream: peak resides upstream of the feature; downstream: peak resides
downstream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps
with the start of the feature; overlapEnd: peak overlaps with the end of the feature; include-
Feature: peak include the feature entirely

list("'distancetoFeature'') distance to the nearest feature such as transcription start site

14 annotatePeakInBatch

list("'start_position'") start position of the feature such as gene

list("'end_position'') end position of the feature such as the gene

Details

obtained by data(TSS.human.GRCh37)
data(myPeakList)
annotatePeakInBatch(myPeakList, AnnotationData = TSS.human.GRCh37, output="b", multiple=F)

Examples

data(annotatedPeak)
head(annotatedPeak, 4) # show first 4 ranges
if (interactive() || Sys.getenv("USER")=="jianhongou") {
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)),
xlab="Distance To Nearest TSS"”, main="", breaks=1000,
ylim=c(@, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max (as.numeric(as.character(y)))+100))

}

annotatePeakInBatch Obtain the distance to the nearest TSS, miRNA, and/or exon for a list
of peaks

Description

Obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging
IRanges and biomaRt package

Usage
annotatePeakInBatch(

myPeakList,

mart,

featureType = c("TSS", "miRNA", "Exon"),

AnnotationData,

output = c("nearestlLocation”, "overlapping”, "both"”, "shortestDistance”, "inside",
"upstream&inside”, "inside&downstream”, "upstream”, "downstream”,
"upstreamORdownstream”, "nearestBiDirectionalPromoters”),

multiple = c(TRUE, FALSE),

maxgap = -1L,

PeakLocForDistance = c("start"”, "middle”, "end”, "endMinusStart"),

FeatureLocForDistance = c("TSS", "middle"”, "start”, "end”, "geneEnd"),

select = c("all”, "first"”, "last”, "arbitrary"”),
ignore.strand = TRUE,

annotatePeakInBatch

15

bindingRegion = NULL,

Arguments

myPeakList
mart

featureType

AnnotationData

output

multiple

A GRanges object

A mart object, used if AnnotationData is not supplied, see useMart of bioMaRt
package for details

A charcter vector used with mart argument if AnnotationData is not supplied;
choose from "TSS", "miRNA" or "Exon"

A GRanges or annoGR object. It can be obtained from the function getAnnota-
tion or customized annotation of class GRanges containing additional variable:
strand (1 or + for plus strand and -1 or - for minus strand). Pre-compliled anno-
tations, such as TSS.human.NCBI36, TSS.mouse.NCBIM37, TSS.rat. RGSC3.4
and TSS.zebrafish.Zv8, are provided by this package (attach them with data()
function). Another method to provide annotation data is to obtain through biomaRt
in real time by using the mart and featureType option

nearestLocation (default) will output the nearest features calculated as Peak-
Loc - FeatureLocForDistance; when selected, the output can consist of both
"strictly nearest features (non-overlapping)" and "overlapping features" as
long as they are the nearest

overlapping will output overlapping features with maximum gap specified as
maxgap between peak range and feature range; it is possible for a peak
to be annotated with zero ("NA" will be returned) or multiple overlapping
features if exist

both will output all the nearest features as well as any features that overlap with
the peak that is not the nearest

shortestDistance will output the features with the shortest distance; the "short-
est distance" is determined from either ends of the feature to either ends of
the peak

upstream&inside will output all upstream and overlapping features with max-
imum gap

inside&downstream will output all downstream and overlapping features with
maximum gap

upstream will output all upstream features with maximum gap

downstream will output all downstream features with maximum gap

upstreamORdownstream will output all upstream features with maximum gap
or downstream with maximum gap

nearestBiDirectionalPromoters will use annoPeaks to annotate peaks. Near-
est promoters from both direction of the peaks (strand is considered). It
will report bidirectional promoters if there are promoters in both directions
in the given region (defined by bindingRegion). Otherwise, it will report
the closest promoter in one direction.

Not applicable when output is nearest. TRUE: output multiple overlapping fea-

tures for each peak. FALSE: output at most one overlapping feature for each

peak. This parameter is kept for backward compatibility, please use select.

16

annotatePeakInBatch

maxgap The maximum gap that is allowed between 2 ranges for the ranges to be consid-
ered as overlapping. The gap between 2 ranges is the number of positions that
separate them. The gap between 2 adjacent ranges is 0. By convention when
one range has its start or end strictly inside the other (i.e. non-disjoint ranges),
the gap is considered to be -1.

PeakLocForDistance
Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of the
peak to calculate the distance to feature, endMinusStart means using the end of
the peak to calculate the distance to features on plus strand and the start of the
peak to calculate the distance to features on minus strand. To be compatible with
previous version, by default using start

FeatureLocForDistance
Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

select "all" may return multiple overlapping peaks, "first" will return the first overlap-
ping peak, "last" will return the last overlapping peak and "arbitrary" will return
one of the overlapping peaks.

ignore.strand When set to TRUE, the strand information is ignored in the annotation. Unless
you have stranded peaks and you are interested in annotating peaks to the fea-
tures in the same strand only, you should just use the default setting ignore.strand
= TRUE.

bindingRegion Annotation range used for annoPeaks, which is a vector with two integer values,
default to ¢ (-5000, 5000). The first one must be no bigger than 0. And the sec
ond one must be no less than 1. Once bindingRegion is defined, annotation will
based on annoPeaks. Here is how to use it together with the parameter output
and FeatureLLocForDistance.

* To obtain peaks with nearest bi-directional promoters within 5kb upstream
and 3kb downstream of TSS, set output = "nearestBiDirectionalPromoters"
and bindingRegion = ¢(-5000, 3000)

* To obtain peaks within Skb upstream and up to 3kb downstream of TSS
within the gene body, set output="overlapping", FeatureLocForDistance="TSS"
and bindingRegion = ¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of gene/Exon End, set output="overlapping", FeatureLocForDis-
tance="geneEnd" and bindingRegion = c(-5000, 3000)

* To obtain peaks from Skb upstream to 3kb downstream of genes/Exons,
set output="overlapping", bindingType = "fullRange" and bindingRegion =
¢(-5000, 3000)

For details, see annoPeaks.

