
Package ‘Pedixplorer’
November 21, 2024

Version 1.3.0

Date 2024-10-01

Title Pedigree Functions

Depends R (>= 4.3.0)

Imports graphics, stats, methods, ggplot2, utils, grDevices, stringr,
plyr, dplyr, tidyr, quadprog, Matrix, S4Vectors, shiny, readxl,
shinyWidgets, htmlwidgets, DT, gridExtra, data.table, plotly,
colourpicker, shinytoastr, scales, shinycssloaders

Description Routines to handle family data with a Pedigree object. The initial
purpose was to create correlation structures that describe family
relationships such as kinship and identity-by-descent, which can be used to
model family data in mixed effects models, such as in the coxme function.
Also includes a tool for Pedigree drawing which is focused on producing
compact layouts without intervention. Recent additions include utilities to
trim the Pedigree object with various criteria, and kinship for the X
chromosome.

License Artistic-2.0

Encoding UTF-8

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

Suggests diffviewer, testthat (>= 3.0.0), vdiffr, rmarkdown,
BiocStyle, knitr, withr, qpdf, shinytest2, covr, devtools,
R.devices, usethis, magick

Config/testthat/edition 3

biocViews Software, DataRepresentation, Genetics, GraphAndNetwork,
Visualization

BugReports https://github.com/LouisLeNezet/Pedixplorer/issues

URL https://louislenezet.github.io/Pedixplorer/

BiocType Software

1

https://github.com/LouisLeNezet/Pedixplorer/issues
https://louislenezet.github.io/Pedixplorer/

2 Contents

Collate 'AllValidity.R' 'AllClass.R' 'kindepth.R' 'kinship.R'
'utils.R' 'AllConstructor.R' 'AllAccessors.R' 'AllGeneric.R'
'Pedixplorer-package.R' 'alignped4.R' 'alignped3.R'
'alignped2.R' 'alignped1.R' 'auto_hint.R' 'align.R' 'app.R'
'app_color_picker.R' 'app_data_col_sel.R' 'app_data_download.R'
'app_data_import.R' 'app_utils.R' 'app_family_sel.R'
'app_health_sel.R' 'app_inf_sel.R' 'app_ped_avaf_infos.R'
'app_plot_download.R' 'app_plot_legend.R' 'app_plot_ped.R'
'app_server.R' 'app_ui.R' 'best_hint.R' 'bit_size.R' 'data.R'
'descendants.R' 'family_check.R' 'find_unavailable.R'
'find_avail_affected.R' 'find_avail_noninform.R'
'fix_parents.R' 'generate_aff_inds.R' 'generate_colors.R'
'ibd_matrix.R' 'is_informative.R' 'make_famid.R'
'min_dist_inf.R' 'norm_data.R' 'num_child.R' 'ped_to_legdf.R'
'ped_to_plotdf.R' 'plot_fct.R' 'plot_fromdf.R'
'plot_pedigree.R' 'shrink.R' 'unrelated.R' 'useful_inds.R'

LazyData false

git_url https://git.bioconductor.org/packages/Pedixplorer

git_branch devel

git_last_commit e84d0d4

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-11-20

Author Louis Le Nézet [aut, cre, ctb] (ORCID:
<https://orcid.org/0009-0000-0202-2703>),

Jason Sinnwell [aut],
Terry Therneau [aut],
Daniel Schaid [ctb],
Elizabeth Atkinson [ctb]

Maintainer Louis Le Nézet <louislenezet@gmail.com>

Contents
Pedixplorer-package . 5
align . 6
alignped1 . 8
alignped2 . 10
alignped3 . 11
alignped4 . 13
ancestors . 14
anchor_to_factor . 15
auto_hint . 16
best_hint . 17
bit_size . 18
check_columns . 19

https://orcid.org/0009-0000-0202-2703

Contents 3

check_num_na . 21
check_slot_fd . 21
check_values . 22
circfun . 22
color_picker_ui . 23
create_text_column . 23
data_col_sel_ui . 24
data_download_ui . 25
data_import_ui . 26
descendants . 27
draw_arc . 27
draw_polygon . 28
draw_segment . 29
draw_text . 30
duporder . 31
exclude_stray_marryin . 32
exclude_unavail_founders . 32
family_check . 33
family_infos_table . 35
family_sel_ui . 35
findsibs . 36
findspouse . 37
find_avail_affected . 38
find_avail_noninform . 39
find_unavailable . 40
fix_parents . 41
generate_aff_inds . 42
generate_border . 44
generate_colors . 45
generate_fill . 47
get_dataframe . 49
get_famid . 50
get_families_table . 50
get_title . 51
get_twin_rel . 52
health_sel_ui . 53
Hints-class . 54
ibd_matrix . 56
inf_sel_ui . 57
is_disconnected . 58
is_founder . 58
is_informative . 59
is_parent . 61
is_valid_hints . 61
is_valid_ped . 62
is_valid_pedigree . 63
is_valid_rel . 63
is_valid_scales . 64

4 Contents

kindepth . 65
kinship . 66
make_class_info . 68
make_famid . 68
make_rownames . 69
minnbreast . 70
min_dist_inf . 72
na_to_length . 73
norm_ped . 74
norm_rel . 76
num_child . 77
parent_of . 79
paste0max . 79
Ped-class . 80
Pedigree-class . 84
ped_avaf_infos_ui . 89
ped_server . 90
ped_shiny . 90
ped_to_legdf . 92
ped_to_plotdf . 93
ped_ui . 95
permute . 96
plot,Pedigree,missing-method . 96
plot_download_ui . 99
plot_fromdf . 100
plot_legend . 102
plot_legend_ui . 103
plot_ped_ui . 104
polyfun . 105
polygons . 106
read_data . 106
Rel-class . 107
relped . 109
rel_code_to_factor . 110
sampleped . 111
Scales-class . 112
set_plot_area . 114
sex_to_factor . 115
shift . 115
shrink . 116
sketch . 118
subregion . 118
unrelated . 119
upd_famid . 120
useful_inds . 121
vect_to_binary . 123

Index 125

Pedixplorer-package 5

Pedixplorer-package The Pedixplorer package for pedigree data

Description

The Pedixplorer package for pedigree data an updated package of the kinship2 package. The
kinship2 package was originally written by Terry Therneau and Jason Sinnwell. The Pedixplorer
package is a fork of the kinship2 package with additional functionality and bug fixes.

Details

The package download, NEWS, and README are available on CRAN: Kinship2 for the previous
version of the package.

Functions

Below are listed some of the most widely used functions available in arsenal:

Pedigree(): Contstructor of the Pedigree class, given identifiers, sex, affection status(es), and
special relationships

kinship(): Calculates the kinship matrix, the probability having an allele sampled from two indi-
viduals be the same via IBD.

plot() : Method to transform a Pedigree object into a graphical plot. Allows extra information to be
included in the id under the plot symbol. This method use the plot_fromdf() function to transform
the Pedigree object into a data frame of graphical elements, the same is done for the legend with
the ped_to_legdf() function. When done, the data frames are plotted with the plot_fromdf()
function.

shrink(): Shrink a Pedigree to a specific bit size, removing non-informative members first.

bit_size(): Approximate the output from SAS’s PROC FREQ procedure when using the /list
option of the TABLE statement.

