
Package ‘CellNOptR’
November 20, 2024

Type Package

Title Training of boolean logic models of signalling networks using
prior knowledge networks and perturbation data

Version 1.53.0

Date 2022-03-16

Depends R (>= 4.0.0), RBGL, graph, methods, RCurl, Rgraphviz, XML,
ggplot2, rmarkdown

Imports igraph, stringi, stringr

Suggests data.table, dplyr, tidyr, readr, knitr, RUnit, BiocGenerics,

Enhances doParallel, foreach

VignetteBuilder knitr

biocViews CellBasedAssays, CellBiology, Proteomics, Pathways, Network,
TimeCourse, ImmunoOncology

Description This package does optimisation of boolean logic networks of
signalling pathways based on a previous knowledge network and a set of data upon
perturbation of the nodes in the network.

License GPL-3

LazyLoad yes

SystemRequirements Graphviz version >= 2.2

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/CellNOptR

git_branch devel

git_last_commit edc045a

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-11-20

Author Thomas Cokelaer [aut],
Federica Eduati [aut],
Aidan MacNamara [aut],

1

2 Contents

S Schrier [ctb],
Camille Terfve [aut],
Enio Gjerga [ctb],
Attila Gabor [cre]

Maintainer Attila Gabor <attila.gabor@uni-heidelberg.de>

Contents
CellNOptR-package . 4
buildBitString . 5
build_sif_table_from_rule . 6
checkSignals . 7
CNOdata . 8
CNOlist-class . 9
CNOlist-methods . 10
CNOlistDREAM . 11
CNOlistToy . 12
CNOlistToy2 . 13
CNOlistToyMMB . 13
CNORbool . 14
CNORwrap . 15
compressModel . 17
computeScoreT1 . 18
computeScoreTN . 19
createAndRunILP . 20
createILPBitstringAll . 22
create_binaries . 22
crossInhibitedData . 23
crossvalidateBoolean . 24
cSimulator . 26
cutAndPlot . 27
cutAndPlotResultsT1 . 28
cutAndPlotResultsTN . 30
cutCNOlist . 31
cutModel . 32
cutNONC . 33
cutSimList . 34
defaultParameters . 35
exhaustive . 36
expandGates . 37
findNONC . 39
gaBinaryT1 . 40
gaBinaryTN . 42
getFit . 44
graph2sif . 46
ilpBinaryT1 . 47
ilpBinaryT2 . 49

Contents 3

ilpBinaryTN . 51
indexFinder . 53
internals . 54
invokeCPLEX . 54
LiverDREAM . 55
makeCNOlist . 56
mapBack . 57
model2igraph . 58
model2sif . 59
normaliseCNOlist . 60
pknmodel . 62
plot-method . 62
plotCNOlist . 63
plotCNOlist2 . 64
plotCNOlistLarge . 65
plotCNOlistLargePDF . 66
plotCNOlistPDF . 67
plotFit . 67
plotModel . 68
plotOptimResults . 70
plotOptimResultsPan . 72
plotOptimResultsPDF . 74
prep4sim . 76
preprocessing . 77
randomizeCNOlist . 78
readBND . 79
readBNET . 80
readMIDAS . 80
readSBMLQual . 81
readSIF . 82
residualError . 84
sif2graph . 85
simulateT1 . 86
simulateTN . 87
simulatorT0 . 88
simulatorT1 . 89
simulatorT2 . 91
simulatorTN . 93
toSBML . 94
ToyModel . 95
ToyModel2 . 96
writeDot . 96
writeFile . 98
writeMIDAS . 99
writeNetwork . 100
writeObjectiveFunction . 102
writeReport . 103
writeScaffold . 105

4 CellNOptR-package

writeSIF . 107
write_bounds . 108
write_constraints . 108

Index 110

CellNOptR-package R version of CellNOptR, boolean features

Description

This package does optimisation of boolean logic networks of signalling pathways based on a pre-
vious knowledge network and a set of data collected upon perturbation of some of the nodes in the
network.

Details

Package: CellNOptR
Type: Package
Version: 1.25.1
Date: 2018-01-10
License: GPLv3
LazyLoad: yes

Author(s)

T. Cokelaer, A. MacNamara, F. Eduati, S. Schrier, C. Terfve

Maintainer: A. Gabor<gabor.attila87@gmail.com>, until 2018-01-18: T. Cokelaer <cokelaer@ebi.ac.uk>

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

Examples

quick 1 time point optimisation of a Prior Knowledge Network to MIDAS data.
data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

pknmodel = ToyModel
cnolist = CNOlist(CNOlistToy)
model = preprocessing(cnolist, pknmodel)
results = gaBinaryT1(cnolist, model, verbose=FALSE)

buildBitString 5

plotFit(results)
cutAndPlot(cnolist, model, list(results$bString))

Same as above and HTML report
CNORwrap(name="Toy",

namesData=list(CNOlist="ToyData",model="ToyModel"),
data=CNOlistToy, model=pknmodel)

buildBitString Build the final bit string vector and times vector based on a list of
optimised bit strings at different time points.

Description

This function takes as input a list of vectors (can be only one). Each vector represents an optimised
bit string at a different time point (as returned by the gaBinary functions). The first optimised bit
string have the same length as the model to be optimised. The length of the following vectors
corresponds to the number of zeros found in the previous bitstring. For instance, the following
list of bit strings bStrings = list(c(1,1,1,0,0,0),c(1,0,0)) is correct whereas bStrings =
list(c(1,1,1,0,0,0), c(1,0)) is incorrect.

This function is used internally by computeScoreTN and simulateTN. It should not be used by a
user in principle. However, it may be useful for post processing.

New in version 1.3.28.

Usage

buildBitString(bStrings)

Arguments

bStrings a list of bit strings as returned by the optimisation at different time points.

Value

This function returns 2 components. The first one as explained in the description is a vector of same
length as the first input vector in the bStrings argument. The second component is a vector that
keeps track of the time point at which each bit was optimised (see example).

Author(s)

T. Cokelaer

6 build_sif_table_from_rule

Examples

Considering the optimised bitstrings at T1, T2 and T3 to be c(1,1,0,1,0,0),
c(0,1,0) and c(0,1), then we can build the overall bitStrings as follows:

res = buildBitString(list(c(1,1,0,1,0,0), c(0,1,0), c(0,1)))

The results bit string is accessed through the bs field:
res$bs
#[1] 1 1 0 1 1 1

and times at which each bit is activated with the bsTimes field:
res$bsTimes

res$bsTimes = c(1,1,0,1,2,3)

build_sif_table_from_rule

Build a SIF table from a logic rule written in a string

Description

Build a SIF table from a logic rule written in a string

Usage

build_sif_table_from_rule(rule_str, target, last_and_num = 0)

Arguments

rule_str String containing the rule to be parsed

target Name of the node affected by the rule

last_and_num If the rule contains ‘and‘ gates, their numeration will start after the number
provided here (default is 0)

Value

data.frame with the network structure derived from the rule. The column ‘sif_str‘ contains the string
that can be written to a file and then read with ‘readSIF()‘ in order to load a CellNOpt compatible
network.

Examples

CellNOptR:::build_sif_table_from_rule("B & (C | D)", "A", last_and_num=2)

test_rule <- list()
test_rule[[1]] <- "AMP_ATP | (ATM & ATR) | HIF1 | !(EGFR | FGFR3)"
test_rule[[2]] <- "A & ((B | C) & !(D & E))"

checkSignals 7

test_rule[[3]] <- "A & B | C"
test_rule[[4]] <- "A & B & C"
test_rule[[5]] <- "A & (B | C)"
test_rule[[6]] <- "(A | B) & (C | D)"
test_rule[[7]] <- "!(C & D) | (E & F)"
test_rule[[8]] <- "(A | B) & (C | !D) & (E | F)"
parsed_rule <- list()
for (i in c(1:length(test_rule))){

parsed_rule[[i]] <- CellNOptR:::build_sif_table_from_rule(test_rule[[i]], "T")
}

checkSignals Check the CNOlist and model matching

Description

This function checks that all the signals in a CNOlist match to species in the model. It also checks
that the CNOlist and Model lists have the right format and contain the right fields. It is called by the
preprocessing function so there is no need to call it directly anymore if you use the preprocessing
function.

In version 1.3.20, check of inhibitors and stimuli is also performed.

Usage

checkSignals(CNOlist, model)

Arguments

CNOlist A CNOlist structure, as created by makeCNOlist.

model A model structure, as created by readSIF.

Details

If the formats are wrong, this function produces an error. If the signals/inhibitors/stimuli do not
match the species, this function produces a warning that explains which signals does no match any
species.

Author(s)

C. Terfve, T. Cokelaer

See Also

makeCNOlist, readSIF, preprocessing

8 CNOdata

Examples

data(CNOlistToy, package="CellNOptR")
data(ToyModel, package="CellNOptR")
checkSignals(CNOlistToy, ToyModel)

CNOdata Get data from a CellNOpt data repository

Description

This function fetch a file from the URL provided (default is http://www.ebi.ac.uk/~cokelaer/cellnopt/data/_downloads)
and save it into a temporary file.

You will need Rcurl package to use this function.

Usage

CNOdata(filename, verbose=FALSE, url=NULL)

Arguments

filename a valid filename that can be found in the url

verbose FALSE by default, it prints the path of the temporary file where data has been
copied.

url You can overwrite the default URL (http://www.ebi.ac.uk/~cokelaer/cellnopt/data/_downloads)
with this argument.

Value

the path of the temporary file where data has been copied.

Author(s)

T. Cokelaer

Examples

Not run: readSIF(CNOdata("PKN-ToyMMB.sif"))

CNOlist-class 9

CNOlist-class Class "CNOlist"

Description

This function takes as input the filename of a MIDAS file (or the list returned by makeCNOlist)
and returns an instance of CNOlist class. It provides an object oriented approach to manipulate
CNOlist. This function calls readMIDAS and makeCNOlist.

Objects from the Class

Objects can be created by calls of the form new("CNOlist", ...).

Slots

cues: Object of class "matrix"

inhibitors: Object of class "matrix"

stimuli: Object of class "matrix"

signals: Object of class "list"

variances: Object of class "list"

timepoints: Object of class "vector" timepoints contained in the signals matrix.
See CNOlist-methods for details

Methods

Available methods are plot, compatCNOlist, randomize, length. See CNOlist-methods for details.

Author(s)

T. Cokelaer

See Also

randomizeCNOlist, plotCNOlist, plotCNOlist2

Examples

showClass("CNOlist")

files<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
cnolist = CNOlist(files[[1]])
getters:
getCues(cnolist)
getInhibitors(cnolist)
getSignals(cnolist)
getVariances(cnolist)
getTimepoints(cnolist)

10 CNOlist-methods

getStimuli(cnolist)
In version 1.3.30 and above, use the plot method instead of former plotCNOlist function.
plot(cnolist)
new_cnolist = randomize(cnolist)
length(cnolist)

CNOlist-methods List of CNOlist-class methods

Description

CNOlist is a class with a set of methods described here below.

Usage

signature(x="CNOlist")

Getters

getCues Returns the cues (matrix) found in the CNOlist

getSignals Returns the signals (list of matrices) found in the CNOlist

getStimuli Returns the cues found in the CNOlist

getInhibitors Returns the inhibitors found in the CNOlist

getTimepoints Returns the timepoints found in the CNOlist

getVariances Returns the Variances (list of matrices) found in the CNOlist. Will be different from
zero only if replicates were found in the MIDAS data. See makeCNOlist

Setters

setSignals Set the signals. No sanity check!

Other methods

compatCNOlist convert the instance CNOlist into the old-style returned by makeCNOlist that is a
list. Used in the ODE package.

length returns length of CNOlist (number of time points)

randomize randomizes the signals matrice in a CNOlist. See randomizeCNOlist for details

show prints summary information

plot plot the CNOlist instance using the plotCNOlist function.

plot signature(x="CNOlist", y="CNOlist"): Please see the page of plotCNOlist2 for more
details.

readErrors signature(object="CNOlist", filename="MIDAS-file"): reads measurement er-
ror corresponding to the data from the MIDAS file and updates the CNOlist object

writeErrors signature(object="CNOlist", filename="string",overwrite=F): writes mea-
surement error corresponding to the data from the CNOlist to a MIDAS file

CNOlistDREAM 11

Author(s)

T.Cokelaer

See Also

CNOlist-class, randomizeCNOlist makeCNOlist

Examples

showClass("CNOlist")

data(CNOlistToyMMB, package="CellNOptR")
cnolist = CNOlistToyMMB

In version 1.3.30 and above, use the plot method instead of former plotCNOlist function.
plot(cnolist)
In version 1.5.14 and above, use getters instead of the @ operator
getCues(cnolist)

others:
new_cnolist = randomize(cnolist)

CNOlistDREAM Data used for the DREAM3 challenge

Description

This data object contains the DREAM data used in the package vignette, already loaded and format-
ted as a CNOlist object. This is to be used with the model "DreamModel". This is a data collected
on HepG2 cells cultivated with or without stimulation of tgfa, ilk, mek12, pi3k and p38, in com-
bination with inhibition of igf1 and/or il1a. Seven phosphoproteins are measured using Luminex
xMAP assays: akt, erk12, ikb, jnk12, p38, hsp27 and mek12.

Usage

data(CNOlistDREAM)

Format

CNOlistDREAM is a list with the fields "namesCues" (character vector), "namesStimuli" (charac-
ter vector), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals"
(numerical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueS-
timuli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

12 CNOlistToy

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND,
Altan-Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology mod-
els: the DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

CNOlistToy Toy data

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object.

Usage

data(CNOlistToy)

Format

CNOlistToy is a list with the fields "namesCues" (character vector), "namesStimuli" (character vec-
tor), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals" (nu-
merical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueStim-
uli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

CNOlistToy2 13

CNOlistToy2 Toy data with 2 time points

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object, and modified to contain 2 time points. The second
time point is such a way that all of the signals stay as in time 1, except for cJun and Jnk which go
to zero.

Usage

data(CNOlistToy)

Format

CNOlistToy is a list with the fields "namesCues" (character vector), "namesStimuli" (character vec-
tor), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals" (nu-
merical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueStim-
uli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

CNOlistToyMMB Toy data

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object.

Usage

data(CNOlistToyMMB)

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

14 CNORbool

Format

CNOlistToyMMB is a list with the fields "namesCues" (character vector), "namesStimuli" (charac-
ter vector), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals"
(numerical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueS-
timuli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

CNORbool Simple Boolean analysis standalone

Description

This function performs the optimisation of a PKN model to a CNOlist data set. It optimises each
time point found in the data and returns the processed model as well as a list of optimised bitstring
corresponding to each time points that has been optimised.

This function does not create any plots or reports unlike CNORwrap.

Usage

CNORbool(CNOlist, model, paramsList=defaultParameters(),
compression=TRUE, expansion=TRUE, cutNONC=TRUE, verbose=FALSE,
timeIndices = NULL)

Arguments

CNOlist a CNOlist structure, as created by makeCNOlist or a MIDAS filename

model a model structure, as created by readSIF or a SIF filename.

paramsList Parameters of the genetic algorithm. If not provided, it is populated with the
defaultParameters function.

compression compress the model (default TRUE)

expansion expand the gates (default TRUE)

cutNONC cut the NONC nodes off the model by (default TRUE)

verbose FALSE

timeIndices by default, optimise T1 and T2 assuming there are the 2 first time points. How-
ever, with this argument you can change that behaviour to arbitrary time points.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

CNORwrap 15

Value

This function returns 2 components. The first one is the processed model used in the optimisation.
The second is a list of optimised bitstrings found for each time points available in the MIDAS data
set.