Parameters could be passed to annoPeaks

annotatePeakInBatch 17

Value

An object of GRanges with slot start holding the start position of the peak, slot end holding the end
position of the peak, slot space holding the chromosome location where the peak is located, slot
rownames holding the id of the peak. In addition, the following variables are included.

list("feature")
id of the feature such as ensembl gene ID

list("insideFeature")
upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak
overlaps with the start of the feature; overlapEnd: peak overlaps with the end of
the feature; includeFeature: peak include the feature entirely

list("distancetoFeature")
distance to the nearest feature such as transcription start site. By default, the
distance is calculated as the distance between the start of the binding site and the
TSS that is the gene start for genes located on the forward strand and the gene
end for genes located on the reverse strand. The user can specify the location of
peak and location of feature for calculating this

list("start_position”)
start position of the feature such as gene

list("end_position™)
end position of the feature such as the gene

list("strand”) 1 or + for positive strand and -1 or - for negative strand where the feature is

located
list("shortestDistance"”)

The shortest distance from either end of peak to either end the feature.
list("fromOverlappingOrNearest")

Relevant only when output is set to "both". If "nearestLocation": indicates this

feature’s start (feature’s end for features from minus strand) is the closest to

the peak start ("strictly nearest” or "nearest overlapping"); if "Overlapping":

indicates this feature overlaps with this peak although it is not the nearest (non-

nearest overlapping)

Author(s)
Lihua Julie Zhu, Jianhong Ou

References
1. Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

2. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset." In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8

See Also

getAnnotation, findOverlappingPeaks, makeVennDiagram, addGenelDs, peaksNearBDP, summa-
rizePatternInPeaks, annoGR, annoPeaks

18 annotatePeakInBatch

Examples

example 1: annotate myPeakList by TxDb or EnsDb.

data(myPeakList)

library(ensembldb)

library(EnsDb.Hsapiens.v75)

annoData <- annoGR(EnsDb.Hsapiens.v75)

annotatePeak = annotatePeakInBatch(myPeakList[1:6], AnnotationData=annoData)
annotatePeak

example 2: annotate myPeakList (GRanges)

with TSS.human.NCBI36 (Granges)

data(TSS.human.NCBI36)

annotatedPeak = annotatePeakInBatch(myPeakList[1:6],
AnnotationData=TSS.human.NCBI36)

annotatedPeak

example 3: you have a list of transcription factor biding sites from
literature and are interested in determining the extent of the overlap
to the list of peaks from your experiment. Prior calling the function
annotatePeakInBatch, need to represent both dataset as GRanges

where start is the start of the binding site, end is the end of the

binding site, names is the name of the binding site, space and strand
are the chromosome name and strand where the binding site is located.

myexp <- GRanges(seqnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1543200,1557200, 1563000, 1569800,
167889600,100,1000),
end=c(1555199,1560599,1565199,1573799,
167893599, 200,1200),
names=c("p1"”,"p2","p3", " "p4","p5","p6", "p7")),
strand="+"
literature <- GRanges(segnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1549800,1554400, 1565000, 1569400,
167888600,120,800),
end=c(1550599,1560799,1565399,1571199,
167888999, 140,1400),
names=c("f1","f2","f3", "f4" "f5" "f6" ,"f7")),
strand=rep(c("+", "-"), c(5, 2)))
annotatedPeakl <- annotatePeakInBatch(myexp,
AnnotationData=literature)
pie(table(annotatedPeakl$insideFeature))
annotatedPeakl
use toGRanges or rtracklayer::import to convert BED or GFF format
to GRanges before calling annotatePeakInBatch
test.bed <- data.frame(space=c("4", "6"),
start=c("”100", "1000"),
end=c("200", "1100"),
name=c("peakl1”, "peak2"))
test.GR = toGRanges(test.bed)
annotatePeakInBatch(test.GR, AnnotationData = literature)

annotatePeakInBatch 19

library(testthat)
peak <- GRanges(segnames = "chri1"”,
IRanges(start = 24736757, end=24737528,
names = "testPeak"))
data(TSS.human.GRCh37)
TSS.human.GRCh37[names (TSS.human.GRCh37)== "ENSG00000001461"]
GRanges object with 1 range and 1 metadata column:

seqgnames ranges strand | description

#<Rle> <IRanges> <Rle> | <character>

ENSG00000001461 1 24742285-24799466 + | NIPA-like domain con..
peak

#GRanges object with 1 range and @ metadata columns:

segnames ranges strand

#<Rle> <IRanges> <Rle>

testPeak chr1 24736757-24737528 *

TSS.human.GRCh37[names (TSS. human.GRCh37)== "ENSG00000001460"]

#GRanges object with 1 range and 1 metadata column:

segnames ranges strand | description

#<Rle> <IRanges> <Rle> | <character>

ENSG00000001460 1 24683490-24743424 - | UPFQ490 protein Clor..

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "start")

stopifnot(ap$feature=="ENSG0O00Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "end")

stopifnot(ap$feature=="ENSG0O0Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "middle")

stopifnot(ap$feature=="ENSG0O00Q00001461")

ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
PeakLocForDistance = "endMinusStart”)

stopifnot(ap$feature=="ENSG0O0000001461")

Let's calculate the distances between the peak and the TSS of the genes

in the annotation file used for annotating the peaks.

Please note that we need to compute the distance using the annotation

file TSS.human.GRCh37.

If you would like to use TxDb.Hsapiens.UCSC.hg19.knownGene,

then you will need to annotate the peaks

using TxDb.Hsapiens.UCSC.hg19.knownGene as well.

using start

start(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==

"ENSG00Q00001461"]) #picked
#[1] -5528
start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460" 1)

#[1] -6667

using middle

(start(peak) + end(peak))/2 -

start(TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSGQ0000001461"])
#[1] -5142.5
(start(peak) + end(peak))/2 -
end(TSS. human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001460"1)
[1] 49480566

20

annotatePeakInBatch

end(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSGO0000001461"]) #picked
[1] -4757
end(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460"])
[1] -5896
using endMinusStart
end(peak) - start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG0O0000001461"1) ## picked
[1] -4575
start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
"ENSG00000001460"1)
#[1] -6667
###HH#H using txdb object to annotate the peaks
library(org.Hs.eg.db)
select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
columns=c("ENSEMBL", "ENTREZID"”, "SYMBOL"))
SYMBOL ENSEMBL ENTREZID
STPG1 ENSGQO0Q00001460 90529
select(org.Hs.eg.db, key= "ENSG0O000Q0001461", keytype="ENSEMBL",
columns=c("ENSEMBL", "ENTREZID", "SYMBOL"))
#ENSEMBL ENTREZID SYMBOL
ENSG00000001461 57185 NIPAL3
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb.ann <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
STPG1 <- select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
columns=c("SYMBOL", "ENSEMBL", "ENTREZID"))[1,3]
NIPAL3 <- select(org.Hs.eg.db, key="NIPAL3", keytype="SYMBOL",
columns=c("SYMBOL"”, "ENSEMBL", "ENTREZID"))[1,3]
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "start")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "end")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "middle")
expect_equal(ap$feature, STPG1)
ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
PeakLocForDistance = "endMinusStart")
expect_equal (ap$feature, NIPAL3)
txdb.ann[NIPAL3]
txdb.ann[txdb.ann$gene_id == NIPAL3]
GRanges object with 1 range and 1 metadata column:

seqgnames ranges strand | gene_id

<Rle> <IRanges> <Rle> | <character>

57185 chr1 24742245-24799473 + | 57185

txdb.ann[txdb.ann$gene_id == STPG1]
GRanges object with 1 range and 1 metadata column:

segnames ranges strand | gene_id
<Rle> <IRanges> <Rle> | <character>
90529 chr1 24683489-24741587 - 90529

assignChromosomeRegion 21

assignChromosomeRegion

Summarize peak distribution over exon, intron, enhancer, proximal
promoter, 5 prime UTR and 3 prime UTR

Description

Summarize peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and 3

prime UTR

Usage

assignChromosomeRegion(

peaks.RD,
exon,
TSS,
utr5,
utr3,

proximal.promoter.cutoff = c(upstream = 2000, downstream
immediate.downstream.cutoff = c(upstream = @, downstream

100),
1000),

nucleotidelLevel = FALSE,

precedence =
TxDb = NULL

Arguments

peaks.RD

exon

TSS

utrb

utr3

NULL,

peaks in GRanges: See example below

exon data obtained from getAnnotation or customized annotation of class GRanges
containing additional variable: strand (1 or + for plus strand and -1 or - for mi-
nus strand). This parameter is for backward compatibility only. TxDb should be
used instead.