Data

• sampleped(): Pedigree example data sets with two pedigrees
• minnbreast(): Larger cohort of pedigrees from MN breast cancer study

Author(s)

Maintainer: Louis Le Nézet <louislenezet@gmail.com> (ORCID) [contributor]

Authors:

• Jason Sinnwell <sinnwell.jason@mayo.edu>
• Terry Therneau

Other contributors:

• Daniel Schaid [contributor]
• Elizabeth Atkinson [contributor]

https://cran.r-project.org/package=kinship2
https://orcid.org/0009-0000-0202-2703

6 align

See Also

Useful links:

• https://louislenezet.github.io/Pedixplorer/

• Report bugs at https://github.com/LouisLeNezet/Pedixplorer/issues

Examples

library(Pedixplorer)

align Align a Pedigree object

Description

Given a Pedigree, this function creates helper matrices that describe the layout of a plot of the
Pedigree.

Usage

S4 method for signature 'Pedigree'
align(
obj,
packed = TRUE,
width = 10,
align = TRUE,
hints = NULL,
missid = "NA_character_",
align_parents = TRUE,
force = FALSE,
precision = 2

)

Arguments

obj A Pedigree object

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

width For a packed output, the minimum width of the plot, in inches.

align For a packed Pedigree, align children under parents TRUE, to the extent possible
given the page width, or align to to the left margin FALSE. This argument can
be a two element vector, giving the alignment parameters, or a logical value. If
TRUE, the default is c(1.5, 2), or if numeric the routine alignped4() will be
called.

https://louislenezet.github.io/Pedixplorer/
https://github.com/LouisLeNezet/Pedixplorer/issues

align 7

hints A Hints object or a named list containing horder and spouse. If NULL then the
Hints stored in obj will be used.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

align_parents If align_parents = TRUE, go one step further and try to make both parents of
each child have the same depth. (This is not always possible). It helps the
drawing program by lining up pedigrees that ’join in the middle’ via a marriage.

force If force = TRUE, the function will return the depth minus min(depth) if depth
reach a state with no founders is not possible.

precision The number of decimal places to round the solution to.

Details

This is an internal routine, used almost exclusively by ped_to_plotdf().

The subservient functions auto_hint(), alignped1(), alignped2(), alignped3(), and alignped4()
contain the bulk of the computation.

If the hints are missing the auto_hint() routine is called to supply an initial guess.

If multiple families are present in the obj Pedigree, this routine is called once for each family, and
the results are combined in the list returned.

For more information you can read the associated vignette: vignette("pedigree_alignment").

Value

A list with components

• n: A vector giving the number of subjects on each horizonal level of the plot

• nid: A matrix with one row for each level, giving the numeric id of each subject plotted. (A
value of 17 means the 17th subject in the Pedigree).

• pos: A matrix giving the horizontal position of each plot point

• fam: A matrix giving the family id of each plot point. A value of 3 would mean that the two
subjects in positions 3 and 4, in the row above, are this subject’s parents.

• spouse: A matrix with values

– 0 = not a spouse
– 1 = subject plotted to the immediate right is a spouse
– 2 = subject plotted to the immediate right is an inbred spouse

• twins: Optional matrix which will only be present if the Pedigree contains twins :

– 0 = not a twin
– 1 = sibling to the right is a monozygotic twin
– 2 = sibling to the right is a dizygotic twin
– 3 = sibling to the right is a twin of unknown zygosity

See Also

alignped1(), alignped2(), alignped3(), alignped4(), auto_hint()

8 alignped1

Examples

data(sampleped)
ped <- Pedigree(sampleped)
align(ped)

alignped1 Alignment first routine

Description

First alignment routine which create the subtree founded on a single subject as though it were the
only tree.

Usage

alignped1(idx, dadx, momx, level, horder, packed, spouselist)

Arguments

idx Indexes of the subjects

dadx Indexes of the fathers

momx Indexes of the mothers

level Vector of the level of each subject

horder A named numeric vector with one element per subject in the Pedigree. It de-
termines the relative horizontal order of subjects within a sibship, as well as
the relative order of processing for the founder couples. (For this latter, the fe-
male founders are ordered as though they were sisters). The names of the vector
should be the individual identifiers.

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

spouselist Matrix of spouses with 4 columns:

• 1: husband index
• 2: wife index
• 3: husband anchor
• 4: wife anchor

Details

In this routine the nid array consists of the final nid array + 1/2 of the final spouse array. Note
that the spouselist matrix will only contain spouse pairs that are not yet processed. The logic for
anchoring is slightly tricky.

alignped1 9

1. Anchoring::
First, if col 4 of the spouselist matrix is 0, we anchor at the first opportunity. Also note that if
spouselist[, 3] == spouselist[, 4] it is the husband who is the anchor (just write out the
possibilities).

2. Return values initialization::
Create the set of 3 return structures, which will be matrices with 1 + nspouse columns. If there
are children then other routines will widen the result.

3. Create lspouse and rspouse::
This two complimentary lists denote the spouses plotted on the left and on the right. For someone
with lots of spouses we try to split them evenly. If the number of spouses is odd, then men should
have more on the right than on the left, women more on the right. Any hints in the spouselist
matrix override. We put the undecided marriages closest to idx, then add predetermined ones to
the left and right. The majority of marriages will be undetermined singletons, for which nleft
will be 1 for female (put my husband to the left) and 0 for male. In one bug found by plotting
canine data, lspouse could initially be empty but length(rspouse) > 1. This caused nleft >
length(indx). A fix was to not let indx to be indexed beyond its length, fix by JPS 5/2013.

4. List the children::
For each spouse get the list of children. If there are any we call alignped2() to generate their
tree and then mark the connection to their parent. If multiple marriages have children we need to
join the trees.

5. Splice the tree::
To finish up we need to splice together the tree made up from all the kids, which only has data
from lev + 1 down, with the data here. There are 3 cases:

1. No children were found.
2. The tree below is wider than the tree here, in which case we add the data from this level onto

theirs.
3. The tree below is narrower, for instance an only child.

Value

A list containing the elements to plot the Pedigree. It contains a set of matrices along with the
spouselist matrix. The latter has marriages removed as they are processed.

• n : A vector giving the number of subjects on each horizonal level of the plot

• nid : A matrix with one row for each level, giving the numeric id of each subject plotted. (A
value of 17 means the 17th subject in the Pedigree).

• pos : A matrix giving the horizontal position of each plot point

• fam : A matrix giving the family id of each plot point. A value of 3 would mean that the two
subjects in positions 3 and 4, in the row above, are this subject’s parents.