Author(s)

T.Cokelaer, S.Schrier

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
res = CNORbool(CNOlist=CNOlistToy, model=ToyModel)

CNORwrap CNOR analysis wrapper

Description

This function is a wrapper around the whole CNOR analysis, it performs the following steps:

1. Plot the CNOlist;

2. Checks data to model compatibility;

3. Call the preprocessing function (Cut the nonc off the model, compress the model and expand
the gates);

4. Compute the residual error;

5. Prepare for simulation;

6. Optimisation T1 and T2 (optional);

7. Plot simulated and experimental results;

8. Plot the evolution of fit;

9. Write the scaffold and PKN;

10. Write the report

Usage

CNORwrap(paramsList=NA, data=NA, model=NA, name, namesData=NA, time=1,
compression=TRUE, expansion=TRUE, cutNONC=TRUE)

16 CNORwrap

Arguments

paramsList A list of parameters related to the Genetic Algorithm parameters:

1. sizeFac: default to 1e-04;
2. NAFac: default to 1;popSize: default to 50;
3. pMutation: default to 0.5;
4. maxTime: default to 60;
5. maxGens: default to 500;
6. stallGenMax: default to 100;
7. selPress: default to 1.2;
8. elitism: default to 5;
9. relTol: default to 0.1;

10. verbose: default to FALSE (default to true in the functions used by CNOR-
wrap but CNORwrap sets them to false by default).

and the Data and Model structure.

If paramsList is not provided (NA), it is filled internally with the defaultParameters function.

If Data and Model are not provided in paramList, the function looks for Data and Model arguments.

If Data and Model are provided, the function overwrites the field data and model in paramsList.

data a CNOlist structure, as created by makeCNOlist

model a model structure, as created by readSIF.

name a string that will be used to name the project and all graphs produced

namesData a list with two elements:CNOlist and Model, each containing a string that is a
reference for the user to know which model/data set was used (it will be included
in the report). If not provided, the list is built automatically using the name
arguments.

time either 1 or 2: Do you want to perform a one time point steady state optimisation
or a 2 time points pseudo steady state optimisation. By default this is set to 1.

compression compress the model (default TRUE)

expansion expand the gates (default TRUE)

cutNONC cut the NONC nodes off the model by (default TRUE)

Details

If you do not provide a parameters list, you can provide only essential elements, and all other
parameters will be set to their default values. In this case, you should set paramsList=NA, and
provide the following fields: data, model, name, time.

Value

This function does not return anything, it does the analysis, produces all the plots and puts them in
a folder that is in your working directory, and is called "Name".

compressModel 17

Author(s)

C. Terfve

Examples

#version with paramslist

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

pList = defaultParameters(CNOlistToy, ToyModel)
pList$maxGens = 5
pList$popSize = 5

CNORwrap(paramsList=pList, name="Toy",
namesData=list(CNOlist="ToyData", model="ToyModel"))

Not run:
#version with default parameters

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

CNORwrap(name="Toy",
namesData=list(CNOlist="ToyData",model="ToyModel"),

data=CNOlistToy, model=ToyModel)

End(Not run)

compressModel Compress a model

Description

This function compresses a model by compressing species that are not signals/inhibited/stimulated
and that are not dead ends/in complex logic (i.e. only species with either one input or one output
are compressed)/in self loops.

You can also use preprocessing function instead that calls compressModel and other preprocessing
functions.

Usage

compressModel(model, indexes)

Arguments

model a model structure as produced by readSIF.

indexes list of indexes of the species stimulated/inhibited/measured in the model, as cre-
ated by indexFinder.

18 computeScoreT1

Details

Be aware that in the multiple inputs/one output case, if one of the outputs is an ’&’ gate this function
handles it fine as long as it is an ’&’ with 2 inputs and no more.

Value

a compressed model list, with an additional field called ’speciesCompressed’ that contains the
names of the species that have been compressed

Note

No need to call this function directly since version 0.99.24. Use preprocessing instead.

Author(s)

C. Terfve

See Also

indexFinder, readSIF, preprocessing

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
toyComp<-compressModel(ToyModel,indicesToy)

computeScoreT1 Compute the score of a model/data set using a bitString to cut the
model.

Description

The bitString made of 0 and 1 allows to select a submodel from the model provided. Then, the sim-
ulator function are called to compute the objective function. The sizeFac and NAFac are penalties
added to the final score as described in gaBinaryT1. The indexList and simList arguments can be
provided to speed up the code otherwise, they are recomputed from the CNOlist and model.

Usage

computeScoreT1(CNOlist, model, bString, simList=NULL, indexList=NULL,
sizeFac=0.0001, NAFac=1, timeIndex=2)

computeScoreTN 19

Arguments

CNOlist a CNOlist structure, as created by makeCNOlist.

model a model structure, as created by codereadSIF, normally pre-processed but that is
not a requirement of this function.

bString a bitstring of the same size as the number of reactions in the model above

simList If provided, simList should be created by prep4sim, that has also already been
cut to contain only the reactions to be evaluated.

indexList If provided, indexList should contain a list of indexes of the species stimu-
lated/inhibited/measured in the model, as created by indexFinder.

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

timeIndex the index of the time point to optimize. Must be greater or equal to 2 (1 cor-
responds to time=0). Must be less than the number of time points. Default is
2.

Value

score See gaBinaryT1 for details

Author(s)

T. Cokelaer

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
model <- preprocessing(CNOlistToy,ToyModel)
score = computeScoreT1(CNOlist(CNOlistToy), model, bString=rep(1,16))

computeScoreTN Compute the score at TN of a model/data set using a bitString to cut
the model.

Description

The bitString made of 0 and 1 allows to select a submodel from the model provided. Then, the sim-
ulator function are called to compute the objective function. The sizeFac and NAFac are penalties
added to the final score as described in gaBinaryTN.

Usage

computeScoreTN(CNOlist, model, simList=NULL, indexList=NULL, simResPrev=NULL,
bStringPrev=NULL, bStringNext=NULL, timeIndex=NULL, sizeFac=0.0001, NAFac=1, bStrings=NULL)

20 createAndRunILP

Arguments

CNOlist a CNOlist structure, as created by makeCNOlist.

model a model structure, as created by codereadSIF, normally pre-processed but that is
not a requirement of this function.

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated. If not provided, it is recomputed automatically.

indexList a list of indexes of the species stimulated/inhibited/measured in the model, as
created by indexFinder. If not provided ,it is recomputed automatically.

simResPrev Results of Previous simulation at time TN-1 step.

bStringPrev the best bitString at time TN-1

bStringNext the bitString to use to compute the score at time TN

timeIndex Future feature will allows timeIndex to provide the exact list of indices to cut
and plot. For now, it is based on the bitStrings provided.

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

bStrings list of optimised bitstrings found at the previous time points

Value

score See gaBinaryTN for details

Author(s)

T. Cokelaer, S.Schrier

Examples

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")
model <- preprocessing(CNOlistToy2, ToyModel2)
bStringT1 = c(0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1)
simT1<-simulateTN(CNOlist=CNOlistToy2, model=model, bStrings=list(bStringT1))

score1 = computeScoreTN(CNOlistToy2, model, bStrings=list(bStringT1,c(1,0,1,0)))

createAndRunILP Creating and running the ILP problem.

Description

This function takes as an input the cno inputs (model + data) together with CPLEX parameters and
then solves the ILP problem.

createAndRunILP 21

Usage

createAndRunILP(model = model,
midas = midas,
cnolist = cnolist,
accountForModelSize = accountForModelSize,
sizeFac = sizeFac,
source_path = source_path,
mipGap = mipGap,
relGap = relGap,
timelimit = timelimit,
cplexPath = cplexPath,
method = method,
numSolutions = numSolutions,
limitPop = limitPop,
poolIntensity = poolIntensity,
poolReplace = poolReplace)

Arguments

model the model

midas the midas table

cnolist the cnolist object

accountForModelSize

the verbose parameter whether to account for model size

sizeFac the size penalty factor

source_path the source path

mipGap the mipgap

relGap the relGap

timelimit the timelimit

cplexPath the cplex solver path

method the optimization method (quadratic/linear)

numSolutions the number of desired solutions

limitPop the limitPop

poolIntensity the poolIntensity

poolReplace the poolReplace

Author(s)

E Gjerga, H Koch

22 create_binaries

createILPBitstringAll Reading the optimal solutions as bitstrings.

Description

This function takes as the cplex optimization results and the variables assigned to each interaction
in the ILP formulation in order to read the optimal bitstring.

Usage

createILPBitstringAll(cplexSolutionFileName,
y_vector,
binary_variables)

Arguments

cplexSolutionFileName

the file name where the cplex results are stored

y_vector the variables for each interaction in the PKN
binary_variables

the binary variables of the ILP formulation

Author(s)

E Gjerga, H Koch

create_binaries Defining the set of binary variables for the ILP implementation of
CellNOptR.

Description

This function takes as input the model and data in a CNOlist object in order to define the set of
binary variablese.

Usage

create_binaries(model,
midas,
numberOfExperiments,
y_vector)

crossInhibitedData 23

Arguments

model the model

midas the midas table
numberOfExperiments

the number of experimental conditions

y_vector the variables for each interaction in the PKN

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

crossInhibitedData If an inhibitor is also a measured species, replace the data with NA
(when inhibited)

Description

If an inhibitor is also a measured species, replace the data with NA (when inhibited)

Usage

crossInhibitedData(object)

Arguments

object the CNOlist that contains the data

Value

the new cnolist

Author(s)

T. Cokelaer

Examples

data(ToyModel,package="CellNOptR")
data(CNOlistToy,package="CellNOptR")
cnolist = crossInhibitedData(CNOlist(CNOlistToy))

24 crossvalidateBoolean

crossvalidateBoolean k-fold crossvalidation for Boolean model.

Description

Cross-validation analysis for the boolean case.

Usage

crossvalidateBoolean(CNOlist,model,nfolds=10,foldid=NULL,
type=c('datapoint','experiment','observable'),timeIndex = 2,parallel=FALSE,...)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1).

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function.

nfolds number of folds - default is 10. Although nfolds can be as large as the sample
size (leave-one-out CV), it is not recommended for large datasets.

foldid an optional vector of values between ‘1‘ and ‘nfold‘ identifying what fold each
observation is in. If supplied, ‘nfold‘ can be missing.

type define the way to do the crossvalidation. The default is type="datapoint"‘, which
assigns the data randomly into folds. The option ‘type="experiment"‘ uses
whole experiments for crossvalidation (all data corresponding to a cue combi-
nation). The ‘type=observable‘ uses the subset of nodes across all experiments
for crossvalidation.

timeIndex the index of the time point to optimize. Must be greater or equal to 2 (1 cor-
responds to time=0). Must be less than the number of time points. Default is
2.

parallel verbose parameter, indicating wheter to parallelize the cross-validation proce-
dure or not (default set to FALSE).

... further arguments are passed to gaBinaryT1

Details

Does a k-fold cross-validation for Boolean CellNOpt models. In k-iterations a fraction of the data
is eliminated from the CNOlist. The model is trained on the remaining data and then the model
predicts the held-out data. Then the prediction accuracy is reported for each iteration.

Value

This function returns a list with elements:

cvScores cross-validation scores

crossvalidateBoolean 25

fitScores fitting scores

bStrings the optimal bit-string list for each run
crossvalidate.call

echo of the function which was called

foldid the fold id’s

Author(s)

A. Gabor, E. Gjerga

Examples

data("ToyModel", package="CellNOptR")
data("CNOlistToy", package="CellNOptR")
pknmodel = ToyModel
cnodata = CNOlist(CNOlistToy)

original and preprocessed network
plotModel(pknmodel,cnodata)
model = preprocessing(data = cnodata,

model = pknmodel,
compression = TRUE,
expansion = TRUE)

plotModel(model,cnodata)

original CNOlist contains many timepoints, we use only a subset
plot(cnodata)
selectedTime = c(0,10)
cnodata_prep = cutCNOlist(cnodata,

model = model,
cutTimeIndices = which(!getTimepoints(cnodata) %in% selectedTime))

plot(cnodata_prep)

optimise and show results
opt = gaBinaryT1(CNOlist = cnodata_prep,model = model,verbose = FALSE)

10-fold crossvalidation using T1 data
We use only T1 data for crossvalidation, because data in the T0 matrix is not independent.
All rows of data in T0 describes the basal condition.

Crossvalidation produce some text in the command window:
Not run:
library(doParallel)
registerDoParallel(cores=3)
R=crossvalidateBoolean(CNOlist = cnodata_prep,

model = model,
type = "datapoint",
nfolds = 10,
parallel = TRUE)

26 cSimulator

End(Not run)

cSimulator C-implementation of simulatorT1.

Description

This is the simulator, inspired from BoolSimEngMKM in the Matlab CellNOpt, to be used on one
time point simulations. Use the R interface provided by simulatorT1.

Usage

cSimulator(CNOlist, model, simList, indexList, mode=1)

Arguments

CNOlist a CNOlist

model a model that only contains the reactions to be evaluated

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

mode switch to use the cSimualor for time 0 or 1

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argument
which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1 that
takes care of cutting the model for you before simulating it.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

cutAndPlot 27

Author(s)

A. MacNamara based on former simulatorT1 version from C.Terfve.

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Sig-
naling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Anal-
ysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099,
2011.

See Also

simulatorT1.

cutAndPlot Interface to cutAndPlotResults functions.

Description

This function takes a model and cnolist as well as a list of optimised bitstring at different time
points. It calls the appropriate cutAndPlotResultsTX function.

Usage

cutAndPlot(CNOlist, model, bStrings, plotPDF=FALSE, tag=NULL,
plotParams = list(maxrow = 10))

Arguments

CNOlist a CNOlist, corresponding to the optimisation one

model a model (the full one that was used for optimisation)

bStrings a bitstring for T1 as output by gaBinaryT1 (i.e. a vector of 1s and 0s)

plotPDF TRUE or FALSE; tells whether you want a pdf to be produced or not

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

plotParams a list of option related to the PDF and plotting outputs. (1) maxrow is the maxi-
mum number of row used to plot the results. See plotOptimResultsPan for other
fields.

28 cutAndPlotResultsT1

Value

This function returns nothing. It plots a graph in your graphic window and sqve it in a file if asked

Author(s)

T. Cokelaer

See Also

cutAndPlotResultsT1

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model
model = preprocessing(CNOlistToy, ToyModel)

cutAndPlot(CNOlistToy, model,
bStrings=list(rep(1,length(model$reacID))), plotPDF=FALSE)

cutAndPlotResultsT1 Plot the results of an optimisation at t1

Description

This function takes a model and an optimised bitstring, it cuts the model according to the bitstring
and plots the results of the simulation along with the experimental data.

Usage

cutAndPlotResultsT1(model, bString, simList=NULL, CNOlist, indexList=NULL, plotPDF =
FALSE, tag = NULL, tPt=CNOlist@timepoints[2], plotParams = list(maxrow=10))

Arguments

model a model (the full one that was used for optimisation)

bString a bitstring for T1 as output by gaBinaryT1 (i.e. a vector of 1s and 0s)

simList deprecated argument kept for back compatibility. a simlist corresponding to the
model, as output by prep4sim

CNOlist a CNOlist, corresponding to the optimisation one

indexList deprecated argument kept for back compatibility. an indexList, produced by
indexFinder ran on the model and the CNOlist above

cutAndPlotResultsT1 29

plotPDF TRUE or FALSE; tells whether you want a pdf to be produced or not

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

tPt The number of time points in the data.

plotParams a list of option related to the PDF and plotting outputs. (1) maxrow is the maxi-
mum number of row used to plot the results. See plotOptimResultsPan for other
fields.