TSS data obtained from getAnnotation or customized annotation of class GRanges
containing additional variable: strand (1 or + for plus strand and -1 or - for minus
strand). For example, data(TSS.human.NCBI36),data(TSS.mouse. NCBIM37),
data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8). This parameter is for back-
ward compatibility only. TxDb should be used instead.

5 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

3 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

22 assignChromosomeRegion

proximal.promoter.cutoff
Specify the cutoff in bases to classify proximal promoter or enhencer. Peaks that
reside within proximal.promoter.cutoff upstream from or overlap with transcrip-
tion start site are classified as proximal promoters. Peaks that reside upstream
of the proximal.promoter.cutoff from gene start are classified as enhancers. The
default is upstream 2000 bases and downstream 100 bases.
immediate.downstream.cutoff
Specify the cutoff in bases to classify immediate downstream region or enhancer
region. Peaks that reside within immediate.downstream.cutoff downstream of
gene end but not overlap 3 prime UTR are classified as immediate downstream.
Peaks that reside downstream over immediate.downstreatm.cutoff from gene
end are classified as enhancers. The default is upstream 0 bases and downstream

1000 bases.
nucleotidelevel
Logical. Choose between peak centric and nucleotide centric view. Default=FALSE
precedence If no precedence specified, double count will be enabled, which means that if
a peak overlap with both promoter and 5’UTR, both promoter and 5’UTR will
be incremented. If a precedence order is specified, for example, if promoter is
specified before 5’UTR, then only promoter will be incremented for the same ex-

non

ample. The values could be any conbinations of "Promoters", "immediateDown-
stream”, "fiveUTRs", "threeUTRs", "Exons" and "Introns", Default=NULL

TxDb an object of TxDb

Value
A list of two named vectors: percentage and jaccard (Jaccard Index). The information in the vectors:

list("Exons"”) Percent or the picard index of the peaks resided in exon regions.
list("Introns")

Percent or the picard index of the peaks resided in intron regions.
list("fiveUTRs")

Percent or the picard index of the peaks resided in 5 prime UTR regions.
list("threeUTRs")

Percent or the picard index of the peaks resided in 3 prime UTR regions.
list("Promoter")

Percent or the picard index of the peaks resided in proximal promoter regions.
list("ImmediateDownstream")

Percent or the picard index of the peaks resided in immediate downstream re-

gions.
list("Intergenic.Region")

Percent or the picard index of the peaks resided in intergenic regions.

The Jaccard index, also known as Intersection over Union. The Jaccard index is between O and 1.
The higher the index, the more significant the overlap between the peak region and the genomic
features in consideration.

Author(s)
Jianhong Ou, Lihua Julie Zhu

bdp 23

References

1. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237d0i:10.1186/1471-2105-11-237

2. Zhu LJ. (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. Methods Mol Biol.
2013;1067:105-24. doi: 10.1007/978-1-62703-607-8_8.

See Also

genomicElementDistribution, genomicElementUpSetR, binOverFeature, binOverGene, binOver-
Regions

Examples

if (interactive() || Sys.getenv("USER")=="jianhongou"){
##Display the list of genomes available at UCSC:
#library(rtracklayer)
#ucscGenomes()[, "db"]
Display the list of Tracks supported by makeTxDbFromUCSC()
#supportedUCSCtables()
##Retrieving a full transcript dataset for Human from UCSC
##TranscriptDb <-
#i# makeTxDbFromUCSC(genome="hg19", tablename="ensGene")
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
exons <- exons(TxDb, columns=NULL)
fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
Feature.distribution <-
assignChromosomeRegion(exons, nucleotidelLevel=TRUE, TxDb=TxDb)
barplot(Feature.distribution$percentage)
assignChromosomeRegion(fiveUTRs, nucleotidelLevel=FALSE, TxDb=TxDb)

data(myPeakList)
assignChromosomeRegion(myPeakList, nucleotidelevel=TRUE,
precedence=c("Promoters”, "immediateDownstream",
"fiveUTRs", "threeUTRs",
"Exons"”, "Introns"),
TxDb=TxDb)
3
3
bdp obtain the peaks near bi-directional promoters
Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional
promoters.

24 bindist-class

Usage
bdp(peaks, annoData, maxgap = 2000L, ...)
Arguments
peaks peak list, GRanges object
annoData annotation data, annoGR object
maxgap maxgap between peak and TSS
Not used.
Value

Output is a list of GRanges object of the peaks near bi-directional promoters.

Author(s)

Jianhong Ou

See Also

See Also as annoPeaks, annoGR

Examples

if(interactive() || Sys.getenv("USER")=="jianhongou"){
library(ensembldb)
library(EnsDb.Hsapiens.v75)
data("myPeakList")
annoGR <- annoGR(EnsDb.Hsapiens.v75)
seqlevelsStyle(myPeakList) <- seqglevelsStyle(annoGR)
ChIPpeakAnno: : :bdp(myPeakList, annoGR)

bindist-class Class "bindist”

Description

An object of class "bindist"” represents the relevant fixed-width range of binding site from the
feature and number of possible binding site in each range.

Objects from the Class

Objects can be created by calls of the form new("bindist"”, counts="integer"”, mids="integer" halfBinSize="intege
bindingType="character”, featureType="character").

binOverFeature

See Also

25

preparePool, peakPermTest

binOverFeature

Aggregate peaks over bins from the TSS

Description

Aggregate peaks over bins from the feature sites.

Usage

binOverFeature(

L

annotationData = GRanges(),
select = c("all”, "nearest"),
radius = 5000L,

nbins = 50L,

minGenelLen = 1L,

aroundGene =

FALSE,

mbins = nbins,
featureSite = c("FeatureStart”, "FeatureEnd”, "bothEnd"),

PeakLocForDistance = c("all”, "end"”, "start”, "middle"),
FUN = sum,
errFun = sd,
xlab,
ylab,
main
)
Arguments
Objects of GRanges to be analyzed
annotationData An object of GRanges or annoGR for annotation
select Logical: annotate the peaks to all features or the nearest one
radius The radius of the longest distance to feature site
nbins The number of bins
minGenelLen The minimal gene length
aroundGene Logical: count peaks around features or a given site of the features. Default =
FALSE
mbins if aroundGene set as TRUE, the number of bins intra-feature. The value will be

featureSite

normalized by value * (radius/genelen) * (mbins/nbins)

which site of features should be used for distance calculation

26 binOverGene

PeakLocForDistance
which site of peaks should be used for distance calculation

FUN the function to be used for score calculation
errFun the function to be used for errorbar calculation or values for the errorbar.
xlab titles for each x axis
ylab titles for each y axis
main overall titles for each plot
Value

A data.frame with bin values.