• spouselist : Spouse matrix with anchors informations

See Also

align()

10 alignped2

Examples

data(sampleped)
ped <- Pedigree(sampleped)
align(ped)

alignped2 Alignment second routine

Description

Second of the four co-routines which takes a collection of siblings, grows the tree for each, and
appends them side by side into a single tree.

Usage

alignped2(idx, dadx, momx, level, horder, packed, spouselist)

Arguments

idx Indexes of the subjects
dadx Indexes of the fathers
momx Indexes of the mothers
level Vector of the level of each subject
horder A named numeric vector with one element per subject in the Pedigree. It de-

termines the relative horizontal order of subjects within a sibship, as well as
the relative order of processing for the founder couples. (For this latter, the fe-
male founders are ordered as though they were sisters). The names of the vector
should be the individual identifiers.

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

spouselist Matrix of spouses with 4 columns:
• 1: husband index
• 2: wife index
• 3: husband anchor
• 4: wife anchor

Details

The input arguments are the same as those to alignped1() with the exception that idx will be a
vector. This routine does nothing to the spouselist matrix, but needs to pass it down the tree and
back since one of the routines called by alignped2() might change the matrix.

The code below has one non-obvious special case. Suppose that two sibs marry. When the first sib
is processed by alignped1 then both partners (and any children) will be added to the rval structure
below. When the second sib is processed they will come back as a 1 element tree (the marriage will
no longer be on the spouselist), which should be added onto rval. The rule thus is to not add any 1
element tree whose value (which must be idx[i] is already in the rval structure for this level.

alignped3 11

Value

A list containing the elements to plot the Pedigree. It contains a set of matrices along with the
spouselist matrix. The latter has marriages removed as they are processed.

• n : A vector giving the number of subjects on each horizonal level of the plot

• nid : A matrix with one row for each level, giving the numeric id of each subject plotted. (A
value of 17 means the 17th subject in the Pedigree).

• pos : A matrix giving the horizontal position of each plot point

• fam : A matrix giving the family id of each plot point. A value of 3 would mean that the two
subjects in positions 3 and 4, in the row above, are this subject’s parents.

• spouselist : Spouse matrix with anchors informations

See Also

align()

Examples

data(sampleped)
ped <- Pedigree(sampleped)
align(ped)

alignped3 Alignment third routine

Description

Third of the four co-routines to merges two pedigree trees which are side by side into a single object.

Usage

alignped3(alt1, alt2, packed, space = 1)

Arguments

alt1 Alignment of the first tree

alt2 Alignment of the second tree

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

space Space between two subjects

12 alignped3

Details

The primary special case is when the rightmost person in the left tree is the same as the leftmost
person in the right tree; we need not plot two copies of the same person side by side. (When
initializing the output structures do not worry about this, there is no harm if they are a column
bigger than finally needed.) Beyond that the work is simple book keeping.

1. Slide::
For the unpacked case, which is the traditional way to draw a Pedigree when we can assume the
paper is infinitely wide, all parents are centered over their children. In this case we think if the
two trees to be merged as solid blocks. On input they both have a left margin of 0. Compute how
far over we have to slide the right tree.

2. Merge::
Now merge the two trees. Start at the top level and work down.

Value

A list containing the elements to plot the Pedigree. It contains a set of matrices along with the
spouselist matrix. The latter has marriages removed as they are processed.

• n : A vector giving the number of subjects on each horizonal level of the plot

• nid : A matrix with one row for each level, giving the numeric id of each subject plotted. (A
value of 17 means the 17th subject in the Pedigree).

• pos : A matrix giving the horizontal position of each plot point

• fam : A matrix giving the family id of each plot point. A value of 3 would mean that the two
subjects in positions 3 and 4, in the row above, are this subject’s parents.

• spouselist : Spouse matrix with anchors informations

See Also

align()

Examples

data(sampleped)
ped <- Pedigree(sampleped)
align(ped)

alignped4 13

alignped4 Alignment fourth routine

Description

Last routines which attempts to line up children under parents and put spouses and siblings "close"
to each other, to the extent possible within the constraints of page width.

Usage

alignped4(rval, spouse, level, width, align, precision = 2)

Arguments

rval A list with components n, nid, pos, and fam.

spouse A boolean matrix with one row per level representing if the subject is a spouse
or not.

level Vector of the level of each subject

width For a packed output, the minimum width of the plot, in inches.

align For a packed Pedigree, align children under parents TRUE, to the extent possible
given the page width, or align to to the left margin FALSE. This argument can
be a two element vector, giving the alignment parameters, or a logical value. If
TRUE, the default is c(1.5, 2), or if numeric the routine alignped4() will be
called.

precision The number of decimal places to round the solution to.

Details

The alignped4() routine is the final step of alignment. The current code does necessary setup and
then calls the quadprog::solve.QP() function.

There are two important parameters for the function:

1. The maximum width specified. The smallest possible width is the maximum number of sub-
jects on a line. If the user suggestion is too low it is increased to that amount plus one (to give
just a little wiggle room).

2. The align vector of 2 alignment parameters a and b. For each set of siblings x with parents at
p_1 and p_2 the alignment penalty is:

(1/ka)

k∑
i=1

(xi − (p1 + p2)/2)
2

where k is the number of siblings in the set.

14 ancestors

Using the fact that when a = 1 :∑
(xi − c)2 =

∑
(xi − µ)2 + k(c− µ)2

then moving a sibship with k sibs one unit to the left or right of optimal will incur the same cost as
moving one with only 1 or two sibs out of place.

If a = 0 then large sibships are harder to move than small ones. With the default value a = 1.5, they
are slightly easier to move than small ones. The rationale for the default is as long as the parents are
somewhere between the first and last siblings the result looks fairly good, so we are more flexible
with the spacing of a large family. By tethering all the sibs to a single spot they tend to be kept close
to each other.

The alignment penalty for spouses is b(x1 − x2)
2, which tends to keep them together. The size of

b controls the relative importance of sib-parent and spouse-spouse closeness.

1. We start by adding in these penalties. The total number of parameters in the alignment problem
(what we hand to quadprog) is the set of sum(n) positions. A work array myid keeps track of
the parameter number for each position so that it is easy to find. There is one extra penalty
added at the end. Because the penalty amount would be the same if all the final positions were
shifted by a constant, the penalty matrix will not be positive definite; solve.QP() does not
like this. We add a tiny amount of leftward pull to the widest line.

2. If there are k subjects on a line there will be k+1 constraints for that line. The first point must
be ≥ 0, each subsequent one must be at least 1 unit to the right, and the final point must be ≤
the max width.