Value

This function returns plotted MSEs and list of filenames generated (if any)

Author(s)

C.Terfve, T. Cokelaer,A. MacNamara

See Also

gaBinaryT1

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model
model = preprocessing(CNOlistToy, ToyModel)

#optimise
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=model,
maxGens=20,
popSize = 10,
verbose=FALSE)

#plotting
cutAndPlotResultsT1(
model=model,
CNOlist=CNOlistToy,
bString=ToyT1opt$bString,
plotPDF=FALSE)

30 cutAndPlotResultsTN

cutAndPlotResultsTN Plot the results of an optimisation at tN

Description

This function takes a model and an optimised bitstring, it cuts the model according to the bitstring
and plots the results of the simulation along with the experimental data. This function is designed
to work on results of a 2 step optimisation.

Usage

cutAndPlotResultsTN(CNOlist, model, bStrings, plotPDF = FALSE, tag=NULL,
plotParams = list(maxrow = 10))

Arguments

CNOlist a CNOlist, corresponding to the optimisation one

model a model (the full one that was used for optimisation)

bStrings a list of bitstring at different time points

plotPDF TRUE or FALSE, tells whether you want a pdf to be produced or not

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

maxrow maximum number of row in the plot.

plotParams a list of option related to the PDF and plotting outputs. (1) maxrow is the maxi-
mum number of row used to plot the results. See plotOptimResultsPan for other
fields.

Value

This function returns plotted MSEs

Note

New in version 1.3.28

Author(s)

T. Cokelaer, A. MacNamara, Sarah Schrier, C. Terfve based on cutAndPlotResultsT1

See Also

gaBinaryT1, prep4sim, cutAndPlotResultsT1

cutCNOlist 31

Examples

#load data

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

#pre-process model
model = preprocessing(CNOlistToy2, ToyModel2)

#optimise t1
ToyT1<-gaBinaryT1(
CNOlist=CNOlistToy2,
model=model,
maxGens=20,
popSize = 10,
verbose=FALSE)

#Optimise T2
ToyT2<-gaBinaryTN(
CNOlist=CNOlistToy2,
model=model,
bStrings=list(ToyT1$bString),
maxGens=20,
popSize = 10,
verbose=FALSE)

cutAndPlotResultsTN(
CNOlist=CNOlistToy2,
model=model,
bStrings=list(ToyT1$bString, bStringT2=ToyT2$bString),
plotPDF=FALSE)

cutCNOlist Cut a CNOlist structure according to a model

Description

The MIDAS file may contain species that are not contained in the model. If you want to remove
cues and signals from your CNOlist that are not contained in the model, you can use this function by
using the parameter model. It can also be used to remove some time points by using the parameter
cutTimeIndices. Both parameters can be used at the same time and at least one of them must be
provided.

Usage

cutCNOlist(cnolist, model, cutTimeIndices, verbose=FALSE)

32 cutModel

Arguments

cnolist the CNOlist structure

model the model

cutTimeIndices the time indices to remove

verbose Set it to True to get the signals and cues not found in the model

Value

cutCNOlist the new CNOlist object

Note

added in version 1.5.10

Author(s)

T. Cokelaer

See Also

CNOlist-class

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

cno_prep = cutCNOlist(cnolist = CNOlistToy,model = ToyModel,verbose = FALSE)

cutModel Cut a model structure according to a bitstring

Description

This function is for developers only.

Usage

cutModel(model, bString)

Arguments

model the model object to cut.

bString the bitString to be used to cut the model object.

Value

cutModel the new model object

cutNONC 33

Note

added in version 1.3.16

Author(s)

T. Cokelaer

Examples

data(ToyModel,package="CellNOptR")

bString = rep(1,length(ToyModel$reacID))
remove some reactions by setting them to 0.
bString[c(2,5,6)] <- 0

prepModel = cutModel(model = ToyModel, bString = bString)

cutNONC Cuts the non-observable/non-controllable species from the model

Description

This function cuts the non-observable and/or non-controllable species from the model, and returns
a cut model.

Usage

cutNONC(model, NONCindexes)

Arguments

model a model structure, as produced by readSIF

NONCindexes a vector of indices of species to remove in that model, as produced for example
by findNONC

Details

This function takes in a model and a vector of indices of species to remove in that model and it
removes those species and any reaction involving them (be aware, if you have x&y=z and x is to be
removed, then the function produces y=z, because it works by removing entire rows of the model
matrices and then removes the columns that do not have either an input or an output). This function
could actually be used to cut any species, not only NONC species.

Value

a model

34 cutSimList

Note

No need to call this function directly since version 0.99.24. Use preprocessing instead.

Author(s)

C.Terfve

See Also

findNONC, readSIF

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)

cutSimList Cut a simList structure according to a bitstring

Description

This function is for developers only.

Usage

cutSimList(simList, bString)

Arguments

simList the simList object to cut.

bString the bitString to be used to cut the simList object.

Value

cutSimList the new simList object

Author(s)

T. Cokelaer

defaultParameters 35

defaultParameters Create a list of default parameters

Description

This function provides a list of default parameters including the Genetic Algorithm parameters.

Usage

defaultParameters(data=NA, model=NA)

Arguments

data a CNOlist structure, as created by makeCNOlist

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

Details

The list contains the Genetic Algorithm parameter, a verbose option and can be used to store the
Data and Model.

Value

params a list with the fields: data, model, verbose and all default parameters of gaBi-
naryT1

Author(s)

T. Cokelaer

Examples

data(ToyModel, package="CellNOptR")
data(CNOlistToy, package="CellNOptR")
params = defaultParameters(CNOlistToy, ToyModel)

36 exhaustive

exhaustive Exhaustive search over the optimisation of a PKN model on MIDAS
data.

Description

This function performs an exhaustive search of the parameter space tring all the solutions. It is
used internally by the genetic algorithm when a small model has to be optimised and the number of
solutions to try is smaller than the number of iterations that the Genetic Algorithm will perform.

Usage

exhaustive(CNOlist, model, shuffle=FALSE, Nmax=NULL, verbose=TRUE, sizeFac =
0.0001, NAFac = 1, relTol=0.1, timeIndex=2)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

shuffle The list of bitstrings is set up arbitrarely. You may want to shuffle it.

Nmax The total number of computation will be 2 to the power N, where N is the size
of the model (ReacID field). The total number of computation can be large. You
may want to set a maximumn number of computation using Nmax.

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

relTol the relative tolerance for the best bitstring reported by the genetic algorithm, i.e.,
how different from the best solution, default set to 0.1 Not yet implemented.

verbose logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen?

timeIndex the index of the time point to optimize. Must be greater or equal to 2 (1 cor-
responds to time=0). Must be less than the number of time points. Default is
2.

Value

This function returns a list with elements:

bString the best bitstring

bScore the best score

all_scores all scores that have been computed

results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

stringsTol the bitstrings whose scores are within the tolerance

expandGates 37

stringsTolScores

the scores of the above-mentioned strings

Note that the field results, is not yet populated but maybe in the future.

Author(s)

T. Cokelaer

See Also

gaBinaryT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

model = preprocessing(CNOlistToy, ToyModel)

#optimise

results <-exhaustive(
CNOlist=CNOlistToy,
model=model,

shuffle=TRUE,
Nmax=1000,

verbose=FALSE)

expandGates Expand the gates of a model

Description

This function takes in a model and (1) splits all AND gates into ORs. In addition, (2) wherever
there are more than one, it creates all possible ANDs combinations of them, but considering only
ANDs with 2, 3 or 4 inputs according to the user argument (default is 2)

Usage

expandGates(model, ignoreList=NA, maxInputsPerGate=2)

Arguments

model a model structure
ignoreList an index vector of states to ignore incoming edges during step (1), i.e. at the

time of splitting up AND gates
maxInputsPerGate

maximum number of input per gates (Default is 2; up to 4)

38 expandGates

Details

This function returns a model with additional fields that help keep track of the processing done on
the network. I would advice not to overwrite on the initial model but rather to assign the result of
this function to a variable with a different name.

Value

returns a model, with additional fields:

SplitANDs list that contains a named element for each AND reac that has been split, and
each element contains a vector with the names of the of the reactions that result
from the split if nothing was split, this element has the default value $initialReac
[1] "split1" "split2"

newANDs list that contains an element for each new ’&’ gate, named by the name of this
new and reac, and containing a vector of the names of the reactions from which
it was created (contains all the reacs in that pool, not the particular ones, this
could be improved)

Note

No need to call this function directly since version 0.99.24. Use preprocessing instead.

Author(s)

C.Terfve. T. Cokelaer, A.MacNamara, Martin-Franz-Xaver Pirkl

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp, maxInputsPerGate=4)

findNONC 39

findNONC Find the indexes of the non-observable and non controllable species

Description

This function finds the indexes of the non-observable and non controllable species and returns the
indices, in the model, of the species to remove

Usage

findNONC(model, indexes, verbose=FALSE)

Arguments

model a model structure, as created by readSIF
indexes a list of indexes of the species stimulated/inhibited/measured, as created by in-

dexFinder from a model.
verbose verbose option (default to FALSE)

Details

This function uses the function floyd.warshall.all.pairs.sp from the package RBGL. Non observable
nodes are those that do not have a path to any measured species in the model, whereas non con-
trollable nodes are those that do not receive any information from a species that is perturbed in the
data.

Value

a vector of indices of species to remove

Note

No need to call this function directly since version 0.99.24. Use preprocessing instead.

Author(s)

C. Terfve

See Also

cutNONC, indexFinder, readSIF

Examples

data(CNOlistToy, package="CellNOptR")
data(ToyModel, package="CellNOptR")
checkSignals(CNOlistToy, ToyModel)
indicesToy <- indexFinder(CNOlistToy, ToyModel)
ToyNCNOindices <- findNONC(ToyModel, indicesToy)

40 gaBinaryT1

gaBinaryT1 Genetic algorithm used to optimise a model

Description

This function is the genetic algorithm to be used to optimise a model by fitting to data containing
one time point.

Usage

gaBinaryT1(CNOlist, model, initBstring=NULL, sizeFac = 1e-04,
NAFac = 1, popSize = 50, pMutation = 0.5, maxTime = 60, maxGens = 500,
stallGenMax = 100, selPress = 1.2, elitism = 5, relTol = 0.1, verbose=TRUE,
priorBitString=NULL, timeIndex=2)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

initBstring an initial bitstring to be tested, should be of the same size as the number of
reactions in the model above (model$reacID). Default is all ones.

sizeFac the scaling factor for the size term in the objective function, default to 0.0001
NAFac the scaling factor for the NA term in the objective function, default to 1
popSize the population size for the genetic algorithm, default set to 50
pMutation the mutation probability for the genetic algorithm, default set to 0.5
maxTime the maximum optimisation time in seconds, default set to 60
maxGens the maximum number of generations in the genetic algorithm, default set to 500
stallGenMax the maximum number of stall generations in the genetic algorithm, default to

100
selPress the selective pressure in the genetic algorithm, default set to 1.2
elitism the number of best individuals that are propagated to the next generation in the

genetic algorithm, default set to 5
relTol the relative tolerance for the best bitstring reported by the genetic algorithm, i.e.,

how different from the best solution, default set to 0.1
verbose logical (default to TRUE) do you want the statistics of each generation to be

printed on the screen?
priorBitString At each generation, the GA algorithm creates a population of bitstrings that

will be used to perform the optimisation. If the user knows the values of some
bits, they can be used to overwrite bit values proposed by the GA algorithm. If
provided, the priorBitString must have the same length as the initial bitstring
and be made of 0, 1 or NA (by default, this bitstring is set to NULL, which is
equivalent to setting all bits to NA). Bits that are set to 0 or 1 are used to replace
the bits created by the GA itself (see example).

gaBinaryT1 41

timeIndex the index of the time point to optimize. Must be greater or equal to 2 (1 cor-
responds to time=0). Must be less than the number of time points. Default is
2.

Details

The whole procedure is described in details in Saez-Rodriguez et al. (2009). The basic principle
is that at each generation, the algorithm evaluates a population of models based on excluding or
including some gates in the initial pre-processed model (this is encoded in a bitstring with contains
0/1 entries for each gate). The population is then evolved based on the results of the evaluation of
these networks, where the evaluation is obtained by simulating the model (to steady state) under the
various conditions present in the data, and then computing the squared deviation from the data, to
which a penalty is added for size of the model and for species in the model that do not reach steady
state.

Value

This function returns a list with elements:

bString the best bitstring

bScore the best score

results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

stringsTol the bitstrings whose scores are within the tolerance
stringsTolScores

the scores of the above-mentioned strings

Author(s)

C. Terfve. T. Cokelaer

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gaBinaryTN, simulatorT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

model = preprocessing(CNOlistToy, ToyModel)

#optimise

42 gaBinaryTN

initBstring<-rep(1,length(model$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=model,
initBstring=initBstring,
maxGens=100, popSize=10, verbose=FALSE)

During the optimisation, some bits can be overwritten by your prior knowledge
First, you need to create a priorBitString made of NA where known bit values
are replaced by 0 or 1
priorBitString = rep(NA, length(model$reacID))
priorBitString[1] = 0
priorBitString[2] = 1

Second, you call the gaBinaryT1 function by providing the priorBitString
argument:
ToyT1opt<-gaBinaryT1(CNOlist=CNOlistToy, model=model,

initBstring=initBstring, maxGens=10, popSize=10, verbose=FALSE,
priorBitString=priorBitString)

gaBinaryTN Genetic algorithm for time point N

Description

This is the genetic algorithm for time point N, that should follow optimisation based on time point
1.

Replaced gaBinaryT2.

Usage

gaBinaryTN(CNOlist, model, bStrings, sizeFac = 1e-04, NAFac = 1,
popSize = 50, pMutation = 0.5, maxTime = 60, maxGens = 500,
stallGenMax = 100, selPress = 1.2, elitism = 5, relTol = 0.1, verbose=TRUE,
priorBitString=NULL, timeIndex = NULL)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[3]], i.e. data at
t2)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

bStrings the optimal bitstring from optimisation at time 1 (i.e. a vector of 0s and 1s)

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

popSize the population size for the genetic algorithm, default set to 50

gaBinaryTN 43

pMutation the mutation probability for the genetic algorithm, default set to 0.5

maxTime the maximum optimisation time in seconds, default set to 60

maxGens the maximum number of generations in the genetic algorithm, default set to 500

stallGenMax the maximum number of stall generations in the genetic algorithm, default to
100

selPress the selective pressure in the genetic algorithm, default set to 1.2

elitism the number of best individuals that are propagated to the next generation in the
gen. al. default set to 5

relTol the relative tolerance for the best bitstring reported by the genetic algorithm,
i.e.how different from the best solution can solutions be to be reported as well,
default set to 0.1

verbose logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen

priorBitString A bitString of same length at the initial bitstring made of 0, 1 or NA. By default,
this bitstring is set to NULL (equivalent to setting all bits to NA). If provided,
all bitstring in a population will be changed to be in agreement with the prior-
BitString list.

timeIndex todo

Details

This function takes in the same input as the T1 ga, but in addition it takes in the bitstring optimised
for T1, and does not take an initial bitstring. Be aware that the bitString that this function returns is
one that only includes the bits that it actually looks at, i.e. the bits that were 0 in the bStringT1

Value

This function returns a list with elements:

bString the best bitstring

results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

stringsTol the bitstrings whose scores are within the tolerance

stringsTolScores

the scores of the above-mentionned strings

Author(s)

C.Terfve, T. Cokelaer

See Also

getFit, simulatorT1, simulatorT2

44 getFit

Examples

#load data

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

#pre-process model

checkSignals(CNOlistToy2,ToyModel2)
model = preprocessing(CNOlistToy2, ToyModel2)

#optimise t1
ToyT1<-gaBinaryT1(
CNOlist=CNOlistToy2,
model=model,
maxGens=10,
popSize = 10,
verbose=FALSE)

#Optimise T2

ToyT2<-gaBinaryTN(
CNOlist=CNOlistToy2,
model=model,
bStrings=list(ToyT1$bString),
maxGens=10,
popSize = 10,
verbose=FALSE)

getFit Compute the score of a model

Description

This function computes the value of the objective function for a model and an associated data set, as
a sum of a term that computes the fit of model to data, a term that penalises the NA values produced
by the model, and a term that penalises increasing size of the model.