Author(s)

Jianhong Ou

Examples

bed <- system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno")
gr1 <- toGRanges(bed, format="BED"”, header=FALSE)
data(TSS.human.GRCh37)
binOverFeature(grl, annotationData=TSS.human.GRCh37,

radius=5000, nbins=10, FUN=length, errFun=0)

binOverGene coverage of gene body

Description

calculate the coverage of gene body per gene per bin.

Usage

binOverGene(
cvglists,
TxDb,
upstream.cutoff = 0oL,
downstream.cutoff = upstream.cutoff,
nbinsGene = 100L,
nbinsUpstream = 20L,
nbinsDownstream = nbinsUpstream,
includeIntron = FALSE,
minGenelLen = nbinsGene,
maxGenelLen = Inf

binOverRegions 27

Arguments
cvglists A list of SimpleRleList or RleList. It represents the coverage for samples.
TxDb An object of TxDb. It is used for extracting the annotations.

upstream.cutoff, downstream.cutoff
cutoff length for upstream or downstream of transcript.

nbinsGene, nbinsUpstream, nbinsDownstream
The number of bins for gene, upstream and downstream.

includeIntron A logical value which indicates including intron or not.

minGenelLen, maxGenelLen
minimal or maximal length of gene.

Author(s)

Jianhong Ou

See Also

binOverRegions, plotBinOverRegions

Examples

if(Sys.getenv("USER")=="jianhongou"){

path <- system.file("extdata"”, package="ChIPpeakAnno")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(rtracklayer)

files <- dir(path, "bigWig")

if(.Platform$0S.type != "windows"){

cvglists <- lapply(file.path(path, files), import,
format="BigWig", as="RlelList")

names(cvglists) <- sub(”.bigWig", "", files)

d <- binOverGene(cvglists, TxDb.Hsapiens.UCSC.hg19.knownGene)

plotBinOverRegions(d)

}

3

binOverRegions coverage of chromosome regions

Description

calculate the coverage of 5’UTR, CDS and 3’UTR per transcript per bin.

28 binOverRegions

Usage

binOverRegions(
cvglists,
TxDb,
upstream.cutoff = 1000L,
downstream.cutoff = upstream.cutoff,
nbinsCDS = 100L,
nbinsUTR = 20L,
nbinsUpstream = 20L,
nbinsDownstream = nbinsUpstream,
includelIntron = FALSE,
minCDSLen = nbinsCDS,
minUTRLen = nbinsUTR,

maxCDSLen = Inf,
maxUTRLen = Inf
)
Arguments
cvglists A list of SimpleRleList or RleList. It represents the coverage for samples.
TxDb An object of TxDb. It is used for extracting the annotations.

upstream.cutoff, downstream.cutoff

cutoff length for upstream or downstream of transcript.
nbinsCDS, nbinsUTR, nbinsUpstream, nbinsDownstream

The number of bins for CDS, UTR, upstream and downstream.
includeIntron A logical value which indicates including intron or not.
minCDSLen, minUTRLen

minimal length of CDS or UTR of transcript.

maxCDSLen, maxUTRLen
maximal length of CDS or UTR of transctipt.

Author(s)

Jianhong Ou

See Also

binOverGene, plotBinOverRegions

Examples

if(Sys.getenv("USER")=="jianhongou"){

path <- system.file("extdata"”, package="ChIPpeakAnno")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(rtracklayer)

files <- dir(path, "bigWig")

if(.Platform$0S. type != "windows"){

cvglists <- lapply(file.path(path, files), import,

ChIPpeakAnno-deprecated 29

format="BigWig", as="RlelList")

names(cvglists) <- sub(”.bigWig"”, "", files)
d <- binOverRegions(cvglists, TxDb.Hsapiens.UCSC.hg19.knownGene)
plotBinOverRegions(d)

}
3

ChIPpeakAnno-deprecated

Deprecated Functions in Package ChlPpeakAnno

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Arguments

Peaks1
Peaks2

GRanges: See example below.

GRanges: See example below.

maxgap, minoverlap

multiple

NameOfPeaks1
NameOfPeaks?2
select

annotate

ignore.strand

connectedPeaks

Details

Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps

in the IRanges package for a description of these arguments.

TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

Name of the Peaks1, used for generating column name.
Name of the Peaks?2, used for generating column name.

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

When set to TRUE, the strand information is ignored in the overlap calculations.

If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges: See also findOverlapsOfPeaks.

findOverlappingPeaks is now deprecated wrappers for findOverlapsOfPeaks

30 condenseMatrixByColnames

See Also

Deprecated, findOverlapsOfPeaks, toGRanges

cntOverlaps count overlaps

Description

Count overlaps with max gap.

Usage

cntOverlaps(A, B, maxgap = 0L, ...)

Arguments
A, B A GRanges object.
maxgap A single integer >= 0.

parameters passed to numOverlaps#

condenseMatrixByColnames
Condense matrix by colnames

Description

Condense matrix by colnames

Usage

condenseMatrixByColnames(mx, iname, sep = ";", cnt = FALSE)
Arguments

mx a matrix to be condensed

iname the name of the column to be condensed

sep separator for condensed values,default ;

cnt TRUE/FALSE specifying whether adding count column or not?
Value

dataframe of condensed matrix

convert2EntrezID 31

Author(s)
Jianhong Ou, Lihua Julie Zhu

Examples

a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)
colnames(a)<-c("con.1","con.2","index.1","index.2")
condenseMatrixByColnames(a, "con.1")
condenseMatrixByColnames(a,?2)

convert2EntrezID Convert other common IDs to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID lever-
aging organism annotation dataset. For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db
package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

Usage

convert2EntrezID(IDs, orgAnn, ID_type = "ensembl_gene_id")

Arguments

IDs a vector of IDs such as ensembl gene ids

orgAnn organism annotation dataset such as org.Hs.eg.db

ID_type type of ID: can be ensemble_gene_id, gene_symbol or refseq_id
Value

vector of entrez ids

Author(s)
Lihua Julie Zhu

Examples

ensemblIDs = c("ENSG00000115956", "ENSGO0000071082", "ENSG0O000071054",
"ENSGQ0Q00115594", "ENSGO0Q0Q115594", "ENSGO000@115598", "ENSGO00QQ170417")
library(org.Hs.eg.db)

entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

32 countPatternInSeqs

countPatternInSeqgs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

countPatternInSeqs(pattern, sequences)

Arguments
pattern DNAstringSet object
sequences a vector of sequences
Value

Total number of occurrence of the pattern in the sequences

Author(s)

Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

Examples

library(Biostrings)
filepath =
system.file("extdata”, "examplePattern.fa”, package="ChIPpeakAnno")
dict = readDNAStringSet(filepath = filepath, format="fasta",
use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT",
" AAAAAACCCCTTTTGGCCATCCCGGGACGGGCCCAT",
"ATCGAAAATTTCC")
countPatternInSeqs(pattern=dict[1], sequences=sequences)
countPatternInSeqgs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet ("ATNGMAA")
countPatternInSeqgs(pattern=pattern, sequences=sequences)

cumulativePercentage 33

cumulativePercentage Plot the cumulative percentage tag allocation in sample

Description

Plot the difference between the cumulative percentage tag allocation in paired samples.