Value

The updated position matrix

See Also

align()

Examples

data(sampleped)
ped <- Pedigree(sampleped)
align(ped)

ancestors Ancestors indexes of a subject

Description

Given the index of one or multiple individual(s), this function iterate through the mom and dad
indexes to list out all the ancestors of the said individual(s). This function is use in the align()
function to identify which spouse pairs has a common ancestor and therefore if they need to be
connected with a double line (i.e. inbred).

anchor_to_factor 15

Usage

ancestors(idx, momx, dadx)

Arguments

idx Indexes of the subjects

momx Indexes of the mothers

dadx Indexes of the fathers

Value

A vector of ancestor indexes

See Also

align()

Examples

ancestors(c(1), c(3, 4, 5, 6), c(7, 8, 9, 10))
ancestors(c(1, 2), c(3, 4, 5, 6), c(7, 8, 9, 10))

anchor_to_factor Anchor variable to ordered factor

Description

Anchor variable to ordered factor

Usage

anchor_to_factor(anchor)

Arguments

anchor A character, factor or numeric vector corresponding to the anchor of the indi-
viduals. The following values are recognized:

• character() or factor() : "0", "1", "2", "left", "right", "either"
• numeric() : 1 = "left", 2 = "right", 0 = "either"

Value

An ordered factor vector containing the transformed variable "either" < "left" < "right"

Examples

Pedixplorer:::anchor_to_factor(c(1, 2, 0, "left", "right", "either"))

16 auto_hint

auto_hint Initial hint for a Pedigree alignment

Description

Compute an initial guess for the alignment of a Pedigree

Usage

S4 method for signature 'Pedigree'
auto_hint(obj, hints = NULL, packed = TRUE, align = FALSE, reset = FALSE)

Arguments

obj A Pedigree object

hints A Hints object or a named list containing horder and spouse. If NULL then the
Hints stored in obj will be used.

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

align For a packed Pedigree, align children under parents TRUE, to the extent possible
given the page width, or align to to the left margin FALSE. This argument can
be a two element vector, giving the alignment parameters, or a logical value. If
TRUE, the default is c(1.5, 2), or if numeric the routine alignped4() will be
called.

reset If TRUE, then even if the Ped object has Hints, reset them to the initial values.

Details

A Pedigree structure can contain a Hints object which helps to reorder the Pedigree (e.g. left-to-
right order of children within family) so as to plot with minimal distortion. This routine is used to
create an initial version of the hints. They can then be modified if desired.

This routine would not normally be called by a user. It moves children within families, so that
marriages are on the "edge" of a set children, closest to the spouse. For pedigrees that have only a
single connection between two families this simple-minded approach works surprisingly well. For
more complex structures hand-tuning of the hints may be required.

When auto_hint() is called with a a vector of numbers as the hints argument, the values for the
founder females are used to order the founder families left to right across the plot. The values within
a sibship are used as the preliminary order of siblings within a family; this may be changed to move
one of them to the edge so as to match up with a spouse. The actual values in the vector are not
important, only their order.

Value

The initial Hints object.

best_hint 17

See Also

align(), best_hint()

Hints

Examples

data(sampleped)
ped <- Pedigree(sampleped[sampleped$famid == 1,])
auto_hint(ped)

best_hint Best hint for a Pedigree alignment

Description

When computer time is cheap, use this routine to get a best Pedigree alignment. This routine will
try all possible founder orders, and return the one with the least stress.

Usage

S4 method for signature 'Pedigree'
best_hint(obj, wt = c(1000, 10, 1), tolerance = 0)

Arguments

obj A Pedigree object

wt A vector of three weights for the three error measures. Default is c(1000, 10,
1).

1. The number of duplicate individuals in the plot
2. The sum of the absolute values of the differences in the positions of dupli-

cate individuals
3. The sum of the absolute values of the differences between the center of the

children and the parents.

tolerance The maximum stress level to accept. Default is 0

Details

The auto_hint() routine will rearrange sibling order, but not founder order. This calls auto_hint()
with every possible founder order, and finds that plot with the least "stress". The stress is computed
as a weighted sum of three error measures:

• nbArcs The number of duplicate individuals in the plot

• lgArcs The sum of the absolute values of the differences in the positions of duplicate individ-
uals

• lgParentsChilds The sum of the absolute values of the differences between the center of the
children and the parents

18 bit_size

stress = wt[1] ∗ nbArcs+ wt[2] ∗ lgArcs+ wt[3] ∗ lgParentsChilds

If during the search, a plot is found with a stress level less than tolerance, the search is terminated.

Value

The best Hints object out of all the permutations

See Also

auto_hint(), align()

Examples

data(sampleped)
ped <- Pedigree(sampleped[sampleped$famid == 1,])
best_hint(ped)

bit_size Bit size of a Pedigree

Description

Utility function used in the shrink() function to calculate the bit size of a Pedigree.

Usage

S4 method for signature 'character_OR_integer'
bit_size(obj, momid, missid = NA_character_)

S4 method for signature 'Pedigree'
bit_size(obj)

S4 method for signature 'Ped'
bit_size(obj)

Arguments

obj A Ped or Pedigree object or a vector of fathers identifiers

momid A vector containing for each subject, the identifiers of the biologicals mothers.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

check_columns 19

Details

The bit size of a Pedigree is defined as :

2×NbNonFounders−NbFounders

Where NbNonFounders is the number of non founders in the Pedigree (i.e. individuals with iden-
tified parents) and NbFounders is the number of founders in the Pedigree (i.e. individuals without
identified parents).

Value

A list with the following components:

• bit_size The bit size of the Pedigree

• nFounder The number of founders in the Pedigree

• nNonFounder The number of non founders in the Pedigree

See Also

shrink()

Examples

data(sampleped)
ped <- Pedigree(sampleped)
bit_size(ped)

check_columns Check columns presence in a dataframe

Description

Check for presence / absence of columns names depending on their need

Usage

check_columns(
df,
cols_needed = NULL,
cols_used = NULL,
cols_to_use = NULL,
others_cols = FALSE,
cols_used_init = FALSE,
cols_to_use_init = FALSE,
cols_used_del = FALSE,
verbose = FALSE

)

20 check_columns

Arguments

df The dataframe to use

cols_needed A vector of columns needed

cols_used A vector of columns that are used by the script and that will be overwritten.

cols_to_use A vector of optional columns that are authorized.

others_cols Boolean defining if non defined columns should be allowed.

cols_used_init Boolean defining if the columns that will be used should be initialised to NA.

cols_to_use_init

Boolean defining if the optional columns should be initialised to NA.

cols_used_del Boolean defining if the columns that will be used should be deleted.

verbose Should message be prompted to the user

Details

3 types of columns are here checked:

• cols_needed : those columns need to be present if any is missing an error will be prompted
and the script will stop

• cols_used : those columns will be used in the script and will be overwritten to NA.

• cols_to_use : those columns are optional and will be recognise if present. The last two types
of columns can be initialised to NA if needed.

Value

Dataframe with only the column allowed and all the column correctly initialised.