Usage

getFit(simResults, CNOlist, model, indexList=NULL, timePoint=c("t1", "t2"),
sizeFac=1e-04, NAFac=1, nInTot, simResultsT0=NULL)

Arguments

simResults matrix of simulated results (the full one as output by the simulator)

CNOlist a CNOlist to compare the simulated results with

model a model that has already been cut to contain only the reactions in the optimal
bitstring

getFit 45

indexList list of indexes as produced by indexFinder. User should not use this parameter
that is kept for back compatibility with previous version of the simulator written
in R. The new simulator (C code) does not neccesitate the usage of the indexList
parameter in this function anymore.

timePoint "t1" or "t2" tells which time point we are looking at. If timePoint=t1 then we
will compare the simResults to the results stored in CNOlist$valueSignals[[2]].
If timePoint=t1 then we will compare the simResults to the results stored in
CNOlist$valueSignals[[2]]

sizeFac weights the penalty for the size of the model, default=0.0001

NAFac weights the penalty for the number of NAs

nInTot the number of inputs in the model prior to cutting, used to normalised the size
penalty

simResultsT0 Results of the time 0 simulator (internal usage of gaBinaryT1)

Details

BE AWARE: contrary to what is done in the Matlab version of CellNOpt, here the simulation results
are computed beforehand and the model that is input into this function is a model that has already
been cut i.e. that only contains the reactions present in the optimised model (i.e.should be the same
model as the one that you input into the simulator). Also, the simResults matrix is the full one as
output by the simulator, i.e. it contains results for all species in the model, not only the signals

Value

This function returns a single number, the value of the objective function.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gaBinaryT1, simulatorT1

Examples

#Here we will evaluate the fit of the full initial model,
#without pre-processing or any optimisation

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)

46 graph2sif

ToyFields4Sim<-prep4sim(ToyModel)
simResults<-simulatorT1(
CNOlist=CNOlistToy,
model=ToyModel,
simList=ToyFields4Sim,
indexList=indicesToy)

simResults = simResults[, indicesToy$signals]
Score<-getFit(
simResults=simResults,
CNOlist=CNOlistToy,
model=ToyModel,
timePoint="t1",

nInTot=length(which(ToyModel$interMat == -1))
)

graph2sif Convert graph to SIF

Description

This function converts a network form graph format to SIF format. The resulting table can also be
saved in a SIF file.

Usage

graph2sif(graph, writeSif=FALSE, filename="Graph")

Arguments

graph a graph, as generated using sif2graph

writeSif if writeSif=FALSE (default) the SIF file is not saved. If writeSif=TRUE it is
saved.

filename the name of the SIF file saved if writeSif=TRUE. Default is Model.sif.

Details

The sign of link is supposed to be encoded in the graph as the weigth of the edge (-1 negative
regulation, +1 positive regulation).

Value

sifFile a table with all the links in the model in the format sourceNode-tab-sign-tab-
targetNode

Author(s)

F. Eduati

ilpBinaryT1 47

See Also

model2sif, sif2graph, readSIF,

Examples

data(ToyModel,package="CellNOptR")
sif_file = tempfile(fileext = ".sif")
writeSIF(model = ToyModel,filename = sif_file)
g = sif2graph(sif_file)

graph2sif(graph = g,writeSif = FALSE)

ilpBinaryT1 ILP method used to optimise a model

Description

This function is the ilp method to be used to optimise a model by fitting to data containing one time
point.

Usage

ilpBinaryT1(cnolist,
model,
cplexPath,
sizeFac = 0.0001,
mipGap = 0,
relGap = 0,
timelimit = 3600,
method = "quadratic",
numSolutions = 100,
limitPop = 500,
poolIntensity = 0,
poolReplace = 2)

Arguments

cnolist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

mipGap the absolute tolerance on the gap between the best integer objective and the
objective of the best node remaining. When this difference falls below the value
of this parameter, the linear integer optimization is stopped. Default set to 0

48 ilpBinaryT1

relGap the relative tolerance on the objective value for the solutions in the solution pool.
Solutions that are worse (either greater in the case of a minimization, or less in
the case of a maximization) than the incumbent solution by this measure are not
kept in the solution pool. Default set to 0

timelimit the maximum optimisation time in seconds, default set to 3600

cplexPath the path where the cplex solver is stored (mandatory).

method the method of writing the objective function (quadratic/linear). Default set to
"quadratic"

numSolutions the number of solutions to save

limitPop the number of solutions to be generated. Default set to 500

poolIntensity the Intensity of solution searching. Default set to 4

poolReplace Pool replacement strategy

Value

This function returns a list with elements:

bitstringILPAll

the list of all optimal bitstrings identified

bScore the best score for each set of bitstrings
time_cplex_only

the time it took for cplex to solve the problem

total_time the total time for the pipeline to run (writing problem + solving problem + re-
trieving solutions)

stringsTolScores

the scores of the above-mentioned strings

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

Examples

Toy Exampple
data("ToyModel", package="CellNOptR")
data("CNOlistToy", package="CellNOptR")
pknmodel = ToyModel
cnolist = CNOlist(CNOlistToy)
model = preprocessing(data = cnolist, model = pknmodel, compression = TRUE, expansion = TRUE)
plotModel(model = model, CNOlist = cnolist)

ilpBinaryT2 49

Training to data - ILP
Not run:
resILP = ilpBinaryT1(cnolist = cnolist, model = model)

End(Not run)

ilpBinaryT2 ILP method used to optimise a model

Description

This function is the ilp method to be used to optimise a model by fitting to data for time point 2,
that should follow optimisation based on time point 1.

Usage

ilpBinaryT2(cnolist,
model,
sizeFac = 0.0001,
mipGap = 0,
relGap = 0,
timelimit = 3600,
cplexPath,
method = "quadratic",
numSolutions = 100,
limitPop = 500,
poolIntensity = 0,
poolReplace = 2)

Arguments

cnolist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

mipGap the absolute tolerance on the gap between the best integer objective and the
objective of the best node remaining. When this difference falls below the value
of this parameter, the linear integer optimization is stopped. Default set to 0

relGap the relative tolerance on the objective value for the solutions in the solution pool.
Solutions that are worse (either greater in the case of a minimization, or less in
the case of a maximization) than the incumbent solution by this measure are not
kept in the solution pool. Default set to 0

timelimit the maximum optimisation time in seconds, default set to 3600

cplexPath the path where the cplex solver is stored. Default set to "~/Documents/cplex"

50 ilpBinaryT2

method the method of writing the objective function (quadratic/linear). Default set to
"quadratic"

numSolutions the number of solutions to save

limitPop the number of solutions to be generated. Default set to 500

poolIntensity the Intensity of solution searching. Default set to 4

poolReplace pool replacement strategy, consult CPLEX manual for details.

Value

This function returns a list with elements:

bitstringILPAll

the list of all optimal bitstrings identified

bScore the best score for each set of bitstrings
time_cplex_only

the time it took for cplex to solve the problem

total_time the total time for the pipeline to run (writing problem + solving problem + re-
trieving solutions)

stringsTolScores

the scores of the above-mentioned strings

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

Examples

Toy Exampple
data("ToyModel", package="CellNOptR")
data("CNOlistToy", package="CellNOptR")
pknmodel = ToyModel
cnolist = CNOlist(CNOlistToy)
model = preprocessing(data = cnolist, model = pknmodel, compression = TRUE, expansion = TRUE)
plotModel(model = model, CNOlist = cnolist)

Training to data - ILP
Not run:
resILP = ilpBinaryT2(cnolist = cnolist, model = model)

End(Not run)

ilpBinaryTN 51

ilpBinaryTN ILP method used to optimise a model

Description

This function is the ilp method to be used to optimise a model by fitting to data for time point 2,
that should follow optimisation based on time point 1.

Usage

ilpBinaryTN(cnolist,
model,
sizeFac = 0.0001,
mipGap = 0,
relGap = 0,
timelimit = 3600,
cplexPath,
method = "quadratic",
numSolutions = 100,
limitPop = 500,
poolIntensity = 0,
poolReplace = 2,
timeIndices = c(1, 2))

Arguments

cnolist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
time 1)

model a model structure, as created by readSIF, normally pre-processed but that is not
a requirement of this function

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

mipGap the absolute tolerance on the gap between the best integer objective and the
objective of the best node remaining. When this difference falls below the value
of this parameter, the linear integer optimization is stopped. Default set to 0

relGap the relative tolerance on the objective value for the solutions in the solution pool.
Solutions that are worse (either greater in the case of a minimization, or less in
the case of a maximization) than the incumbent solution by this measure are not
kept in the solution pool. Default set to 0

timelimit the maximum optimisation time in seconds, default set to 3600

cplexPath the path where the cplex solver is stored. Default set to "~/Documents/cplex"

method the method of writing the objective function (quadratic/linear). Default set to
"quadratic"

numSolutions the number of solutions to save

limitPop the number of solutions to be generated. Default set to 500

52 ilpBinaryTN

poolIntensity the Intensity of solution searching. Default set to 4

timeIndices the time indeces to optimize. Default set to timeIndices=c(1, 2)

poolReplace pool replacement strategy, consult CPLEX manual for details.

Value

This function returns a list with elements:

bitstringILPAll

the list of all optimal bitstrings identified

bScore the best score for each set of bitstrings

time_cplex_only

the time it took for cplex to solve the problem

total_time the total time for the pipeline to run (writing problem + solving problem + re-
trieving solutions)

stringsTolScores

the scores of the above-mentioned strings

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

Examples

Toy Exampple
data("ToyModel", package="CellNOptR")
data("CNOlistToy", package="CellNOptR")
pknmodel = ToyModel
cnolist = CNOlist(CNOlistToy)
model = preprocessing(data = cnolist, model = pknmodel, compression = TRUE, expansion = TRUE)
plotModel(model = model, CNOlist = cnolist)

Training to data - ILP
Not run:
resILP = ilpBinaryTN(cnolist = cnolist, model = model)

End(Not run)

indexFinder 53

indexFinder Finds the indices, in the model fields, of the species that are mea-
sured/inhibited/stimulated

Description

This function finds the indices, in the model fields, of the species that are measured/inhibited/stimulated.
It looks for their position in model$namesSpecies which has the same order as the rows of interMat
and notMat, and therefore these indexes can be used there as well.

Usage

indexFinder(CNOlist, model,verbose=FALSE)

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

model a model structure, as produced by readSIF

verbose do you want information about the cues and signals identities printed on the
screen? Default if false but we would advise to set it to true when the function
is called for the first time.

Value

a list with fields:

signals vector of indices of the measured species

stimulated vector of indices of the stimulated species

inhibited vector of indices of the inhibited species

Note

For internal usage since version 1.3.28

Author(s)

C. Terfve

See Also

makeCNOlist, readSIF

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)

54 invokeCPLEX

internals List of CellNOptR internal functions.

Description

This is a list of functions that are part of CelNOptR but are not exposed to the end-user. It may
be of interest for developers. They may have a manual associated to it. If so, you can get the
documentation in a R console as usual by tying preceding the name of the function with question
tag.

Details

Function: deprecated since manual
———— ——————— ———-
cSimulator: internal usage yes
buildBitString: internal usage yes
simulateT1: 1.3.28 (use simulateTN) yes

Author(s)

T.Cokelaer

invokeCPLEX Solving the ILP problem with CPLEX.

Description

This function takes as an input the file name where we write the ILP formulation together with
CPLEX parameters and then solves the ILP problem.

Usage

invokeCPLEX(inputFileName,
outputFileName,
mipGap=mipGap,
relGap = relGap,
timelimit=timelimit,
cplexPath = cplexPath,
numSolutions = numSolutions,
limitPop = limitPop,
poolIntensity = poolIntensity,
poolReplace = poolReplace)

LiverDREAM 55

Arguments

inputFileName the file name where the cplex ilp problem is stored
outputFileName the file name where to store the cplex result
mipGap the mipgap
relGap the relGap
timelimit the timelimit
cplexPath the cplex solver path
numSolutions the number of desired solutions
limitPop the limitPop
poolIntensity the poolIntensity
poolReplace the poolReplace

Author(s)

E Gjerga, H Koch

LiverDREAM Model used for the DREAM3 challenge

Description

This data object contains the model used in the package vignette, already loaded and formatted as a
Model object. This is to be used with the data in "CNOListDREAM"

Usage

data(DreamModel)

Format

DreamModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector),
"interMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND,
Altan-Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology mod-
els: the DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

56 makeCNOlist

makeCNOlist Make a CNOlist structure

Description

This function takes as input the output of readMIDAS and extracts the elements that are needed in
a CNO project. Instead, please use the CNOlist class to read a MIDAS file that will be converted
to a CNOlist.

Usage

makeCNOlist(dataset, subfield, verbose=TRUE)

Arguments

dataset output of readMIDAS

subfield TRUE or FALSE, specifies if the column headers contain subfields or not i.e. if
I should look for TR:sthg:sthg or just TR:sthg.

verbose logical (default to TRUE) print information on the screen.

Details

Be aware that most of the functions in this package, including this one, expect the data to contain
measurements at time 0, but these should all be equal to zero according to the normalisation proce-
dure that should be used. Therefore, if you have one time point, the files valueSignals contains two
matrices, one for t0 and one for t1.

If there are replicate rows in the MIDAS file (i.e., identical cues and identical time), this function
averages the values of the measurements for these replicates.

Columns with the following tags are ignored: NOINHIB, NO-INHIB, NO-LIG, NOCYTO.

Value

a CNOlist with fields

namesCues a vector of names of cues

namesStimuli a vector of names of stimuli
namesInhibitors

a vector of names of inhibitors

namesSignals a vector of names of signals

timeSignals a vector of times

valueCues a matrix of dimensions nConditions x nCues, with 0 or 1 if the cue is present or
absent in the particular condition

valueInhibitors

a matrix of dimensions nConditions x nInhibitors, with 0 or 1 if the inhibitor is
present or absent in the particular condition

mapBack 57

valueStimuli of dimensions nConditions x nStimuli, with 0 or 1 if the stimuli is present or
absent in the particular condition

valueSignals a list of the same length as timeSignals, each element containing a matrix of
dimensions nConditions x nsignals, with the measurements.

valueVariances a list of the same length as timeSignals, each element containing a matrix of
dimensions nConditions x nsignals, with the standard deviation of the replicates.

Author(s)

C. Terfve, T. Cokelaer

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

readMIDAS, CNOlist-class

Examples

cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile='ToyDataMMB.csv')
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

mapBack Map an optimised model back onto the PKN model.