Usage

cumulativePercentage(bamfiles, gr, input = 1, binWidth = 1000, ...)
Arguments

bamfiles Bam file names.

gr An object of GRanges

input Which file name is input. default 1.

binWidth The width of each bin.

parameter for summarizeOverlaps.

Value

A list of data.frame with the cumulative percentages.

Author(s)

Jianhong Ou

References

Normalization, bias correction, and peak calling for ChIP-seq Aaron Diaz, Kiyoub Park, Daniel
A. Lim, Jun S. Song Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2012 May
3.Published in final edited form as: Stat Appl Genet Mol Biol. 2012 Mar 31; 11(3): 10.1515/1544-
6115.1750 /j/sagmb.2012.11.issue-3/1544-6115.1750/1544-6115.1750.xml. Published online 2012
Mar 31. doi: 10.1515/1544-6115.1750 PMCID: PMC3342857

Examples

Not run:

path <- system.file("extdata"”, "reads”, package="MMDiffBamSubset")
files <- dir(path, "bam$", full.names = TRUE)
library(BSgenome.Hsapiens.UCSC.hg19)

gr <- as(seqginfo(Hsapiens)["chr1”], "GRanges")
cumulativePercentage(files, gr)

End(Not run)

34 downstreams

downstreams Get downstream coordinates

Description

Returns an object of the same type and length as x containing downstream ranges. The output range
is defined as

Usage

downstreams(gr, upstream, downstream)

Arguments

gr A GenomicRanges object

upstream, downstream
non-negative interges.

Details
(end(x) - upstream) to (end(x) + downstream -1)
for ranges on the + and * strand, and as
(start(x) - downstream + 1) to (start(x) + downstream)
for ranges on the - strand.

Note that the returned object might contain out-of-bound ranges.

Value

A GenomicRanges object

Examples

gr <- GRanges("chr1"”, IRanges(rep(10, 3), width=6), c("+", "=", "x"))
downstreams(gr, 2, 2)

egOrgMap 35

egOrgMap Convert between the name of the organism annotation package
("OrgDb") and the name of the organism.

Description
Give a species name and return the organism annotation package name or give an organism annota-
tion package name then return the species name.

Usage

egOrgMap (name)

Arguments

name The name of the organism annotation package or the species.

Value

A object of character

Author(s)

Jianhong Ou

Examples

egOrgMap("org.Hs.eg.db")
egOrgMap(”Mus musculus”)

enrichedGO Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage

enrichedGoO

36 enrichedGO

Format
A list of 3 dataframes.

list("'bp'') dataframe described the enriched biological process with 9 columns
£0.1d:GO biological process id
go.term:GO biological process term
go.Definition: GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

list("'mf"") dataframe described the enriched molecular function with the following 9 columns
£0.id:GO molecular function id
go.term:GO molecular function term
go.Definition: GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

list("'cc'") dataframe described the enriched cellular component the following 9 columns
£0.1d:GO cellular component id
go.term:GO cellular component term
go.Definition: GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)
Lihua Julie Zhu

Examples

data(enrichedGO)

dim(enrichedGO$mf)
dim(enrichedGO$cc)
dim(enrichedG0$bp)

enrichmentPlot 37

enrichmentPlot plot enrichment results

Description

Plot the GO/KEGG/reactome enrichment results

Usage

enrichmentPlot(
res,
n = 20,
strlength = Inf,
style = c("v", "h"),
label_wrap = 40,
label_substring_to_remove = NULL,

orderBy = c("pvalue”, "termId”, "none")
)
Arguments
res output of getEnrichedGO, getEnrichedPATH.
n number of terms to be plot.
strlength shorten the description of term by the number of char.
style plot vertically or horizontally
label_wrap soft wrap the labels (i.e. descriptions of the GO or PATHWAY terms), default to

40 characters.

label_substring_to_remove
remove common substring from label, default to NULL. Special characters must
be escaped. E.g. if you would like to remove "Homo sapiens (human)" from
labels, you must use "Homo sapiens \\(human\\)".

orderBy order the data by pvalue, termld or none.

Value

an object of ggplot

Author(s)

Jianhong Ou, Kai Hu

38

estFragmentLength

Examples

data(enrichedGO)
enrichmentPlot (enrichedGO)
if (interactive()||Sys.getenv("USER")=="jianhongou") {

library(org.Hs.eg.db)
library(GO.db)
bed <- system.file("extdata”, "MACS_output.bed”, package="ChIPpeakAnno")
gr1 <- toGRanges(bed, format="BED", header=FALSE)
gff <- system.file("extdata", "GFF_peaks.gff", package="ChIPpeakAnno")
gr2 <- toGRanges(gff, format="GFF", header=FALSE, skip=3)
library(EnsDb.Hsapiens.v75) ##(hg19)
annoData <- toGRanges(EnsDb.Hsapiens.v75)
grl.anno <- annoPeaks(gri1, annoData)
gr2.anno <- annoPeaks(gr2, annoData)
over <- lapply(GRangesList(gri=gri.anno, gr2=gr2.anno),

getEnrichedGO, orgAnn="org.Hs.eg.db",

maxP=.05, minGOterm=10@, condense=TRUE)
enrichmentPlot(overs$gril)
enrichmentPlot(over$gr2, style = "h")

EnsDb2GR EnsDb object to GRanges

Description

convert EnsDb object to GRanges

Usage

EnsDb2GR(ranges, feature)

Arguments
ranges an EnsDb object
feature feature type, could be disjointExons, gene, exon and transcript
estFragmentlLength estimate the fragment length
Description

estimate the fragment length for bam files

estFragmentLength 39

Usage

estFragmentLength(
bamfiles,
index = bamfiles,
plot = TRUE,
lag.max = 1000,
minFragmentSize = 100,

)
Arguments
bamfiles The file names of the 'BAM’ ('SAM’ for asBam) files to be processed.
index The names of the index file of the 'TBAM’ file being processed; this is given
without the *.bai’ extension.
plot logical. If TRUE (the default) the acf is plotted.
lag.max maximum lag at which to calculate the acf. See acf
minFragmentSize
minimal fragment size to avoid the phantom peak.
Not used.
Value

numberic vector

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jianhongou"){
path <- system.file("extdata”, "reads"”, package="MMDiffBamSubset")
if(file.exists(path)){
WT.AB2 <- file.path(path, "WT_2.bam")
Null.AB2 <- file.path(path, "Null_2.bam")
Resc.AB2 <- file.path(path, "Resc_2.bam")
estFragmentLength(c(WT.AB2, Null.AB2, Resc.AB2))

40 estLibSize

estLibSize estimate the library size

Description

estimate the library size of bam files

Usage
estLibSize(bamfiles, index = bamfiles, ...)
Arguments
bamfiles The file names of the 'BAM’ ('SAM’ for asBam) files to be processed.
index The names of the index file of the ' BAM’ file being processed; this is given
without the ’.bai’ extension.
Not used.
Value

numberic vector

Author(s)