Examples

data.frame
df <- data.frame(

ColN1 = c(1, 2), ColN2 = 4,
ColU1 = 'B', ColU2 = '1',
ColTU1 = 'A', ColTU2 = 3,
ColNR1 = 4, ColNR2 = 5

)
tryCatch(

check_columns(
df,
c('ColN1', 'ColN2'), c('ColU1', 'ColU2'),
c('ColTU1', 'ColTU2')

), error = function(e) print(e))

check_num_na 21

check_num_na Is numeric or NA

Description

Check if a variable given is numeric or NA

Usage

check_num_na(var, na_as_num = TRUE)

Arguments

var Vector of value to test

na_as_num Boolean defining if the NA string should be considered as numerical values

Details

Check if the values in var are numeric or if they are NA in the case that na_as_num is set to TRUE.

Value

A vector of boolean of the same size as var

check_slot_fd Check if the fields are present in an object slot

Description

Check if the fields are present in an object slot

Usage

check_slot_fd(obj, slot = NULL, fields = character())

Arguments

obj An object.

slot A slot of object.

fields A character vector with the fields to check.

Value

A character vector with the errors if any.

22 circfun

check_values Check values in a slot

Description

Check if the all the values in a slot are in a vector of values.

Usage

check_values(val, ref, name = NULL, present = TRUE)

Arguments

val A vector of values to check.
ref A vector of reference values.
name A character vector with the name of the values to check.
present A logical value indicating if the values should be present or not

Value

A character vector with the errors if any.

circfun Circular element

Description

Create a list of x and y coordinates for a circle with a given number of slices.

Usage

circfun(nslice, n = 50)

Arguments

nslice Number of slices in the circle
n Total number of points in the circle

Value

A list of x and y coordinates per slice.

Examples

circfun(1)
circfun(1, 10)
circfun(4, 50)

color_picker_ui 23

color_picker_ui Shiny modules to select colours

Description

This function allows to select different colours for an array of variables.

Usage

color_picker_ui(id)

color_picker_server(id, colors = NULL)

color_picker_demo()

Arguments

id A string to identify the module.
colors A list of variables and their default colours.

Value

A reactive list with the selected colours.

Examples

if (interactive()) {
color_picker_demo()

}

create_text_column Create a text column

Description

Aggregate multiple columns into a single text column separated by a newline character.

Usage

create_text_column(df, title = NULL, cols = NULL, na_strings = c("", "NA"))

Arguments

df A dataframe
title The title of the text column
cols A vector of columns to concatenate
na_strings A vector of strings that should be considered as NA

24 data_col_sel_ui

Value

The concatenated text column

Examples

df <- data.frame(a = 1:3, b = c("4", "NA", 6), c = c("", "A", 2))
Pedixplorer:::create_text_column(df, "a", c("b", "c"))

data_col_sel_ui Shiny modules to select columns from a dataframe

Description

This function allows to select columns from a dataframe and rename them to the names of cols_needed
and cols_supl. This generate a Shiny module that can be used in a Shiny app. The function is com-
posed of two parts: the UI and the server. The UI is called with the function data_col_sel_ui()
and the server with the function data_col_sel_server().

Usage

data_col_sel_ui(id)

data_col_sel_server(
id,
df,
cols_needed,
cols_supl,
title,
na_omit = TRUE,
others_cols = TRUE

)

data_col_sel_demo()

Arguments

id A string to identify the module.

df A reactive dataframe.

cols_needed A character vector of the mandatory columns.

cols_supl A character vector of the optional columns.

title A string to display in the selectInput.

na_omit A boolean to allow or not the selection of NA.

others_cols A boolean to authorize other columns to be present in the output datatable.

data_download_ui 25

Value

A reactive dataframe with the selected columns renamed to the names of cols_needed and cols_supl.

Examples

if (interactive()) {
data_col_sel_demo()

}

data_download_ui Shiny modules to download a dataframe

Description

This function allows to download a dataframe as a csv file. This generate a Shiny module that can be
used in a Shiny app. The function is composed of two parts: the UI and the server. The UI is called
with the function data_download_ui() and the server with the function data_download_server().

Usage

data_download_ui(id)

data_download_server(
id,
df,
filename,
label = NULL,
helper = TRUE,
title = "Data download"

)

data_download_demo()

Arguments

id A string to identify the module.

df A reactive dataframe.

filename A string to name the file.

label A string to display in the download button.

helper A boolean to display a helper message.

Value

A shiny module to export a dataframe.

26 data_import_ui

Examples

if (interactive()) {
data_download_demo()

}

data_import_ui Shiny modules to import data files

Description

This module allow to import multiple type of data. The file type currently supported are csv, txt, xls,
xslx, rda and tab. The server dynamically create a selection input if multiple dataframe are present
in the file selected. This module is composed of two parts: the UI and the server. The UI is called
with the function data_import_ui() and the server with the function data_import_server().
Different options are available to the user to import the data.

Usage

data_import_ui(id)

data_import_server(
id,
label = "Select data file",
dftest = datasets::mtcars,
max_request_size = 30

)

data_import_demo(options = list())

Arguments

id A string.

label A string use to prompt the user

dftest A dataframe to test the function
max_request_size

A number to define the maximum size of the file that can be uploaded.

Value

A reactive dataframe selected by the user.

Examples

if (interactive()) {
data_import_demo()

}

descendants 27

descendants Descendants of individuals

Description

Find all the descendants of a particular list of individuals given a Pedigree object.

Usage

S4 method for signature 'character_OR_integer,character_OR_integer'
descendants(idlist, obj, dadid, momid)

S4 method for signature 'character_OR_integer,Pedigree'
descendants(idlist, obj)

S4 method for signature 'character_OR_integer,Ped'
descendants(idlist, obj)

Arguments

idlist List of individuals identifiers to be considered

obj A Ped or Pedigree object or a vector of the individuals identifiers.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

Value

Vector of all descendants of the individuals in idlist. The list is not ordered.

Examples

data("sampleped")
ped <- Pedigree(sampleped)
descendants(c("1_101", "2_208"), ped)

draw_arc Draw arcs

Description

Draw arcs

28 draw_polygon

Usage

draw_arc(
x0,
y0,
x1,
y1,
p = NULL,
ggplot_gen = FALSE,
lwd = par("lwd"),
lty = 2,
col = "black"

)

Arguments

x0 x coordinate of the first point

y0 y coordinate of the first point

x1 x coordinate of the second point

y1 y coordinate of the second point

p ggplot object

ggplot_gen If TRUE add the segments to the ggplot object

lwd Line width

lty Line type

col Line color

Value

Plot the arcs to the current device or add it to a ggplot object

draw_polygon Draw a polygon

Description

Draw a polygon

Usage

draw_polygon(
x,
y,
p = NULL,
ggplot_gen = FALSE,
fill = "grey",

draw_segment 29

border = "black",
density = NULL,
angle = 45,
lwd = par("lwd"),
tips = NULL

)