Description

Map an optimised model back onto the PKN model.

Usage

mapBack(model, PKN, bString)

Arguments

model the optimised model

PKN the Prior Knowledge network

bString the optimised bitString

58 model2igraph

Value

bStringPKN the corresponding bitstring corresponding to the original PKN.

Author(s)

F.Eduati

See Also

graph2sif, sif2graph, readSIF,

model2igraph Convert a model object to a igraph object

Description

This function receives as input a model object and converts it to a graph object made by igraph.
igraph provides lots of utilities especially to write the file in different format such as GML.

Usage

model2igraph(model)

Arguments

model the model as generated using readSIF

Value

g a igraph object

Author(s)

T. Cokelaer

See Also

graph2sif, sif2graph

Examples

data(ToyModel,package="CellNOptR")
model2igraph(model=ToyModel)

model2sif 59

model2sif Convert a model object in sif format

Description

This function receives as input a model object and converts it to the cytoscape sif format. It can be
used to convert either the whole model (before or after pre-processing) or the optimized one (if the
corresponding bitString in provided). The resulting table can also be saved in a sif file.

Usage

model2sif(model,optimRes=NA,writeSif=FALSE, filename="Model")

Arguments

model the model as generated using readSIF

optimRes the output of the optimisation (as obtained using gaBinaryT1), default set to NA
the whole model in converted

writeSif it writeSif=FALSE (default) the sif file is not saved. If writeSif=TRUE it is
saved.

filename the name of the sif file saved if writeSif=TRUE. Default is Model.sif.

Details

All links in the model are converted in sif format that is sourceNode-tab-sign-tab-targetNode. If
there are ANDs, they are converted using dummy nodes called and# (e.g. A+B=C will be A-tab-1-
tab-and1; B-tab-1-tab-and1; and1-tab-1-tab-C).

Value

sifFile a table with all the links in the model in the format sourceNode-tab-sign-tab-
targetNode

Author(s)

F.Eduati

See Also

graph2sif, sif2graph, readSIF,

Examples

data(ToyModel,package="CellNOptR")
model2sif(model=ToyModel,writeSif = FALSE)

60 normaliseCNOlist

normaliseCNOlist Normalisation for boolean modelling.

Description

This function takes in a CNOlist and does the normalisation of the data between 0 and 1, according
to two different procedures (see details).

Usage

normaliseCNOlist(CNOlist, EC50Data=0.5, HillCoef=2, EC50Noise=0., detection=0,
saturation=Inf, changeTh=0, norm2TorCtrl=NULL, mode="time",
options=list(rescale_negative = TRUE), verbose=FALSE)

Arguments

CNOlist a CNOlist

EC50Data parameter for the scaling of the data between 0 and 1, default=0.5

HillCoef Hill coefficient for the scaling of the data, default to 2

EC50Noise parameter for the computation of a penalty for data comparatively smaller than
other time points or conditions. No effect if set to zero (default).

detection minimum detection level of the instrument, everything smaller will be treated as
noise (NA), default to 0

saturation saturation level of the instrument, everything over this will be treated as NA,
default to Inf.

changeTh threshold for relative change considered significant, default to 0

norm2TorCtrl deprecated since 1.5.0. Use the mode argument instead.

mode "time" or "ctrl" or "raw" (experimental): choice of a normalisation method:
"ctrl" computes the relative change compared to the control at the same time.
"time" computes the relative change compared to the same condition and mea-
surement at time 0. "raw" does not take into account time zero data; data are
relative to time 0 so can be positive or negative values.

options rescale column with negative values to be in 0-1 range (experimental)

verbose prints some information if True (default is False)

Details

The normalisation procedure works as follows:

1. every value that is out of the dynamic range of the equipment (as specified by the parameters
detection and saturation are set to NA,

2. values are transformed to fold changes relative to the same condition at t0 (if mode="time")
or the control condition (i.e. same inhibitors, no stimuli) at the same time (if mode="ctrl"),

normaliseCNOlist 61

3. the fold changes are transformed with a Hill function xHillCoef

((EC50DataHillCoef)+(xHillCoef))

4. a penalty for "noisiness" is computed for each measurement as the value divided by the max-
imum value for that readout across all conditions and times (excluding values out of the dy-
namic range)

5. the noise penalty is transformed by a saturation function (for each measurement x
(EC50Noise+x

where x = x
max x),

6. the noise penalty and Hilled fold changes are multiplied,

7. if the fold change is negative and bigger than ChangeTh, the resulting product is multiplied by
-1, if the fold change is smaller than ChangeTh (either positive or negative), it is set to 0.
The normalisation procedure applied here is explained in details in saez-Rodriguez et al.
(2009).
As the normalisation procedure works by computing a fold change relative to the same condi-
tion at time 0 or the control condition, if the aforementioned conditions have a value of zero
(which is not expected with any common biochemical technique), then the fold change calcu-
lation will return a "NaN" value. If this is a problem for your particular case then we would
suggest putting a dummy, very low value, instead of the zero, or setting that measurement to
"NA" in the MIDAS file.

Value

a normalised CNOlist

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

makeCNOlist

Examples

#Load a CNOlist

data(CNOlistToy,package="CellNOptR")

#Replace the values in the list by random values
#(for demonstration purposes, when actually using this function you would simply load a non-normalised CNOlist)

CNOlistToy$valueSignals$t0<-matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=400),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])

62 plot-method

CNOlistToy$valueSignals[[2]]<-CNOlistToy$valueSignals[[1]]+matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=100),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])

CNOlistToyN<-normaliseCNOlist(
CNOlistToy,
EC50Data = 0.5,
HillCoef = 2,
EC50Noise = 0.1,
detection = 0,
saturation = Inf,
changeTh = 0,
mode = "time")

pknmodel pknmodel

Description

Small in-silico case study used for demonstration. Use with CNOlist_ToyPB data.

Usage

data(PKN_ToyPB)

Format

An object of class list of length 4.

plot-method plot a "CNOlist" object - methods

Description

A plot method for CNOlist.

Usage

signature(x="CNOlist"): Please see the help page for the plot.CNOlist method in the CellNOptR
package

arguments

x The CNOlist object to plot

plotCNOlist 63

Author(s)

T.Cokelaer

See Also

readMIDAS, makeCNOlist

Examples

showClass("CNOlist")

files<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
cnolist = CNOlist(files[[1]])
accessors:
getCues(cnolist)
getInhibitors(cnolist)
getSignals(cnolist)
getTimepoints(cnolist)
getStimuli(cnolist)
In version 1.3.30 and above, use the plot method instead of former plotCNOlist function.
plot(cnolist)

plotCNOlist Plot the data in a CNOlist

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present..

Usage

plotCNOlist(CNOlist)

Arguments

CNOlist a CNOlist

Details

This function can plot the normalised values or the un-normalised ones, it just needs a CNOlist.

Value

This function just produces a plot on your graphics window

Author(s)

C. Terfve

64 plotCNOlist2

See Also

plotCNOlistPDF, plotCNOlistLarge, plotCNOlistLargePDF

Examples

data(CNOlistToy,package="CellNOptR")
plotCNOlist(CNOlistToy)

plotCNOlist2 Another version of plotCNOlist that allows to plot 2 cnolist in the same
layout to compare them. This function uses ggplot2 library. It is rec-
ommended for small data sets (about 15 species).

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, Cues are simply represented by a number.

Usage

plotCNOlist2(cnolist, simulated_cnolist=NULL, ymin=0,ymax=1)

Arguments

cnolist a CNOlist
simulated_cnolist

another cnolist

ymin Change the lower y-limit (default is 0)

ymax Change the lower y-limit (default is 1)

Details

This function can plot either a single CNOlist, or 2 on top of each other.

Author(s)

T. Cokelaer

See Also

plotCNOlistPDF, plotCNOlistLarge, plotCNOlistLargePDF, plotCNOlist

Examples

this data set is not an object so we need to convert it
data(CNOlistToy,package="CellNOptR")
cnolist = CNOlist(CNOlistToy)
plotCNOlist2(cnolist)

plotCNOlistLarge 65

plotCNOlistLarge Plot the data in a CNOlist, for lists with many conditions.

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present.

Usage

plotCNOlistLarge(CNOlist,nsplit=4, newDevice=FALSE)

Arguments

CNOlist a CNOlist

nsplit the number of splits in the condition dimension (one new plot window will be
produced for each split, i.e. if you have 80 conditions and specify 4 splits you
will get 4 plots with 20 conditions each).

newDevice nsplit plots are created within the same device. In principle, most of the R
Graphical USer Interface will allow the user to navigate between the different
plots. However, if scripting only the last plot will be seen. If you want to create
new device for each different plot, then set this option to TRUE.

Details

This function can plot normalised values or the un-normalised ones, it just needs a CNOlist. This
function makes plots of CNOlists that are more readable when many conditions are present in the
data. In addition to plotting the conditions divided into multiple plots, this function also plots the
cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function just produces plots on your graphics window.

Author(s)

C. Terfve

See Also

plotCNOlist, plotCNOlistPDF, plotCNOlistLargePDF

Examples

data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLarge(CNOlistDREAM, nsplit=2)

66 plotCNOlistLargePDF

plotCNOlistLargePDF Plots a CNOlist into a pdf file, for lists with many conditions.

Description

This function is a wrapper for plotCNOlistLarge, that plots the output directly in a pdf file.

Usage

plotCNOlistLargePDF(CNOlist, filename, nsplit, width=14, height=7)

Arguments

CNOlist a CNOlist

filename a name for your pdf file, eg. "plot.pdf"

nsplit the number os splits along the condition dimension (see plotCNOlistLarge)

width set the width of the PDF document.

height set the height of the PDF document.

Details

This function makes plots of CNOlists that are more readable when many conditions are present in
the data. In addition to plotting the conditions divided into multiple plots, this function also plots
the cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function doesn’t return anything, it just produces a pdf file with your plots, in your current
working directory.

Author(s)

C. Terfve

See Also

plotCNOlistLarge, plotCNOlist, plotCNOlistPDF

Examples

data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLargePDF(CNOlistDREAM, filename="dreamData.pdf",nsplit=2)

plotCNOlistPDF 67

plotCNOlistPDF Plots a CNOlist into a pdf file.

Description

This function is a wrapper for plotCNOlist, that plots the output directly in a pdf file.

Usage

plotCNOlistPDF(CNOlist, filename)

Arguments

CNOlist a CNOlist

filename a name for your pdf file, eg. "plot.pdf"

Value

This function doesn’t return anything, it just produces a pdf file containing your plot, in your work-
ing directory.

Author(s)

C. Terfve

See Also

plotCNOlist, plotCNOlistLarge, plotCNOlistLargePDF

Examples

data(CNOlistToy,package="CellNOptR")
plotCNOlistPDF(CNOlist=CNOlistToy,filename="ToyModelGraph.pdf")

plotFit Plot the evolution of an optimisation

Description

This function takes in the results of an optimisation by gaBinaryT1 and plots the evolution of best
fit and average fit against generations.

Usage

plotFit(optRes, filename = NULL)

68 plotModel

Arguments

optRes an object created by the optimisation engine (gabinaryT1)
filename NULL or string: if provided, the plot is save in PDF format in the filename.

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

See Also

gaBinaryT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#process the model
model = preprocessing(CNOlistToy,ToyModel)

#optimise

ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=model,
maxGens=10,
popSize=10,
verbose=FALSE)

plotFit(optRes=ToyT1opt)

plotModel Plot a model

Description

This function can be used to plot a prior model network before any pre-processing step. However,
additional information can be provided such as a CNOlist (see makeCNOlist and readMIDAS) or
information related to the pre-processing steps (compression, NONC nodes, expansion gates). It
can also be used to plot optimised model given the optimisation bitstring.

Usage

plotModel(model, CNOlist=NULL, bString=NULL, indexIntegr=NULL, signals=NULL,
stimuli=NULL, inhibitors=NULL, NCNO=NULL, compressed=NULL, output="STDOUT",
filename=NULL, graphvizParams=list(), show=TRUE, remove_dot=TRUE, removeEmptyAnds=TRUE)

plotModel 69

Arguments

model a model as returned by readSIF. Alternatively, the filename can also be pro-
vided.

CNOlist output of makeCNOlist

bString a sequence made of numbers between 0 and 1 of same length as the one returned
by the Genetic Algorithm (GA). This is a generalisation of the bitString returned
by the GA function: several bit strings can be averaged and used.

indexIntegr additional indices to highlight some edge (optional).

signals a list of nodes belonging to the signals class

stimuli a list of nodes belonging to the stimuli class

inhibitors a list of nodes belonging to the inhibitors class

NCNO a list of NCNO nodes.

compressed a list of compressed nodes

filename the filename (without extension) used to write the dot file

output the type of output (PNG, PDF, SVG accepted)

graphvizParams a list of optional arguments dedicated to Rgraphviz to tune the layout:

• arrowsize default is 2
• sizea string for the size of the dot output; default is "15,15"
• fontsize default is 22
• edgecolor default is "black"
• nodeLabels overwrit node label with a list of proper length.
• nodeWidth default is 2
• nodeHeight default is 1
• viewEmptyEdges default is TRUE
• mode can be ’classic’ or ’sbgn’ (default). The difference appears in the and

gate.
• andWidth = 0.2 in ’classic’ mode and 0.5 in ’sbgn’ mode
• andHeight = 0.2 in ’classic’ mode and 0.5 in ’sbgn’ mode

show show the plot (default is True)

remove_dot remove the dot file that has been created. Default is False
removeEmptyAnds

removes AND gates from plotted graph if the corresponding bit is 0 to give a
compact view. Default is TRUE.

Details

This function plots the model and also saves it in a dot file that can be processed later on. However,
you can also save the plot in PNG or PDF or SVG format (one at a time).

The CNOlist argument contains the signals/stimuli/inhibitors so if you provide a CNOlist there is
no need to use these arguments. If you decide to use them they will overwrite the contents of the
CNOlist argument.

70 plotOptimResults

optimRes is the output of gaBinary. One of its field is called bString and contains a list of 0 and 1
(the optimisation is perfomed with a binary procedure). This list of 0 and 1 is then used to plot or
not the edges of the model. However, you can provide a bitString made of floats (e.g., average of
several bitStrings). In such case, edges will appear in gray light or dark according to the bistring
value (between 0 and 1).

Value

a graph representation of the model

graph$g A graph representation of the model

graph$attrs graph attributes
graph$nodeAttrs

nodes attributes
graph$edgeAttrs

edges attributes

graph$clusters clusters of nodes

Note

This function depends on the Rgraphviz package.

Author(s)

T. Cokelaer

See Also

readMIDAS, readSIF, makeCNOlist, writeNetwork, writeDot, gaBinaryT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
res<-plotModel(ToyModel, CNOlist=CNOlistToy, compressed=c("TRAF6", "p38"),

graphvizParams=list(mode="classic", fontsize=30))

plotOptimResults Plot the data and simulated values

Description

This function is the equivalent of CNOPlotFits, it plots the data and the simulated values, along
with an image plot that tells which cues were present. The plots are coloured according to the fit
between data and simulated data.

plotOptimResults 71

Usage

plotOptimResults(simResults, expResults, times, namesCues, namesSignals,
valueCues, formalism="new")

Arguments

simResults a list with a field for each time point, each containing a matrix of dimensions
(number of conditions) * (number of signals), with the first field being t0. Typi-
cally produced by simulating a model and then extracting the columns that cor-
respond to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

formalism New convention is to take the time=0 data set into account to compute the MSE.
you can use the previous convetion by setting this argument to something differ-
ent from the default value.