Jianhong Ou

Examples

if(interactive() || Sys.getenv("USER")=="jianhongou"){
path <- system.file("extdata”, "reads"”, package="MMDiffBamSubset")
if(file.exists(path)){
WT.AB2 <- file.path(path, "WT_2.bam")
Null.AB2 <- file.path(path, "Null_2.bam")
Resc.AB2 <- file.path(path, "Resc_2.bam")
estLibSize(c(WT.AB2, Null.AB2, Resc.AB2))

ExonPlusUtr.human.GRCh37 41

ExonPlusUtr.human.GRCh37
Gene model with exon, 5’ UTR and 3’ UTR information for human
sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5 UTR and 3’ UTR information for human sapiens (GRCh37) obtained
from biomaRt

Usage

ExonPlusUtr.human.GRCh37

Format

GRanges with slot start holding the start position of the exon, slot end holding the end position
of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome
location where the gene is located. In addition, the following variables are included.
list("'strand'') 1 for positive strand and -1 for negative strand

list("'description'') description of the transcript

list("'ensembl_gene_id'') gene id

list("'utrSstart') 5° UTR start

list(""utrSend'') 5’ UTR end

list(""utr3start'') 3’ UTR start

list(""utr3end'") 3’ UTR end

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset
= "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-
Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37)
slotNames(ExonPlusUtr.human.GRCh37)

42 featureAlignedDistribution

featureAlignedDistribution
plot distribution in given ranges

Description

plot distribution in the given feature ranges

Usage

featureAlignedDistribution(
cvglists,
feature.gr,
upstream,
downstream,
n.tile = 100,
zeroAt,

Arguments

cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList

feature.gr An object of GRanges with identical width. If the width equal to 1, you can use
upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream
upstream or dwonstream from the feature.gr.

n.tile The number of tiles to generate for each element of feature.gr, default is 100
zeroAt zero point position of feature.gr

any paramters could be used by matplot

Value

invisible matrix of the plot.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, feature AlignedHeatmap

featureAlignedExtendSignal 43

Examples

cvglists <- list(A=RlelList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))),
B=RleList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
featureAlignedDistribution(cvglists, feature.gr, zeroAt=50, type="1")

featureAlignedExtendSignal
extract signals in given ranges from bam files

Description

extract signals in the given feature ranges from bam files (DNAseq only). The reads will be extended
to estimated fragement length.

Usage
featureAlignedExtendSignal(
bamfiles,
index = bamfiles,
feature.gr,
upstream,
downstream,
n.tile = 100,
fragmentLength,
librarySize,
pe = C(Ilauto”’ IIPEIIy IISEII)’
adjustFragmentLength,
gal,
)
Arguments
bamfiles The file names of the 'BAM’ ("'SAM’ for asBam) files to be processed.
index The names of the index file of the 'TBAM’ file being processed; this is given
without the ’.bai’ extension.
feature.gr An object of GRanges with identical width.

upstream, downstream
upstream or dwonstream from the feature.gr.

n.tile The number of tiles to generate for each element of feature.gr, default is 100

fragmentLength Estimated fragment length.

44 featureAlignedExtendSignal

librarySize Estimated library size.
pe Pair-end or not. Default auto.
adjustFragmentLength

A numberic vector with length 1. Adjust the fragments/reads length to.

gal A GAlignmentsList object or a list of GAlignmentPairs. If bamfiles is missing,
gal is required.

Not used.

Value

A list of matrix. In each matrix, each row record the signals for corresponding feature.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, estLibSize, estFragmentLength

Examples

if(interactive() || Sys.getenv("USER")=="jianhongou"){
path <- system.file("extdata"”, package="MMDiffBamSubset")
if(file.exists(path)){

WT.AB2 <- file.path(path, "reads”, "WT_2.bam")

Null.AB2 <- file.path(path, "reads”, "Null_2.bam")

Resc.AB2 <- file.path(path, "reads", "Resc_2.bam")

peaks <- file.path(path, "peaks"”, "WT_2_Macs_peaks.xls")

estLibSize(c(WT.AB2, Null.AB2, Resc.AB2))

feature.gr <- toGRanges(peaks, format="MACS")

feature.gr <- feature.gr[segnames(feature.gr)=="chr1” &

start(feature.gr)>3000000 &
end(feature.gr)<75000000]

sig <- featureAlignedExtendSignal(c(WT.AB2, Null.AB2, Resc.AB2),
feature.gr=reCenterPeaks(feature.gr, width=1),
upstream = 505,
downstream = 505,
n.tile=101,
fragmentLength=250,
librarySize=1e9)

featureAlignedHeatmap(sig, reCenterPeaks(feature.gr, width=1010),

zeroAt=.5, n.tile=101)

featureAlignedHeatmap 45

featureAlignedHeatmap Heatmap representing signals in given ranges

Description

plot heatmap in the given feature ranges

Usage

featureAlignedHeatmap (
cvglists,
feature.gr,
upstream,
downstream,
zeroAt,
n.tile = 100,
annoMcols = c(),
sortBy = names(cvglists)[1],
color = colorRampPalette(c("yellow”, "red"))(50),
lower.extreme,
upper.extreme,
margin = c(0.1, 0.01, 0.15, 0.1),
gap = 0.01,
newpage = TRUE,
gp = gpar(fontsize = 10),

)

Arguments
cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList
feature.gr An object of GRanges with identical width. If the width equal to 1, you can use

upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream
upstream or dwonstream from the feature.gr. It must keep same as feature-
AlignedSignal. It is used for x-axis label.

zeroAt zero point position of feature.gr
n.tile The number of tiles to generate for each element of feature.gr, default is 100
annoMcols The columns of metadata of feature.gr that specifies the annotations shown of

the right side of the heatmap.

sortBy Sort the feature.gr by columns by annoMcols and then the signals of the given
samples. Default is the first sample. Set to NULL to disable sort.

color vector of colors used in heatmap

46 featureAlignedSignal

lower.extreme, upper.extreme
The lower and upper boundary value of each samples

margin Margin for of the plot region.
gap Gap between each heatmap columns.
newpage Call grid.newpage or not. Default, TRUE
gp A gpar object can be used for text.
Not used.
Value

invisible gList object.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, feature AlignedDistribution

Examples

cvglists <- list(A=RleList(chri1=Rle(sample.int(5000, 100),
sample.int (300, 100))),
B=RlelList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
feature.gr$anno <- rep(c("typel”, "type2"), c(25, 24))
featureAlignedHeatmap(cvglists, feature.gr, zeroAt=50, annoMcols="anno")

featureAlignedSignal extract signals in given ranges

Description

extract signals in the given feature ranges

Usage

featureAlignedSignal(
cvglists,
feature.gr,
upstream,
downstream,
n.tile = 100,

findEnhancers 47

Arguments
cvglists List of SimpleRleList or RleList
feature.gr An object of GRanges with identical width.

upstream, downstream
Set the feature.gr to upstream and dwonstream from the center of the feature.gr
if they are set.

n.tile The number of tiles to generate for each element of feature.gr, default is 100

Not used.