Arguments

x x coordinates

y y coordinates

p ggplot object

ggplot_gen If TRUE add the segments to the ggplot object

fill Fill color

border Border color

density Density of shading

angle Angle of shading

lwd Line width

tips Text to be displayed when hovering over the polygon

Value

Plot the polygon to the current device or add it to a ggplot object

draw_segment Draw segments

Description

Draw segments

Usage

draw_segment(
x0,
y0,
x1,
y1,
p = NULL,
ggplot_gen = FALSE,
col = par("fg"),
lwd = par("lwd"),
lty = par("lty")

)

30 draw_text

Arguments

x0 x coordinate of the first point

y0 y coordinate of the first point

x1 x coordinate of the second point

y1 y coordinate of the second point

p ggplot object

ggplot_gen If TRUE add the segments to the ggplot object

col Line color

lwd Line width

lty Line type

Value

Plot the segments to the current device or add it to a ggplot object

draw_text Draw texts

Description

Draw texts

Usage

draw_text(
x,
y,
label,
p = NULL,
ggplot_gen = FALSE,
cex = 1,
col = NULL,
adjx = 0.5,
adjy = 0.5,
tips = NULL

)

Arguments

x x coordinates

y y coordinates

label Text to be displayed

p ggplot object

duporder 31

ggplot_gen If TRUE add the segments to the ggplot object

cex Character expansion of the text

col Text color

adjx x adjustment

adjy y adjustment

tips Text to be displayed when hovering over the text

Value

Plot the text to the current device or add it to a ggplot object

duporder Find the duplicate pairs of a subject

Description

Find the duplicate pairs of a subject

Usage

duporder(idlist, plist, lev, obj)

Arguments

idlist List of individuals identifiers to be considered

plist The alignment structure representing the Pedigree layout. See align() for de-
tails.

lev The generation level of the subject

obj A Pedigree object

Details

This routine is used by auto_hint(). It finds the duplicate pairs of a subject and returns them in
the order they should be plotted.

Value

A matrix of duplicate pairs

See Also

auto_hint()

32 exclude_unavail_founders

exclude_stray_marryin Exclude stray marry-ins

Description

Exclude any founders who are not parents.

Usage

exclude_stray_marryin(id, dadid, momid)

Arguments

id A character vector with the identifiers of each individuals
dadid A vector containing for each subject, the identifiers of the biologicals fathers.
momid A vector containing for each subject, the identifiers of the biologicals mothers.

Value

Returns a data frame of subject identifiers and their parents. The data frame is trimmed of any
founders who are not parents.

See Also

shrink()

exclude_unavail_founders

Exclude unavailable founders

Description

Exclude any unavailable founders.

Usage

exclude_unavail_founders(id, dadid, momid, avail, missid = NA_character_)

Arguments

id A character vector with the identifiers of each individuals
dadid A vector containing for each subject, the identifiers of the biologicals fathers.
momid A vector containing for each subject, the identifiers of the biologicals mothers.
avail A logical vector with the availability status of the individuals (i.e. FALSE = not

available, TRUE = available, NA = unknown).
missid A character vector with the missing values identifiers. All the id, dadid and

momid corresponding to those values will be set to NA_character_.

family_check 33

Value

Returns a list with the following components:

• n_trimmed Number of trimmed individuals

• id_trimmed Vector of IDs of trimmed individuals

• id Vector of subject identifiers

• dadid Vector of father identifiers

• momid Vector of mother identifiers

See Also

shrink()

family_check Check family

Description

Error check for a family classification

Usage

S4 method for signature 'character_OR_integer'
family_check(obj, dadid, momid, famid, newfam)

S4 method for signature 'Pedigree'
family_check(obj)

S4 method for signature 'Ped'
family_check(obj)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

newfam The result of a call to make_famid(). If this has already been computed by the
user, adding it as an argument shortens the running time somewhat.

34 family_check

Details

Given a family id vector, also compute the familial grouping from first principles using the parenting
data, and compare the results.

The make_famid() function is used to create a de novo family id from the parentage data, and this
is compared to the family id given in the data.

If there are any joins, then an attribute ’join’ is attached. It will be a matrix with family as row
labels, new-family-id as the columns, and the number of subjects as entries.

Value

a data frame with one row for each unique family id in the famid argument or the one detected in
the Pedigree object. Components of the output are:

• famid : The family id, as entered into the data set

• n : Number of subjects in the family

• unrelated : Number of them that appear to be unrelated to anyone else in the entire Pedigree.
This is usually marry-ins with no children (in the Pedigree), and if so are not a problem.

• split : Number of unique ’new’ family ids.

– 0 = no one in this ’family’ is related to anyone else (not good)
– 1 = everythings is fine
– 2 and + = the family appears to be a set of disjoint trees. Are you missing some of the

people?

• join : Number of other families that had a unique family, but are actually joined to this one.
0 is the hope.

See Also

make_famid()

Examples

use 2 samplepeds
data(sampleped)
pedAll <- Pedigree(sampleped)

check them giving separate ped ids
fcheck.sep <- family_check(pedAll)
fcheck.sep

check assigning them same ped id
fcheck.combined <- with(sampleped, family_check(id, dadid, momid,
rep(1, nrow(sampleped))))
fcheck.combined

family_infos_table 35

family_infos_table Affection and availability information table

Description

This function creates a table with the affection and availability information for all individuals in a
pedigree object.

Usage

family_infos_table(pedi, col_val = NA)

Arguments

pedi A pedigree object.

col_val The column name in the fill slot of the pedigree object to use for the table.

Value

A cross table dataframe with the affection and availability information.

Examples

data(sampleped)
pedi <- Pedigree(sampleped)
pedi <- generate_colors(pedi, "num_child_tot", threshold = 2)
Pedixplorer:::family_infos_table(pedi, "num_child_tot")
Pedixplorer:::family_infos_table(pedi, "affection")

family_sel_ui Shiny module to select a family in a pedigree

Description

This module allows to select a family in a pedigree object. The function is composed of two parts:
the UI and the server. The UI is called with the function family_sel_ui() and the server with the
function family_sel_server().

36 findsibs

Usage

family_sel_ui(id)

family_sel_server(
id,
pedi,
fam_var = NULL,
fam_sel = NULL,
title = "Family selection"

)

family_sel_demo(fam_var = NULL, fam_sel = NULL, title = "Family selection")

Arguments

id A string to identify the module.
pedi A reactive pedigree object.
fam_var The default family variable to use as family indicator.
fam_sel The default family to select.
title The title of the module.

Value

A reactive list with the subselected pedigree object and the selected family id.

Examples

if (interactive()) {
family_sel_demo()

}

findsibs Find the siblings of a subject

Description

Find the siblings of a subject

Usage

findsibs(idpos, plist, lev)

Arguments

idpos The position of the subject
plist The alignment structure representing the Pedigree layout. See align() for de-

tails.
lev The generation level of the subject

findspouse 37

Details

This routine is used by auto_hint(). It finds the siblings of a subject.