Details

The colouring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

cutAndPlotResultsT1

72 plotOptimResultsPan

Examples

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4sim(ToyModel)

#simulate model

simRes<-simulatorT1(CNOlist=CNOlistToy,model=ToyModel, simList=ToyFields4Sim, indexList=indicesToy)

#format data and results

simResults<-list(t0=matrix(data=0,nrow=dim(simRes)[1],ncol=dim(simRes)[2]),t1=simRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

plotOptimResults(
simResults=simResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues)

plotOptimResultsPan Plots the data and simulated values from any CellNOptR formalism

Description

This function plots the data and simulated values according to each experiment in CNOlist. The
data is shown as black triangles and the simulation by a blue dashed line. The combination of
cues is given by a panel where black denotes the presence and white the absence of the cue. The
goodness-of-fit between model and data is color-coded on a continuous scale from white to red.

Usage

plotOptimResultsPan(simResults, yInterpol=NULL, xCoords=NULL,
CNOlist=CNOlist, formalism=c("ss1","ss2","ssN","dt","ode"), pdf=FALSE,
pdfFileName="", tPt=NULL,
plotParams = list(margin = 0.1, width=15, height=12, cmap_scale=1, cex=1.6,
ymin=NULL, Fac=1, rotation=0))

plotOptimResultsPan 73

Arguments

simResults A list with a field for each time point, each containing a matrix of dimensions
(number of conditions) * (number of signals), with the first field being t0. Typi-
cally produced by simulating a model and then extracting the columns that cor-
respond to signals.

yInterpol If using CNORdt, these are the interpolated experimental results from getFit-
TimeScale() that are needed to compare against the Boolean simulation.

xCoords These are the x-coordinates obtained from the optimized scaling factor in CNORdt
that allow for comparison between time course experimental data and a Boolean
model.

CNOlist A CNOlist.

formalism An abbreviation of the CellNOptR formalism being used.

pdf A Boolean argument denoting whether to print the figure produced by this func-
tion to file.

pdfFileName If printing to file, the filename to be used.

tPt The number of time points in the data.

plotParams a list of option related to the PDF and plotting outputs. Currently, the following
attributes are used: (1) margin of the boxes, (2) width and heigth used while
creating the PDF, (3) cmap_scale a value that scales the colors towards small
errors (<1) or large errors (>1); default is 1 (linear colormap) (4) cex is the
fontsize used in the header (5) ymin sets the minimum y axis limit; by default it
is the minimum value found over all data points and therefore can be negative.

Details

Depending on the logic formalism, this function is generally called from cutAndPlotResults*(). As
shown in the example below however, it can plot the fit of any data and corresponding compatible
model. The color denotes the goodness-of-fit, where white shows no difference between simulation
and data and red is the maximum error from all conditions and readouts.

Value

This function does not return a value.

Author(s)

A. MacNamara

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

cutAndPlotResultsT1

74 plotOptimResultsPDF

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy <- indexFinder(CNOlistToy, ToyModel, verbose=TRUE)
ToyFields4Sim <- prep4sim(ToyModel)

simulate model
simRes <- simulatorT1(CNOlist=CNOlistToy, model=ToyModel, simList=ToyFields4Sim, indexList=indicesToy)
simRes = simRes[, indicesToy$signals]

format data and results

simResults <- list(t0=matrix(data=0, nrow=dim(simRes)[1], ncol=dim(simRes)[2]), t1=simRes)
plot
plotOptimResultsPan(simResults,

CNOlist=CNOlistToy,
formalism="ss1",
pdf=FALSE,
tPt=10

)

plotOptimResultsPDF Plot the data and simulated values in a pdf file

Description

This is a wrapper for plotOptimResults

Usage

plotOptimResultsPDF(simResults, expResults, times, namesCues, namesSignals,
valueCues, filename, formalism="new")

Arguments

simResults a list with a field for each time point, each containing a matrix of dimensions
number of conditions * number of signals, with the first field being t0. Typically
produced by simulating a model and then extracting the columns that correspond
to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

plotOptimResultsPDF 75

filename a name for your file, eg. "plot.pdf"

formalism New convention is to take the time=0 data set into account to compute the MSE.
you can use the previous convetion by setting this argument to something differ-
ent from the default value.

Details

The coloring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in a pdf document in your working
directory.

Author(s)

C. Terfve

See Also

plotOptimResults, cutAndPlotResultsT1

Examples

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise
#its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4sim(ToyModel)

#simulate the model

simRes<-simulatorT1(CNOlist=CNOlistToy,model=ToyModel,simList=ToyFields4Sim,indexList=indicesToy)

#format the results and data as expected by plotOptimResults

simResults<-list(t0=matrix(data=0,nrow=dim(simRes)[1],ncol=dim(simRes)[2]),t1=simRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

76 prep4sim

plotOptimResultsPDF(
simResults=simResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues,
filename="Toyfull.pdf")

prep4sim Prepare a model for simulation

Description

Adds to the model some fields that are used by the simulation engine

Usage

prep4sim(model)

Arguments

model a model list, as output by readSIF, normally pre-processed but that is not a re-
quirement of this function

Details

This adds fields that are necessary for the simulation engine in a version that is extensible for
constrained Fuzzy logic extension of the methods applied here (in development).

Value

this function returns a list with fields:

finalCube stores, for each reac(row) the location of its inputs (col)

ixNeg stores, for each reac(row) and each input (col) whether it is a negative input

ignoreCube logical matrix of the same size as the 2 above, that tells whether the particular
cell is filled or not

maxIx row vector that stores, for each reac, the location of its output

modelname stores the name of the model from which these fields were derived

maxInput stores the max number of inputs observed in the model for a single reaction

Note

For internal usage since version 1.3.28

preprocessing 77

Author(s)

C. Terfve, T. Cokelaer

See Also

simulatorT1

Examples

data(ToyModel,package="CellNOptR")
ToyFields4Sim<-prep4sim(ToyModel)

preprocessing Performs the pre-processing steps

Description

This function performs any of the following preprocessing steps:

1. removes Non-Controllable and Non-Observables nodes

2. compress the model

3. and-gates expansion

Usage

preprocessing(data, model, cutNONC=TRUE, compression=TRUE,
expansion=TRUE, ignoreList=NA, maxInputsPerGate=2, verbose=TRUE)

Arguments

data the CNOlist that contains the data that you will use

model the model object as returned by readSIF

cutNONC Removes the NONC nodes using cutNONC and findNONC (Default is TRUE).

compression Compress the model using compressModel (Default is TRUE).

expansion Add and gates using expandGates (Default is TRUE).

ignoreList an index vector of states to ignore incoming edges in expandGates.
maxInputsPerGate

used by the expandGates function to set maximum inputs per and gates.

verbose verbose option (Default is TRUE).

Details

The function can apply any or none of the pre-processing steps. It returns the new model and the
indices returned by indexFinder.

78 randomizeCNOlist

Value

the new model

Author(s)

T. Cokelaer

See Also

readSIF, readMIDAS, cutNONC, findNONC, compressModel, expandGates.

Examples

data(ToyModel,package="CellNOptR")
data(CNOlistToy,package="CellNOptR")
model = preprocessing(CNOlistToy, ToyModel, cutNONC=FALSE)

randomizeCNOlist add noise to the data contained in a CNOlist.

Description

This function takes in a CNOlist and does the normalisation of the data between 0 and 1, according
to two different procedures (see details).

Usage

randomizeCNOlist(cnolist, sd=0.1, minValue=0, maxValue=1, mode="gaussian")

Arguments

cnolist a CNOlist

sd standard deviation to be used when adding gaussian noise. Not used if mode is
uniform.

minValue When adding Gaussian noise, the result may be below the minValue(default 0).
If so, the value is set to minValue.

maxValue When adding Gaussian noise, the result may be above the maxValue(default 1).
If so, the value is set to maxValue.

mode The mode can be either ’gaussian’, ’shuffle’ or uniform’. In gaussian mode, a
gaussian noise is added to the data. The mean parameter is the data and the
standard deviation is defined by the sd parameter. In uniform mode, the data is
simply replaced by values taken from a uniform distribution between 0 and 1.
In ’shuffle’ mode all rows and columns are shuffled.

Value

a noisy CNOlist

readBND 79

Author(s)

T. Cokelaer

Examples

data(CNOlistToyMMB, package="CellNOptR")
cnolist = CNOlistToyMMB
cnolist2 = randomizeCNOlist(cnolist, mode="uniform")

a method called randomize is available in the CNOlist class so you could type:
cnolist2 = randomize(cnolist, mode="uniform")

readBND Read network from BND file

Description

BND is a file format used by MaBoSS to store the boolean network definition. The reader works
if the logic for the activation of the node is stated withing the parameter ‘logic‘ of the node. An
example file can be found in ‘https://maboss.curie.fr/pub/example.bnd‘.

Usage

readBND(filename)

Arguments

filename BND file.

Value

CellNOpt network

Author(s)

Luis Tobalina

Examples

Not run:
model = readBND("https://maboss.curie.fr/pub/example.bnd")

End(Not run)

80 readMIDAS

readBNET Read network from BNET file

Description

Read network from BNET file

Usage

readBNET(filename)

Arguments

filename BNET file. The file is a tab delimited file with two columns, ‘targets‘ and ‘fac-
tors‘. ‘factors‘ contains the logic rule and ‘targets‘ the node activated by the
logic rule.

Value

CellNOpt network

Author(s)

Luis Tobalina

readMIDAS Reads in a CSV MIDAS file

Description

This function takes in a single argument, the name of a CSV MIDAS file containing the data, and
returns a list that contains all the elements to build a CNOlist. The output of this function should be
used as input for makeCNOlist.

Usage

readMIDAS(MIDASfile, verbose=TRUE)

Arguments

MIDASfile a CSV MIDAS file (see details)

verbose logical (default to TRUE).

readSBMLQual 81

Details

This function does not return a CNOlist, but the output of this function can be used directly into
makeCNOlist to create one. The MIDAS file format is described in Saez-Rodriguez et al. (2008).

If you have all of the readouts measured at the same series of time points, you can specify a unique
DA: column which must have the format "DA:ALL".

Value

this function returns a list with fields:

dataMatrix matrix containing the data in the MIDAS file

TRcol indexes of the columns that contain the treatments (excluding cell line)

DAcol indexes of the columns that contain the data time points

DVcol indexes of the columns that contain the actual values (measurements)

Author(s)

C.Terfve

References

J. Saez-Rodriguez, A. Goldsipe, J. Muhlich, L. Alexopoulos, B. Millard, D. A. Lauffenburger, P. K.
Sorger Flexible Informatics for Linking Experimental Data to Mathematical Models via DataRail.
Bioinformatics, 24:6, 840-847 (2008).

See Also

makeCNOlist

Examples

cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile='ToyDataMMB.csv')
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

readSBMLQual Read a SBMLQual document and returns a SIF object (as returned by
readSIG

Description

This function reads a SBMLQual XML file where a model is stored. The XML is scanned and
saved in SIF format in a temporary file. This file is read by readSIF. The returned object is therefore
the output of readSIF.

82 readSIF

Usage

readSBMLQual(filename)

Arguments

filename The name of a SBMLQual file.

Value

a model list with fields:

interMat contains a matrix with column for each reaction and a row for each species, with
a -1 where the species is the source node and a +1 where the species is a target
node, and 0 otherwise

notMat has the same format as interMat but just contains a 1 if the source node enters
the reac with a negative effect, and 0 otherwise

namesSpecies vector that contains the names of the species in the same order as the rows of the
interMat and notMat matrices

reacID vector that holds character strings specifying the reaction in full letters, in the
same order as the columns of interMat and notMat

Author(s)

T. Cokelaer

References

SBMLQual: qualitative models. See SBML.org for details.

Examples

Not run:
sif = readSBMLQual("test.xml")

End(Not run)

readSIF Read a SIF file and create a model object

Description

This function reads in a cytoscape SIF file and creates a model object that can be used in the
CellNOptR procedure.

Usage

readSIF(sifFile)

readSIF 83

Arguments

sifFile The name of a SIF file (Cytoscape format). See details for the accepted format.

Details

The input argument is the name of a SIF file that contains a prior knowledge network. The SIF
format (See http://wiki.cytoscape.org/Cytoscape_User_Manual/Network_Formats/) can be of the
form:

nodeA typeA node2

or

node2 typeB node3 node4

with space or tabulations in between types and nodes. Spaces and tabulations have different meaning
in the original cytoscape format. However, we do not differentiate them. Therefore names of the
nodes cannot have white space inside them.

The accepted values for the types are -1 (inhibitor) or 1 (normal relation).

If there are ANDs they should be introduced as dummy nodes called "and#" (don’t forget the number
after "and" otherwise this won’t be recognised). Please be aware that "and" nodes are not expected
to be negated, i.e. there are not supposed to be !and1=xyz because that amounts to inverting the
sign of all inputs of and1, which is more simply done at the inputs level.

The SIF format can also include unconnected node that is a row with a single name:

nodeA

Although there would be no error, these type of rows are ignored.

Value

a model list with fields:

interMat contains a matrix with column for each reaction and a row for each species, with
a -1 where the species is the source node and a +1 where the species is a target
node, and 0 otherwise

notMat has the same format as interMat but just contains a 1 if the source node enters
the reac with a negative effect, and 0 otherwise

namesSpecies vector that contains the names of the species in the same order as the rows of the
interMat and notMat matrices

reacID vector that holds character strings specifying the reaction in full letters, in the
same order as the columns of interMat and notMat

Author(s)

C. Terfve

References

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker
T. Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Research 2003 Nov; 13(11):2498-504.

84 residualError

Examples

cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
ToyModel<-readSIF(sifFile="ToyPKNMMB.sif")

residualError Compute the residual error for a dataset

Description

This function takes in a CNOlist and computes the residual error, which is the minimum error
between the scaled continuous data and a binary boolean approximation of this data.

Usage

residualError(CNOlist)

Arguments

CNOlist a CNOlist

Details

Be aware that it is expected that $valueSignals[[1]] holds t0 (all signals=0) and $valueSignals[[2]]
holds t1, $valueSignals[[3]] holds t2 and so on. The output is a list of residual errors at each
time greater than 2. In addition, the total error is stored. For back compatibility, an additional field
called t1andt2 is stored (NA is only t1 provided).

Value

a vector with named entries t1, t2, ...tn, t1andt2 and total. If only t1 is provided, t1andt2 is set to
NA. The field t1andt2 may be removed in the future. Use the field called total instead.

Author(s)

C. Terfve, T. Cokelaer

See Also

makeCNOlist, normaliseCNOlist, getFit

Examples

data(CNOlistToy,package="CellNOptR")
resECNOlistToy<-residualError(CNOlistToy)

sif2graph 85

sif2graph Convert sif to graph

Description

This function receives as input a network in form sif format and converts it to graph format.

Usage

sif2graph(sif)

Arguments

sif the name of a sif file or the equivalent table

Details

This function takes a network in sif format (tabel or file), i.e. sourceNode-tab-sign-tab-targetNode.
If there are ANDs they should be introduced as dummy nodes called and# (don’t forget the number
after "and" otherwise this won’t be recognised). Please be aware that "and" nodes are not expected
to be negated, i.e. there are not supposed to be !and1=xyz because that amounts to inverting the
sign of all inputs of and1, which is more simply done at the inputs level.

In the resulting graph, the sign of each link is encodes as the weigth of the edge (-1 negative
regulation, +1 positive regulation).