Value

A list of matrix. In each matrix, each row record the signals for corresponding feature. rownames
of the matrix show the seqnames and coordinates.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedHeatmap, featureAlignedDistribution

Examples

cvglists <- list(A=RleList(chri1=Rle(sample.int(5000, 100),
sample.int (300, 100))),
B=RleList(chr1=Rle(sample.int (5000, 100),
sample.int (300, 100))))
feature.gr <- GRanges("chr1”, IRanges(seq(1, 4900, 100), width=100))
featureAlignedSignal(cvglists, feature.gr)

findEnhancers Find possible enhancers depend on DNA interaction data

Description

Find possible enhancers by data from chromosome conformation capture techniques such as 3C,
5C or HiC.

48 findEnhancers
Usage
findEnhancers(
peaks,
annoData,
DNAinteractiveData,
bindingType = c("nearestBiDirectionalPromoters”, "startSite”, "endSite"),
bindingRegion = c(-5000, 5000),
ignore.peak.strand = TRUE,
)
Arguments
peaks peak list, GRanges object
annoData annotation data, GRanges object
DNAinteractiveData
DNA interaction data, GRanges object with interaction blocks informations,
Glnteractions object, or BEDPE file which could be imported by importGIn-
teractions or BioclO::import or assembly in following list: hg38, hg19, mm10,
danRer10, danRer11.
bindingType Specifying the criteria to associate peaks with annotation. Here is how to use
it together with the parameter bindingRegion. The annotation will be shift to a
new position depend on the DNA interaction region.

* To obtain peaks within 5kb upstream and up to 3kb downstream of shift
TSS within the gene body, set bindingType = "startSite" and bindingRegion
= ¢(-5000, 3000)

* To obtain peaks up to Skb upstream within the gene body and 3kb down-
stream of shift gene/Exon End, set bindingType = "endSite" and bindin-
gRegion = ¢(-5000, 3000)

* To obtain peaks with nearest bi-directional enhancer regions within Skb
upstream and 3kb downstream of shift TSS, set bindingType = "nearest-
BiDirectionalPromoters" and bindingRegion = ¢(-5000, 3000)

startSite start position of the feature (strand is considered)

endSite end position of the feature (strand is considered)

nearestBiDirectionalPromoters nearest enhancer regions from both direction
of the peaks (strand is considered). It will report bidirectional enhancer
regions if there are enhancer regions in both directions in the given region
(defined by bindingRegion). Otherwise, it will report the closest enhancer
regions in one direction.

bindingRegion Annotation range used together with bindingType, which is a vector with two

integer values, default to ¢ (-5000, 5000). The first one must be no bigger than
0. And the sec ond one must be no less than 1. For details, see bindingType.

ignore.peak.strand

ignore the peaks strand or not.

Not used.

findMotifsInPromoterSeqs 49

Value

Output is a GRanges object of the annotated peaks.

Author(s)

Jianhong Ou

See Also

See Also as annotatePeakInBatch

Examples

bed <- system.file("extdata"”,
"wgEncodeUmassDekker5CGm12878PkV2.bed.gz",
package="ChIPpeakAnno")

DNAinteractiveData <- toGRanges(gzfile(bed))

library(EnsDb.Hsapiens.v75)

annoData <- toGRanges(EnsDb.Hsapiens.v75, feature="gene")

data("myPeakList")

findEnhancers(myPeakList[500:1000], annoData, DNAinteractiveData)

findMotifsInPromoterSeqs
Find occurence of input motifs in the promoter regions of the input
gene list

Description

Find occurence of input motifs in the promoter regions of the input gene list

Usage

findMotifsInPromoterSeqs(
patternFilePatht,
patternFilePath2,
findPairedMotif = FALSE,
BSgenomeName,
txdb,
genelDs,
upstream = 5000L,
downstream = 5000L,
name.motif1 = "motif1"”,
name.motif2 = "motif2",
max.distance = 100L,
min.distance = 1L,
motif.orientation = c("both”, "motif1UpstreamOfMotif2", "motif2UpstreamOfMoif1"),

50 findMotifsInPromoterSeqs
ignore.strand = FALSE,
format = "fasta”,
skip = oL,
motifiLocForDistance = "end"”,
motif2LocForDistance = "start”,
outfile,
append = FALSE
)
Arguments
patternFilePathi
File path containing a list of known motifs. Required
patternFilePath2
File path containing a motif requried to be in the flanking regions of the motif(s)
in the first file, i.e, patternFilePath1. Requried if findPairedMotif is set to TRUE
findPairedMotif
Find motifs in paired configuration only or not. Default FALSE
BSgenomeName A BSgenome object. For a list of existing Bsgenomes, please refer use the func-
tion available.genomes in BSgenome package. For example,BSgenome.Hsapiens.UCSC.hg38
is for hg38, BSgenome.Hsapiens.UCSC.hg19 is for hg19, BSgenome.Mmusculus.UCSC.mm10
is for mm10, BSgenome.Celegans.UCSC.ce6 is for ce6 BSgenome.Rnorvegicus.UCSC.rn5
is for rn5, BSgenome.Drerio.UCSC.danRer7 is for Zv9, and BSgenome.Dmelanogaster. UCSC.dm3
is for dm3. Required
txdb A TxDb object. For creating and using TxDb object, please refer to GenomicFea-
tures package. For a list of existing TxDb object, please search for annotation
package starting with Txdb at http://www.bioconductor.org/packages/release/BiocViews.html#___Annot:
such as TxDb.Rnorvegicus.UCSC.rn5.refGene for rat, TxDb.Mmusculus. UCSC.mm10.knownGene
for mouse, TxDb.Hsapiens.UCSC.hg19.knownGene and TxDb.Hsapiens.UCSC.hg38.knownGene
for human, TxDb.Dmelanogaster. UCSC.dm3.ensGene for Drosophila and TxDb.Celegans.UCSC.ce6.ens
for C.elegans
genelDs One or more gene entrez IDs. For example the entrez ID for EWSIR is 2130
https://www.genecards.org/cgi-bin/carddisp.pl?gene=EWSR1 You can use the
addGenelDs function in ChIPpeakAnno to convert other types of Gene IDs to
entrez ID
upstream Number of bases upstream of the TSS to search for the motifs. Default SO00L
downstream Number of bases downstream of the TSS to search for the motifs. Default 5000L

name.motif1

name.motif2

max.distance

min.distance

Name of the motif in inputfilePath2 for labeling the output file column. Default
motifl. used only when searching for motifs in paired configuration

Name of the motif in inputfilePath2 for labeling the output file column. Default
motif2 used only when searching for motifs in paired configuration

maximum required gap between a paired motifs to be included in the output file.
Default 100L

Minimum required gap between a paired motifs to be included in the output file.
Default 1L

findMotitsInPromoterSeqs 51

motif.orientation
Required relative oriention between paired motifs: both means any orientation,
motif1UpstreamOfMotif2 means motifl needs to be located on the upstream of
motif2, and motif2UpstreamOfMoif]l means motif2 needs to be located on the
upstream of motifl. Default both

ignore.strand Specify whether paired motifs should be located on the same strand. Default

FALSE

format The format of the files specified in inputFilePathl and inputFilePath2. Default
fasta

skip Specify number of lines to skip at the beginning of the input file. Default OL

motifl1LocForDistance
Specify whether to use the start or end of the motifl location to calculate dis-
tance between paired motifs. Only applicable when findPairedMotif is set to
TRUE. Default end

motif2LocForDistance
Specify whether to use the start or end of the motif2 location to calculate dis-
tance between paired motifs. Only applicable when findPairedMotif is set to
TRUE. Default start

outfile File path to save the search results
append Specify whether to append the results to the specified output file, i.e., outfile.
Default FALSE
Details

This function outputs the motif occuring locations in the promoter regions of input gene list and
input motifs. It also can find paired motifs within specificed gap threshold

Value

A vector of numeric. It is the background corrected log2-transformed ratios, CPMRatios or Odd-
Ratios.