Value

The positions of the siblings

See Also

auto_hint()

findspouse Find the spouse of a subject

Description

Find the spouse of a subject

Usage

findspouse(idpos, plist, lev, obj)

Arguments

idpos The position of the subject

plist The alignment structure representing the Pedigree layout. See align() for de-
tails.

lev The generation level of the subject

obj A Pedigree object

Details

This routine is used by auto_hint(). It finds the spouse of a subject.

Value

The position of the spouse

See Also

auto_hint()

38 find_avail_affected

find_avail_affected Find single affected and available individual from a Pedigree

Description

Finds one subject from among available non-parents with indicated affection status.

Usage

S4 method for signature 'Ped'
find_avail_affected(obj, avail = NULL, affected = NULL, affstatus = NA)

S4 method for signature 'Pedigree'
find_avail_affected(obj, avail = NULL, affected = NULL, affstatus = NA)

Arguments

obj A Ped or Pedigree object.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-
fected, TRUE = affected, NA = unknown).

affstatus Affection status to search for.

Details

When used within shrink(), this function is called with the first affected indicator, if the affected
item in the Pedigree is a matrix of multiple affected indicators.

If avail or affected is null, then the function will use the corresponding Ped accessor.

Value

A list is returned with the following components

• ped The new Ped object

• newAvail Vector of availability status of trimmed individuals

• idTrimmed Vector of IDs of trimmed individuals

• isTrimmed logical value indicating whether Ped object has been trimmed

• bit_size Bit size of the trimmed Ped

See Also

shrink()

find_avail_noninform 39

Examples

data(sampleped)
ped <- Pedigree(sampleped)
find_avail_affected(ped, affstatus = 1)

find_avail_noninform Find uninformative but available subject

Description

Finds subjects from among available non-parents with all affection equal to 0.

Usage

S4 method for signature 'Ped'
find_avail_noninform(obj, avail = NULL, affected = NULL)

S4 method for signature 'Pedigree'
find_avail_noninform(obj, avail = NULL, affected = NULL)

Arguments

obj A Ped or Pedigree object.
avail A logical vector with the availability status of the individuals (i.e. FALSE = not

available, TRUE = available, NA = unknown).
affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-

fected, TRUE = affected, NA = unknown).

Details

Identify subjects to remove from a Pedigree who are available but non-informative (unaffected).
This is the second step to remove subjects in shrink() if the Pedigree does not meet the desired bit
size.
If avail or affected is null, then the function will use the corresponding Ped accessor.

Value

Vector of subject ids who can be removed by having lowest informativeness.

See Also

shrink()

Examples

data(sampleped)
ped <- Pedigree(sampleped)
find_avail_noninform(ped)

40 find_unavailable

find_unavailable Find unavailable subjects in a Pedigree

Description

Find the identifiers of subjects in a Pedigree iteratively, as anyone who is not available and does not
have an available descendant by successively removing unavailable terminal nodes.

Usage

S4 method for signature 'Ped'
find_unavailable(obj, avail = NULL)

S4 method for signature 'Pedigree'
find_unavailable(obj, avail = NULL)

Arguments

obj A Ped or Pedigree object.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

Details

If avail is null, then the function will use the corresponding Ped accessor.

Originally written as pedTrim by Steve Iturria, modified by Dan Schaid 2007, and now split into the
two separate functions: find_unavailable(), and trim() to do the tasks separately. find_unavailable()
calls exclude_stray_marryin() to find stray available marry-ins who are isolated after trimming
their unavailable offspring, and exclude_unavail_founders(). If the subject ids are character,
make sure none of the characters in the ids is a colon (":"), which is a special character used to con-
catenate and split subjects within the utility. The trim() functions is now replaced by the subset()
function.

Value

Returns a vector of subject ids for who can be removed.

Side Effects

Relation matrix from subsetting is trimmed of any special relations that include the subjects to trim.

See Also

shrink()

fix_parents 41

Examples

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == "1",])
find_unavailable(ped1)

fix_parents Fix parents relationship and gender

Description

Fix the sex of parents, add parents that are missing from the data. Can be used with a dataframe or
a vector of the different individuals informations.

Usage

S4 method for signature 'character'
fix_parents(obj, dadid, momid, sex, famid = NULL, missid = NA_character_)

S4 method for signature 'data.frame'
fix_parents(obj, del_parents = NULL, filter = NULL, missid = NA_character_)

Arguments

obj A data.frame or a vector of the individuals identifiers. If a dataframe is given it
must contain the columns id, dadid, momid, sex and famid (optional).

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

del_parents Boolean defining if missing parents needs to be deleted or fixed. If one then if
one of the parent is missing, both are removed, if both then if both parents are
missing, both are removed. If NULL then no parent is removed and the missing
parents are added as new rows.

filter Filtering column containing 0 or 1 for the rows to kept before proceeding.

42 generate_aff_inds

Details

First look to add parents whose ids are given in momid/dadid. Second, fix sex of parents. Last
look to add second parent for children for whom only one parent id is given. If a famid vector is
given the family id will be added to the ids of all individuals (id, dadid, momid) separated by an
underscore before proceeding.

Special case for dataframe:
Check for presence of both parents id in the id field. If not both presence behaviour depend of
delete parameter

• If TRUE then use fix_parents function and merge back the other fields in the dataframe then
set availability to O for non available parents.

• If FALSE then delete the id of missing parents

Value

A data.frame with id, dadid, momid, sex as columns with the relationships fixed.

Author(s)

Jason Sinnwell

Examples

test1char <- data.frame(
id = paste('fam', 101:111, sep = ''),
sex = c('male', 'female')[c(1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1)],
father = c(

0, 0, 'fam101', 'fam101', 'fam101', 0, 0,
'fam106', 'fam106', 'fam106', 'fam109'

),
mother = c(

0, 0, 'fam102', 'fam102', 'fam102', 0, 0,
'fam107', 'fam107', 'fam107', 'fam112'

)
)
test1newmom <- with(test1char, fix_parents(id, father, mother,

sex,
missid = NA_character_

))
Pedigree(test1newmom)

generate_aff_inds Process the affection informations

Description

Perform transformation uppon a vector given as the one containing the affection status to obtain an
affected binary state.

generate_aff_inds 43

Usage

generate_aff_inds(
values,
mods_aff = NULL,
threshold = NULL,
sup_thres_aff = NULL,
is_num = NULL

)

Arguments

values Vector containing the values of the column to process.

mods_aff Vector of modality to consider as affected in the case where the values is a
factor.

threshold Numeric value separating the affected and healthy subject in the case where the
values is numeric.

sup_thres_aff Boolean defining if the affected individual are above the threshold or not. If
TRUE, the individuals will be considered affected if the value of values is stricly
above the threshold. If FALSE, the individuals will be considered affected if
the value is stricly under the threshold.

is_num Boolean defining if the values need to be considered as numeric.

Details

This function helps to configure a binary state from a character or numeric variable.