Value

g the corresponding graph

Author(s)

F.Eduati

See Also

graph2sif, model2sif, readSIF,

Examples

data(ToyModel,package="CellNOptR")
sif_file = tempfile(fileext = ".sif")
writeSIF(model = ToyModel,filename = sif_file)
g = sif2graph(sif_file)

86 simulateT1

simulateT1 deprecated since version 1.3.28. Cut and simulation of a boolean
model at t1. Use simulateTN instead.

Description

This function cuts a model according to a bitstring optimised at T1, and simulates the model ac-
cordingly.

Usage

simulateT1(CNOlist, model, bStringT1, simList, indexList)

Arguments

CNOlist a CNOlist object

model a full model

bStringT1 a bitstring to cut the model, as output by gaBinaryT1 (i.e. a vector of 1s and 0s,
of length equal to the number of reactions in the model)

simList a list of additional fields for simulation as created by prep4sim, corresponding
to the full model

indexList a list of indexes as created by indexFinder

Details

This function is a wrapper for simulatorT1, that cuts the model before simulating it

Value

a matrix of simulated values, including all species in the model, i.e. to be used as input of gaBina-
ryTN (not implemented here) but not to be used directly in plotOptimResults.

Author(s)

C.Terfve

See Also

cutAndPlotOptimResultsT1, simulatorT1

simulateTN 87

Examples

This will compute the output of a random model obtained by randomly selecting
which gates of the initial models are included.

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyFields4Sim<-prep4sim(ToyModel)

simRes<-simulateT1(
CNOlist=CNOlistToy,
model=ToyModel,
bStringT1=round(runif(length(ToyModel$reacID))),
simList=ToyFields4Sim,
indexList=indicesToy)

simulateTN Cut and simulation of a boolean model at t1

Description

This function cuts a model according to a bitstring optimised at T1, and simulates the model ac-
cordingly.

Usage

simulateTN(CNOlist, model, bStrings)

Arguments

CNOlist a CNOlist object

model a full model

bStrings a bitstring to cut the model, as output by gaBinaryT1 (i.e. a vector of 1s and 0s,
of length equal to the number of reactions in the model)

Details

This function is a wrapper around the family of functions called simulatorT1 , T2 and TN.

Value

a matrix of simulated values, including all species in the model, i.e. to be used as input of gaBina-
ryTN.

Author(s)

T.Cokelaer, S.Schrier based on simulatorT1 (C.Terfve)

88 simulatorT0

See Also

cutAndPlotResultsT1, simulatorT1

Examples

This will compute the output of a random model obtained by randomly selecting
which gates of the initial models are included.

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

simRes<-simulateTN(
CNOlist=CNOlistToy,
model=ToyModel,
bStrings=list(round(runif(length(ToyModel$reacID)))))

simulatorT0 Simulation of a boolean model

Description

This is the simulator, inspired from BoolSimEngMKM in the Matlab CellNOpt, to be used on one
time point simulations

Usage

simulatorT0(CNOlist, model, simList, indexList)

Arguments

CNOlist a CNOlist

model a model that only contains the reactions to be evaluated

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argument
which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1 that
takes care of cutting the model for you before simulating it.

simulatorT1 89

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

Author(s)

T. Cokelaer

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Sig-
naling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Anal-
ysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099,
2011.

See Also

simulateTN, cutAndPlotResultsT1

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4sim(ToyModel)

Sim<-simulatorT0(
CNOlist=CNOlistToy,
model=ToyModel,
simList=ToyFields4Sim,
indexList=indicesToy)

simulatorT1 Simulation of a boolean model

Description

This is the simulator, inspired from BoolSimEngMKM in the Matlab CellNOpt, to be used on one
time point simulations

90 simulatorT1

Usage

simulatorT1(CNOlist, model, simList, indexList, mode=1)

Arguments

CNOlist a CNOlist

model a model that only contains the reactions to be evaluated

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

mode switch to use the cSimualor for time 0 or 1

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argument
which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1 that
takes care of cutting the model for you before simulating it.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

Author(s)

C. Terfve

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Sig-
naling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Anal-
ysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099,
2011.

See Also

simulateTN, cutAndPlotResultsT1

simulatorT2 91

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4sim(ToyModel)

Sim<-simulatorT1(
CNOlist=CNOlistToy,
model=ToyModel,
simList=ToyFields4Sim,
indexList=indicesToy)

simulatorT2 Deprecated since 1.3.28. Use simulateTN function instead. Simulation
of a boolean model for time 2

Description

This function simulates a boolean model at time 2 where time 2 is assume to be a pseudo-steady
states at a time scale slower than the pseudo-steady state evaluated at time 1

Usage

simulatorT2(simResultsT1, CNOlist, model, simList, indexList, timeIndex=3)

Arguments

simResultsT1 a matrix that is the output of simulatorT1 (i.e. one row per condition and one
column per species IN THE MODEL)

CNOlist a CNOlist

model a Model that only contains the reactions to be evaluated, and the additional field
model$times that should have been created inside the gabinaryTN optimisation
engine.

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

timeIndex argument requiter only for steady states T3 and above to specify the Time in-
dices.

92 simulatorT2

Details

This is the simulator for time T2, it is very similar to simulatorT1 but here we assume that we
start from the simulated results at t1 (i.e. we start from a pseudo-steady state) then it does a first
iteration, and whatever branch is set to be active at t2 has an effect that cannot be changed after
the first iteration, i.e. the output node of a t2 iteration is fixed. We assume here that the model has
already been cut, and that the cutting is based on keeping all the edges that are set to either 1 or 2,
and there is an additional field $times in the model that keeps the info of the t1/t2 (it is a vector
of 1s and 2s of length=number of reaches present). Structurally the function is almost identical to
simulatorT1 but it does a first iteration where all the gates that lead to a node that also receives a T2
gates are set to the same value as the t2 gate in the ANDs calculation.In the main loop, the nodes
that are targets of t2 interactions are constantly reset to their value at the first iteration, at the end of
each iteration (similarly to what is done with stimulated and inhibited species)

The model$times field is a vector of 1s and 2s that tells the simulator which interactions are ex-
pected to be active at t1 and which are at t2.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 2 if you consider only the columns given by indexSignals

Author(s)

C. Terfve

See Also

simulateTN, cutAndPlotResultsT1, simulatorT1

Examples

This computes the output of the full model, which is normally not done on a
stand alone basis, but if you have a model and would like to visualise its
output compared to your data, then this is what you should do

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

#Sim<-simulatorTN(
CNOlist=CNOlistToy2,
model=ToyModel2)

#Sim2<-simulatorTN(
simResultsT1=Sim,
CNOlist=CNOlistToy2,
model=ToyModel2,
simList=ToyFields4Sim,
indexList=indicesToy, timeIndex=3)

simulatorTN 93

simulatorTN Simulation of a boolean model at any time points dependent on a pre-
vious one.

Description

This is a the simulator at TN using a C implementation. The computation relies on the time TN-1.
T1 is a special case that is solved by using simulatorT2.

Usage

simulatorTN(simResultsPrev, CNOlist, model, simList, indexList, timeIndex=3)

Arguments

simResultsPrev a matrix that is the output of simulatorTN (i.e. one row per condition and one
column per species IN THE MODEL)

CNOlist a CNOlist

model a model that only contains the reactions to be evaluated

simList a simList as created by prep4sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

timeIndex 3 by default to behave like deprecated function simulatorT2. This is the timeIn-
dex at which the simulation is requested.

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argument
which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1 that
takes care of cutting the model for you before simulating it.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

Author(s)

T. Cokelaer, based on cSimulator (A. MacNamara)

94 toSBML

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Sig-
naling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Anal-
ysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099,
2011.

See Also

simulateTN, cutAndPlotResultsT1

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4sim(ToyModel)

#Sim<-simulatorTN(
CNOlist=CNOlistToy,
model=ToyModel,
simList=ToyFields4Sim,
indexList=indicesToy)

toSBML Export the network to SBML-qual format

Description

Export a Boolean network <network> to an sbml-qual file <fileName>. This file can then be read
in using other software that supports SBMLqual standards.

The function also takes a bit string as input. It cuts the model according to the values in bitstrings
and write the new model object to SBMLqual.

Usage

toSBML(network, file, bitString = c(rep(1,length(network$reacID))),version=c("standard","cellnopt"))

ToyModel 95

Arguments

network a valid CellNOptR network model created by e.g. readSIF()

file a valid filename to save the SBMLqual model

bitString optional vector of binary values (for example the resulted bitString from optimi-
sation) to cut the unnecessary interactions from the network before exporting.

version defines the format of SBMLqual file, read details.

Details

version = "standard" exports one transition block for each node of the network. This format is
the SBMLqual standard, that can be imported then with other softwares

version = "cellnopt" the exported file follows a simplified syntax, where each edge of the net-
work is transformed to a transition block in the SBMLqual file. Can be later imported to CellNOptR
again.

Author(s)

Francesco Ceccarelli

Examples

data(ToyModel,package="CellNOptR")
toSBML(ToyModel,file = tempfile())

ToyModel Toy model

Description

This data object contains the Toy model from the package vignette, already loaded and formatted
as a Model object.

Usage

data(ToyModel)

Format

ToyModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector), "in-
terMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

96 writeDot

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

ToyModel2 Toy model

Description

This data object contains the Toy model from the package vignette, already loaded and formatted
as a Model object, and modified for the 2 time points version (a negative fedback between cJun and
Jnk (!cJun=Jnk) is added).

Usage

data(ToyModel)

Format

ToyModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector), "in-
terMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

writeDot Write a model, and attached features, to a dot file

Description

This function writes a model to a Graphviz dot file with encoded features such as edge weight and
nodes status (see details).

Usage

writeDot(dotNodes,dotMatrix,model,filename)

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

writeDot 97

Arguments

dotNodes internal variables created by writeNetwork or writeScaffold; dotNodes is a ma-
trix with 2 columns: the first has the node names,and the second the attributes
(signal, stimulated, inhibited, compressed, nano). A node can appear twice in
this matrix if it belongs to more of one of the above categories; a node could
also not appear here if it is is none of these categories

dotMatrix internal variables created by writeNetwork or writeScaffold; dotMatrix is a ma-
trix with 4 or 5 columns, and a row for each reaction:the first column holds the
name of the input node, the second column holds the sign of the reaction (-1 if
negative, 1 if positive), the third column holds the name of the output node, the
fourth column holds the time stamp (0,1,2), an optional 5th column holds the
weights of the edges

model A model to be plotted, if used inside writeNetwork then this should be the previ-
ous knowledge network (modelOriginal), if inside writeScaffold then this should
be the scaffold (modelComprExpanded)

filename a name for the file

Details

This function is not to be used on its own, it should be used internally to writeNetwork or writeScaf-
fold. For the colouring of the nodes, nodes that are both stimulated and inhibited or any other com-
bination, only one colour per category is used, and the following order of priority for the colours
is used: signals prime over inhibited nodes which primes over stimulated nodes which primes over
non-controllable/non-observable nodes, which primes over compressed. Nodes that are neither
of those have a black contour, stimulated nodes are green, inhibited are red, measure are blue,
compressed and non-controllable/non-observable nodes are black and dashed. Edges are coloured
according to time stamp in the optimal model (green=t1, blue=t1 and/or t2, grey=neither); on the
scaffold, the strokes of the edges reflects the weights in the models within reltol (i.e. for each edge,
the weight is the frequency with which it appeared among the models within the relative tolerance
boundaries around the best solution).

Value

This function does not have any output, it just writes a dot file in your working directory.

Author(s)

C. Terfve

References

Emden R. Gansner , Stephen C. North. An Open Graph Visualization System and Its Applications
to Software Engineering. Software - Practice and Experience (1999)

See Also

writeNetwork, writeScaffold

98 writeFile

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=ToyNCNOcutCompExp,
initBstring=initBstring,
maxGens=2,
popSize=5,
verbose=TRUE)

#write network

writeNetwork(
modelOriginal=ToyModel,
modelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeFile Writing the ILP problem.

Description

This function takes as input the objective function. constraints, bounds and the solver path in order
to generate a file containing the ILP problem.

Usage

writeFile(objectiveFunction,
constraints,
bounds,
binaries)

writeMIDAS 99

Arguments

objectiveFunction

the objective function of the ILP problem

constraints the set of constraints of the ILP problem

bounds the set of bounds for each integer variable

binaries the set of binary variables

Author(s)

E Gjerga, H Koch

writeMIDAS Write a CNOlist structure into a MIDAS file

Description

This function takes a CNOlist structure (output of makeCNOlist and readMIDAS) and save it a
MIDAS format.

Usage

writeMIDAS(CNOlist, filename, timeIndices=NULL, overwrite=FALSE)

Arguments

CNOlist a CNOlist structure

filename a filename. Not overwritten if it exists already

timeIndices select subset of the times to be saved. Works with indices (not time values)

overwrite overwrite the file if it exists already (Default is FALSE)

Author(s)

T. Cokelaer

See Also

makeCNOlist, readMIDAS, CNOlist-class

Examples

data(CNOlistToy)
writeMIDAS(CNOlistToy, 'test.csv')
readMIDAS('test.csv')
writeMIDAS(CNOlistToy, 'test.csv', timeIndices=c(1,2), overwrite=TRUE)

100 writeNetwork

writeNetwork Write a previous knowledge network model to a sif file (with attribute
files), as well as a dot file

Description

This function writes the original previous knowledge network (the model that you loaded in the
beginning of your analysis) in a sif file, with a nodes attribute file that specifies if each node was
stimulated/inhibited/signal/compressed/non-controllable-non-observable and an edge attribute file
that specifies if the edge was absent in the optimal model (0) present in the optimal model at t1 (1)
or present in the optimal model at t2 (2).

This function also writes a Graphviz dot file that contains the same information (see writeDot for
more information about the dot file conventions).

Usage

writeNetwork(modelOriginal, modelComprExpanded, optimResT1, optimResT2, CNOlist,
tag = NULL,verbose=FALSE)

Arguments

modelOriginal The PKN model
modelComprExpanded

The scaffold model (i.e. compressed and expanded)

optimResT1 The results of the optimisation process at t1

optimResT2 The results of the optimisation process at t2 (set this to NA if you have performed
a one time point optimisation).

CNOlist The CNOlist on which the optimisation is based

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

verbose If verbose=TRUE, the function prints a message every time an edge in the scaf-
fold network couldn’t be mapped back to the PKN

Details

The weights of the edges are computed as the mean across models within the relative tolerance
limits, as output in the results from the optimisation $stringsTol. Strings that are in $stringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA

This function maps back the edges weights from the optimised (expanded and compressed) model
to the original model. The mapping back only works if the path has length 2 at most (i.e. you have
node1-comp1-comp2-node2, where comp refer to nodes that have been compressed).

writeNetwork 101

Value

This function does not have any output, it just writes a sif file, an edge attribute file, and a node
attribute file

Note

The mapback of this function is still an open question, even in the Matlab version. Future devel-
opments will include more robust versions of the mapping back algorithm, probably as a separate
mapback function.

Author(s)

C. Terfve

See Also

writeScaffold, writeDot

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=ToyNCNOcutCompExp,
initBstring=initBstring,
verbose=TRUE,
maxGens=2,
popSize=5)

#write network

writeNetwork(
modelOriginal=ToyModel,

102 writeObjectiveFunction

modelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeObjectiveFunction

Writing the objective function for the ILP implementation of
CellNOptR.

Description

This function takes as input the integer variables assigned to each of the elements in the network
and data in a CNOlist object in order to produce the objective function needed to be optimized by
the ILP solver.