An object of GRanges with metadata "tx_start", "tx_end tx_strand", "tx_id", "tx_name", "Gene ID",
and motif specific information such as motif name, motif found, motif strand etc.

Author(s)
Lihua Julie Zhu, Kai Hu

Examples

library("BSgenome.Hsapiens.UCSC.hg38")
library("TxDb.Hsapiens.UCSC.hg38.knownGene")

patternFilePath1l =system.file("extdata”, "motifIRF4.fa", package="ChIPpeakAnno")

patternFilePath2 =system.file("extdata”, "motifAP1.fa", package="ChIPpeakAnno")

pairedMotifs <- findMotifsInPromoterSeqs(patternFilePathl = patternFilePathl,
patternFilePath2 = patternFilePath2,

52 findOverlappingPeaks

findPairedMotif = TRUE,

name.motif1 = "IRF4", name.motif2 = "AP1",

BSgenomeName = BSgenome.Hsapiens.UCSC.hg38,

genelDs = 7486, txdb = TxDb.Hsapiens.UCSC.hg38.knownGene,
outfile = "testPaired.x1s")

unPairedMotifs <- findMotifsInPromoterSeqs(patternFilePathl = patternFilePathi,
BSgenomeName = BSgenome.Hsapiens.UCSC.hg38,
genelDs = 7486, txdb = TxDb.Hsapiens.UCSC.hg38.knownGene,
outfile = "testUnPaired.x1s")

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

Usage
findOverlappingPeaks(
PeaksT,
Peaks2,
maxgap = -1L,

minoverlap = 0oL,

multiple = c(TRUE, FALSE),

NameOfPeaks1 = "TF1",

NameOfPeaks2 = "TF2",

select = c("all”, "first"”, "last"”, "arbitrary”),
annotate = 0,

ignore.strand = TRUE,

connectedPeaks = c("min", "merge"),
)
Arguments
Peaks1 GRanges: See example below.
Peaks2 GRanges: See example below.

maxgap, minoverlap
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the IRanges package for a description of these arguments.

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaksl. This parameter is kept for backward compatibility,
please use select.

findOverlappingPeaks

NameOfPeaks1
NameOfPeaks?2
select

annotate

ignore.strand
connectedPeaks

Details

53

Name of the Peaks1, used for generating column name.
Name of the Peaks2, used for generating column name.

all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

When set to TRUE, the strand information is ignored in the overlap calculations.
If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Objects of GRanges: See also findOverlapsOfPeaks.

The new function findOverlapsOfPeaks is recommended.

Efficiently perform overlap queries with an interval tree implemented in IRanges.

Value
OverlappingPeaks
a data frame consists of input peaks information with added information: over-
lapFeature (upstream: peakl resides upstream of the peak2; downstream: peakl
resides downstream of the peak2; inside: peakl resides inside the peak2 en-
tirely; overlapStart: peakl overlaps with the start of the peak2; overlapEnd:
peakl overlaps with the end of the peak2; includeFeature: peakl include the
peak?2 entirely) and shortestDistance (shortest distance between the overlapping
peaks)
MergedPeaks GRanges contains merged overlapping peaks
Author(s)
Lihua Julie Zhu
References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN

0-262-53196-8

2.Zhu LJ. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237 doi:10.1186/1471-2105-11-237

3. Zhu L (2013). Integrative analysis of ChIP-chip and ChIP-seq dataset. In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-

1-62703-607-8_8

See Also

findOverlapsOfPeaks, annotatePeakInBatch, makeVennDiagram

54 findOverlapsOfPeaks

Examples

if (interactive())

{
peaksl =
GRanges(seqgnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200, 1563000, 1569800,167889600) ,
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),
strand=as.integer(1))
peaks2 =

GRanges(seqgnames=c(6,6,6,6,5),
IRanges(start=c(1549800, 1554400, 1565000, 1569400,167888600) ,
end=c(1550599,1560799,1565399,1571199,167888999),
names=c("f1","f2", "f3","f4" ,"f5")),
strand=as.integer(1))
t1 =findOverlappingPeaks(peaks1, peaks2, maxgap=1000,
NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all"”, annotate=1)
r = t1$0verlappingPeaks
pie(table(r$overlapFeature))
as.data.frame(t1$MergedPeaks)
}

findOverlapsOfPeaks Find the overlapped peaks among two or more set of peaks.

Description

Find the overlapping peaks for two or more (less than five) set of peak ranges.

Usage
findOverlapsOfPeaks(

maxgap = -1L,

minoverlap = 0L,

ignore.strand = TRUE,

connectedPeaks = c("keepAll”, "min”, "merge")

Arguments

Objects of GRanges: See example below.

maxgap, minoverlap
Used in the internal call to findOverlaps() to detect overlaps. See ?findOverlaps
in the TRanges package for a description of these arguments. If 0 < minoverlap
< 1, the function will find overlaps by percentage covered of interval and the
filter condition will be set to max covered percentage of overlapping peaks.

findOverlapsOfPeaks 55

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks are involved in any group of connected/overlapping peaks
in any input peak list, set it to "merge" will add 1 to the overlapping counts,
while set it to "min" will add the minimal involved peaks in each group of con-
nected/overlapped peaks to the overlapping counts. Set it to "keepAll" will add
the number of involved peaks for each peak list to the corresponding overlapping
counts. In addition, it will output counts as if connectedPeaks were set to "min".
For examples (https://support.bioconductor.org/p/133486/#133603), if 5 peaks
in groupl overlap with 2 peaks in group 2, setting connectedPeaks to "merge"
will add 1 to the overlapping counts; setting it to "keepAll" will add 5 peaks to
count.groupl, 2 to count.group2, and 2 to counts; setting it to “min” will add 2
to the overlapping counts.

Details

Efficiently perform overlap queries with an interval tree implemented with GRanges.

Value

return value is An object of overlappingPeaks.

venn_cnt an object of VennCounts

peaklist a list consists of all overlapping peaks or unique peaks

uniquePeaks an object of GRanges consists of all unique peaks

mergedPeaks an object of GRanges consists of all merged overlapping peaks

peaksInMergedPeaks
an object of GRanges consists of all peaks in each samples involved in the over-
lapping peaks

overlappingPeaks

a list of data frame consists of the annotation of all the overlapped peaks

all.peaks a list of GRanges object which contain the input peaks with formated rownames.

Author(s)

Jianhong Ou

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McG