Usage

writeObjectiveFunction(model,
midasExperimentPart,
y_vector=y_vector,
accountForModelSize = TRUE,
sizeFac = .000001,
meansOfMeasurements_at_t0,
method = "quadratic")

Arguments

model the model
midasExperimentPart

the experimental part of CNOlist where data is stored

y_vector the variables for each interaction in the PKN
accountForModelSize

the verbose variable if we wish to apply the size penalty

sizeFac the size penalty factor

meansOfMeasurements_at_t0

the means of measurements at time-point 0

method the method of defining the objective function ("quadratic/linear")

Author(s)

E Gjerga, H Koch

writeReport 103

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

writeReport Write a report of a CellNOptR analysis

Description

This function writes a short report of a CellNOptR analysis in an html page, that is linked to the
various graphs produced

Usage

writeReport(modelOriginal, modelOpt, optimResT1, optimResT2, CNOlist, directory,
namesFiles = list(dataPlot = NA, evolFitT1=NA, evolFitT2=NA, simResultsT1=NA,
simResultsT2=NA, scaffold=NA, scaffoldDot=NA, tscaffold=NA, wscaffold=NA,
PKN=NA, PKNdot=NA, wPKN=NA,nPKN=NA), namesData = list(CNOlist=NA, model=NA),
resE=NULL)

Arguments

modelOriginal the original previous knowledge network (i.e. model that you loaded) in a model
list format

modelOpt the model that was actually used for optimisation (i.e. the scaffold network, after
compression and expansion) in a model list format

optimResT1 the results of the optimisation at t1, as output by gabinaryT1

optimResT2 the results of the optimisation at t2, as output by gabinaryTN. Set this to NA if
you have performed a one time point optimisation.

CNOlist a CNOlist

directory the name of a new directory that will be created, where your results will be
moved

namesFiles a list of the names of the files that should have been created. Depending on
whether a t2 optimisation was performed or not, all or some of the follow-
ing fields are expected: dataPlot, evolFitT1, evolFitT2, simResultsT1, simRe-
sultsT2, scaffoldDot, scaffold, tscaffold, wscaffold, PKN, PKNdot, wPKN, nPKN.

namesData a list with fields $CNOlist and $model that contain strings that are meaningful
identifiers of your data and previous knowledge network (for your own record).

resE a vector with named entries t1, t2 t1andt2, as produced by the function ResidualError,
that contains the residual error associated with the discretisation of the data.
Since version 1.3.29, there is no need to provide this argument. Kept for back
compatibility.

104 writeReport

Details

Future versions of this function might directly write and compile a tex file.

Value

This function produces a directory and moves all the files of namesFiles to it, then it creates an html
report that contains infos about the optimisation process.

Author(s)

C. Terfve

See Also

writeNetwork, writeScaffold

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=ToyNCNOcutCompExp,
initBstring=initBstring,
maxGens=2,
popSize=5,
verbose=TRUE)

#write report

namesFilesToy<-list(
dataPlot=NA,
evolFitT1=NA,
evolFitT2=NA,
simResultsT1=NA,
simResultsT2=NA,
scaffold=NA,
scaffoldDot=NA,

writeScaffold 105

tscaffold=NA,
wscaffold=NA,
PKN=NA,
PKNdot=NA,
wPKN=NA,
nPKN=NA)

writeReport(
modelOriginal=ToyModel,
modelOpt=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy,
directory="testToy",
namesFiles=namesFilesToy,
namesData=list(CNOlist="Toy",model="ToyModel"),
resE=NA)

writeScaffold Writes the scaffold network to a sif file (with attributes) and to a dot
file

Description

This function writes a cytoscape SIF file for the scaffold network, with an associated edge attribute
file that holds whether the edge is present at t1,t2 or not present at all and another associated edge
attribute file that holds the weights of the edges. This function also writes a dot file that contains
the same information (see writeDot for more information about the dot file conventions).

Usage

writeScaffold(modelComprExpanded, optimResT1, optimResT2, modelOriginal,
CNOlist, tag=NULL)

Arguments

modelComprExpanded

The scaffold model (i.e. compressed and expanded)

optimResT1 The results of the optimisation process at t1

optimResT2 The results of the optimisation process at t2 (set this to NA if you have performed
a one time point optimisation).

modelOriginal The PKN model

CNOlist The CNOlist on which the optimisation is based

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

106 writeScaffold

Details

By scaffold network we mean the network that is used as a basis for optimisation (i.e. a compressed
and expanded network), therefore no map back of the weights is necessary here.

The weights of the edges are computed as the mean across models within the relative tolerance
limits, as output in the results from the optimisation $stringsTol. Strings that are in $stringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA.

Value

This function does not return anything, it writes a sif file and 2 edge attributes files, and a dot file,
in your working directory.

Author(s)

C.Terfve

See Also

writeNetwork, writeDot

Examples

#load the data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
model=ToyNCNOcutCompExp,
initBstring=initBstring,
maxGens=3,
popSize=5,
verbose=TRUE)

#write the network

writeSIF 107

writeScaffold(
modelOriginal=ToyModel,
modelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeSIF Convert a model into a SIF format and save the result in a file.

Description

This function takes as input a model (as created by e.g., read from a SIF data set with readSIF
function) and save it into a file.

Usage

writeSIF(model, filename, overwrite = FALSE)

Arguments

model the model

filename the filename

overwrite by default, do not overwrite a file.

Author(s)

T Cokelaer

Examples

cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
ToyModel<-readSIF(sifFile="ToyPKNMMB.sif")
writeSIF(ToyModel, "ToyPKNMMB_copy.sif")

108 write_constraints

write_bounds Writing the set of boundaries for each integer variable for the ILP
implementation of CellNOptR.

Description

This function takes as input the integer variables assigned to each of the elements in the network
and data in a CNOlist object in order to produce the set boundaries for each integer variable.

Usage

write_bounds(model,
midasTreatmentPart,
y_vector,
binary_variables)

Arguments

model the model
midasTreatmentPart

the treatment part of CNOlist where data is stored

y_vector the variables for each interaction in the PKN
binary_variables

the set of binary variables

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

write_constraints Writing the set of constraints for the ILP implementation of
CellNOptR.

Description

This function takes as input the integer variables assigned to each of the elements in the network
and data in a CNOlist object in order to produce the set of constraints needed to be optimized by
the ILP solver.

write_constraints 109

Usage

write_constraints(model,
midasExperimentPart,
midasTreatmentPart,
reaction_sets,
y_vector,
midas,
binary_variables)

Arguments

model the model
midasExperimentPart

the experimental part of CNOlist where data is stored
midasTreatmentPart

the treatment part of CNOlist where data is stored

reaction_sets the set of reactions

y_vector the variables for each interaction in the PKN

midas the midas table
binary_variables

the set of binary variables

Author(s)

E Gjerga, H Koch

References

Alexander Mitsos, Ioannis N. Melas, Paraskeuas Siminelakis, Aikaterini D. Chairakaki, Julio Saez-
Rodriguez, and Leonidas G. Alexopoulos. Identifying Drug Effects via Pathway Alterations using
an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Com-
put Biol. 2009 Dec; 5(12): e1000591.

Index

∗ CNOlist
CNOlist-methods, 10
plot-method, 62

∗ classes
CNOlist-class, 9

∗ datasets
CNOlistDREAM, 11
CNOlistToy, 12
CNOlistToy2, 13
CNOlistToyMMB, 13
LiverDREAM, 55
pknmodel, 62
ToyModel, 95
ToyModel2, 96

∗ internal
buildBitString, 5
CNOlistToyMMB, 13
cSimulator, 26
simulateT1, 86
simulatorT2, 91

∗ methods
CNOlist-methods, 10
plot-method, 62

∗ package
CellNOptR-package, 4

build_sif_table_from_rule, 6
buildBitString, 5

CellNOptR (CellNOptR-package), 4
CellNOptR-package, 4
checkSignals, 7
CNOdata, 8
cnodata (CNOdata), 8
CNOlist (CNOlist-class), 9
CNOlist-class, 9, 10, 32, 57, 99
CNOlist-methods, 9, 10
CNOlistDREAM, 11
CNOlistToy, 12
CNOlistToy2, 13

CNOlistToyMMB, 13
CNORbool, 14
CNORwrap, 14, 15
compatCNOlist (CNOlist-methods), 10
compatCNOlist,CNOlist

(CNOlist-methods), 10
compatCNOlist,CNOlist-method

(CNOlist-class), 9
compressModel, 17, 17, 77, 78
computeScoreT1, 18
computeScoreTN, 5, 19
create_binaries, 22
createAndRunILP, 20
createILPBitstringAll, 22
crossInhibitedData, 23
crossvalidateBoolean, 24
cSimulator, 26, 93
cutAndPlot, 27
cutAndPlotResultsT1, 28, 28, 30, 88–90, 92,

94
cutAndPlotResultsTN, 30
cutCNOlist, 31
cutModel, 32
cutNONC, 33, 39, 77, 78
cutSimList, 34

defaultParameters, 14, 16, 35
DreamModel (LiverDREAM), 55

exhaustive, 36
expandGates, 37, 77, 78

findNONC, 34, 39, 77, 78

gaBinaryT1, 29, 30, 35, 37, 40, 45, 59, 68, 70
gaBinaryTN, 41, 42
getCues (CNOlist-methods), 10
getCues,CNOlist (CNOlist-methods), 10
getCues,CNOlist-method (CNOlist-class),

9

110

INDEX 111

getFit, 43, 44, 84
getInhibitors (CNOlist-methods), 10
getInhibitors,CNOlist

(CNOlist-methods), 10
getInhibitors,CNOlist-method

(CNOlist-class), 9
getSignals (CNOlist-methods), 10
getSignals,CNOlist (CNOlist-methods), 10
getSignals,CNOlist-method

(CNOlist-class), 9
getStimuli (CNOlist-methods), 10
getStimuli,CNOlist (CNOlist-methods), 10
getStimuli,CNOlist-method

(CNOlist-class), 9
getTimepoints (CNOlist-methods), 10
getTimepoints,CNOlist

(CNOlist-methods), 10
getTimepoints,CNOlist-method

(CNOlist-class), 9
getVariances (CNOlist-methods), 10
getVariances,CNOlist (CNOlist-methods),

10
getVariances,CNOlist,CNOlist-method

(CNOlist-methods), 10
getVariances,CNOlist-method

(CNOlist-class), 9
graph2sif, 46, 58, 59, 85

ilpBinaryT1, 47
ilpBinaryT2, 49
ilpBinaryTN, 51
indexFinder, 17, 18, 39, 53
internals, 54
invokeCPLEX, 54

length (CNOlist-methods), 10
length,CNOlist (CNOlist-methods), 10
length,CNOlist,ANY-method

(CNOlist-methods), 10
length,CNOlist-method (CNOlist-class), 9
LiverDREAM, 55

makeCNOlist, 7, 9–11, 14, 16, 53, 56, 61, 63,
70, 80, 81, 84, 99

mapBack, 57
model2igraph, 58
model2sif, 47, 59, 85

normaliseCNOlist, 60, 84

pknmodel, 62
plot,CNOlist,ANY-method (plot-method),

62
plot,CNOlist,CNOlist,CNOlist-method

(CNOlist-methods), 10
plot,CNOlist,CNOlist-method

(CNOlist-class), 9
plot-method, 62
plot.CNOlist (plot-method), 62
plotCNOlist, 9, 10, 63, 65–67
plotCNOlist2, 9, 10, 64
plotCNOlistLarge, 65, 66, 67
plotCNOlistLargePDF, 65, 66, 67
plotCNOlistPDF, 65, 66, 67
plotFit, 67
plotModel, 68
plotOptimResults, 70
plotOptimResultsPan, 27, 29, 30, 72
plotOptimResultsPDF, 74
prep4Sim (prep4sim), 76
prep4sim, 30, 76
preprocessing, 7, 17, 18, 34, 38, 39, 77

randomize (CNOlist-methods), 10
randomize,CNOlist (CNOlist-methods), 10
randomize,CNOlist,CNOlist-method

(CNOlist-methods), 10
randomize,CNOlist-method

(CNOlist-class), 9
randomizeCNOlist, 9–11, 78
readBND, 79
readBNET, 80
readErrors (CNOlist-methods), 10
readErrors,CNOlist (CNOlist-methods), 10
readErrors,CNOlist-method

(CNOlist-class), 9
readMIDAS, 9, 57, 63, 70, 78, 80, 99
readMidas (readMIDAS), 80
readSBMLQual, 81
readSIF, 7, 14, 16–18, 34, 39, 47, 53, 58, 59,

70, 77, 78, 82, 85
readSif (readSIF), 82
residualError, 84

setSignals<- (CNOlist-methods), 10
setSignals<-,CNOlist (CNOlist-methods),

10
setSignals<-,CNOlist,CNOlist-method

(CNOlist-methods), 10

112 INDEX

setSignals<-,CNOlist-method
(CNOlist-class), 9

sif2graph, 46, 47, 58, 59, 85
simulateT1, 86
simulateTN, 5, 87, 89–92, 94
simulatorT0, 88
simulatorT1, 26, 27, 41, 43, 45, 77, 88, 89, 92
simulatorT2, 43, 91, 93
simulatorTN, 93

toSBML, 94
ToyModel, 95
ToyModel2, 96

write_bounds, 108
write_constraints, 108
writeDot, 70, 96
writeErrors (CNOlist-methods), 10
writeErrors,CNOlist (CNOlist-methods),

10
writeErrors,CNOlist-method

(CNOlist-class), 9
writeFile, 98
writeMIDAS, 99
writeNetwork, 70, 97, 100, 104
writeObjectiveFunction, 102
writeReport, 103
writeScaffold, 97, 104, 105
writeSIF, 107
writeSif (writeSIF), 107

	CellNOptR-package
	buildBitString
	build_sif_table_from_rule
	checkSignals
	CNOdata
	CNOlist-class
	CNOlist-methods
	CNOlistDREAM
	CNOlistToy
	CNOlistToy2
	CNOlistToyMMB
	CNORbool
	CNORwrap
	compressModel
	computeScoreT1
	computeScoreTN
	createAndRunILP
	createILPBitstringAll
	create_binaries
	crossInhibitedData
	crossvalidateBoolean
	cSimulator
	cutAndPlot
	cutAndPlotResultsT1
	cutAndPlotResultsTN
	cutCNOlist
	cutModel
	cutNONC
	cutSimList
	defaultParameters
	exhaustive
	expandGates
	findNONC
	gaBinaryT1
	gaBinaryTN
	getFit
	graph2sif
	ilpBinaryT1
	ilpBinaryT2
	ilpBinaryTN
	indexFinder
	internals
	invokeCPLEX
	LiverDREAM
	makeCNOlist
	mapBack
	model2igraph
	model2sif
	normaliseCNOlist
	pknmodel
	plot-method
	plotCNOlist
	plotCNOlist2
	plotCNOlistLarge
	plotCNOlistLargePDF
	plotCNOlistPDF
	plotFit
	plotModel
	plotOptimResults
	plotOptimResultsPan
	plotOptimResultsPDF
	prep4sim
	preprocessing
	randomizeCNOlist
	readBND
	readBNET
	readMIDAS
	readSBMLQual
	readSIF
	residualError
	sif2graph
	simulateT1
	simulateTN
	simulatorT0
	simulatorT1
	simulatorT2
	simulatorTN
	toSBML
	ToyModel
	ToyModel2
	writeDot
	writeFile
	writeMIDAS
	writeNetwork
	writeObjectiveFunction
	writeReport
	writeScaffold
	writeSIF
	write_bounds
	write_constraints
	Index