If the variable is a character or a factor::
In this case the affected state will depend on the modality provided as an affected status. All
individuals with a value corresponding to one of the element in the vector mods_aff will be
considered as affected.

If the variable is numeric::
In this case the affected state will be TRUE if the value of the individual is above the threshold if
sup_thres_aff is TRUE and FALSE otherwise.

Value

A dataframe with the affected column processed accordingly. The different columns are:

• mods: The different modalities of the column

• labels: The labels of the different modalities

• affected: The column processed to have only TRUE/FALSE values

Author(s)

Louis Le Nézet

44 generate_border

Examples

generate_aff_inds(c(1, 2, 3, 4, 5), threshold = 3, sup_thres_aff = TRUE)
generate_aff_inds(c("A", "B", "C", "A", "V", "B"), mods_aff = c("A", "B"))

generate_border Process the border colors based on availability

Description

Perform transformation uppon a vector given as the one containing the availability status to compute
the border color. The vector given will be transformed using the vect_to_binary() function.

Usage

generate_border(values, colors_avail = c("green", "black"), colors_na = "grey")

Arguments

values The vector containing the values to process as available.

colors_avail Set of 2 colors to use for the box’s border of an individual. The first color will
be used for available individual (avail == 1) and the second for the unavailable
individual (avail == 0).

colors_na Color to use for individuals with no informations.

Value

A list of three elements

• mods : The processed values column as a numeric factor

• avail : A logical vector indicating if the individual is available

• sc_bord : A dataframe containing the description of each modality of the scale

Examples

generate_border(c(1, 0, 1, 0, NA, 1, 0, 1, 0, NA))

generate_colors 45

generate_colors Process the filling and border colors based on affection and availabil-
ity

Description

Perform transformation uppon a dataframe given to compute the colors for the filling and the border
of the individuals based on the affection and availability status.

Usage

S4 method for signature 'character'
generate_colors(
obj,
avail,
mods_aff = NULL,
is_num = FALSE,
keep_full_scale = FALSE,
colors_aff = c("yellow2", "red"),
colors_unaff = c("white", "steelblue4"),
colors_avail = c("green", "black"),
colors_na = "grey"

)

S4 method for signature 'numeric'
generate_colors(
obj,
avail,
threshold = 0.5,
sup_thres_aff = TRUE,
is_num = TRUE,
keep_full_scale = FALSE,
breaks = 3,
colors_aff = c("yellow2", "red"),
colors_unaff = c("white", "steelblue4"),
colors_avail = c("green", "black"),
colors_na = "grey"

)

S4 method for signature 'Pedigree'
generate_colors(
obj,
col_aff = "affected",
add_to_scale = TRUE,
col_avail = "avail",
is_num = NULL,
mods_aff = NULL,

46 generate_colors

threshold = 0.5,
sup_thres_aff = TRUE,
keep_full_scale = FALSE,
breaks = 3,
colors_aff = c("yellow2", "red"),
colors_unaff = c("white", "steelblue4"),
colors_avail = c("green", "black"),
colors_na = "grey",
reset = TRUE

)

Arguments

obj A Pedigree object or a vector containing the affection status for each individuals.
The affection status can be numeric or a character.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

mods_aff Vector of modality to consider as affected in the case where the values is a
factor.

is_num Boolean defining if the values need to be considered as numeric.
keep_full_scale

Boolean defining if the affection values need to be set as a scale. If values is
numeric the filling scale will be calculated based on the values and the number
of breaks given. If values isn’t numeric then each levels will get it’s own color

colors_aff Set of increasing colors to use for the filling of the affected individuls.
colors_unaff Set of increasing colors to use for the filling of the unaffected individuls.
colors_avail Set of 2 colors to use for the box’s border of an individual. The first color will

be used for available individual (avail == 1) and the second for the unavailable
individual (avail == 0).

colors_na Color to use for individuals with no informations.
threshold Numeric value separating the affected and healthy subject in the case where the

values is numeric.
sup_thres_aff Boolean defining if the affected individual are above the threshold or not. If

TRUE, the individuals will be considered affected if the value of values is stricly
above the threshold. If FALSE, the individuals will be considered affected if
the value is stricly under the threshold.

breaks Number of breaks to use when using full scale with numeric values. The same
number of breaks will be done for values from affected individuals and unaf-
fected individuals.

col_aff A character vector with the name of the column to be used for the affection
status.

add_to_scale Boolean defining if the scales need to be added to the existing scales or if they
need to replace the existing scales.

col_avail A character vector with the name of the column to be used for the availability
status.

reset If TRUE the scale of the specified column will be reset if already present.

generate_fill 47

Details

The colors will be set using the generate_fill()] and the generate_border() functions respectively
for the filling and the border.

Value

When used with a vector:
A list of two elements

• The list containing the filling colors processed and their description
• The list containing the border colors processed and their description

When used with a Pedigree object:
The Pedigree object with the affected and avail columns processed accordingly as well as the
scales slot updated.

Examples

generate_colors(
c("A", "B", "A", "B", NA, "A", "B", "A", "B", NA),
c(1, 0, 1, 0, NA, 1, 0, 1, 0, NA),
mods_aff = "A"

)

generate_colors(
c(10, 0, 5, 7, NA, 6, 2, 1, 3, NA),
c(1, 0, 1, 0, NA, 1, 0, 1, 0, NA),
threshold = 3, keep_full_scale = TRUE

)
data("sampleped")
ped <- Pedigree(sampleped)
ped <- generate_colors(ped, "affected", add_to_scale=FALSE)
scales(ped)

generate_fill Process the filling colors based on affection

Description

Perform transformation uppon a column given as the one containing affection status to compute the
filling color.

Usage

generate_fill(
values,
affected,
labels,

48 generate_fill

is_num = NULL,
keep_full_scale = FALSE,
breaks = 3,
colors_aff = c("yellow2", "red"),
colors_unaff = c("white", "steelblue4"),
colors_na = "grey"

)

Arguments

values The vector containing the values to process as affection.

affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-
fected, TRUE = affected, NA = unknown).

labels The vector containing the labels to use for the affection.

is_num Boolean defining if the values need to be considered as numeric.
keep_full_scale

Boolean defining if the affection values need to be set as a scale. If values is
numeric the filling scale will be calculated based on the values and the number
of breaks given. If values isn’t numeric then each levels will get it’s own color

breaks Number of breaks to use when using full scale with numeric values. The same
number of breaks will be done for values from affected individuals and unaf-
fected individuals.

colors_aff Set of increasing colors to use for the filling of the affected individuls.

colors_unaff Set of increasing colors to use for the filling of the unaffected individuls.

colors_na Color to use for individuals with no informations.

Details

The colors will be set using the grDevices::colorRampPalette() function with the colors given
as parameters.

The colors will be set as follow:

• If keep_full_scale is FALSE: Then the affected individuals will get the first color of the col-
ors_aff vector and the unaffected individuals will get the first color of the colors_unaff vector.

• If keep_full_scale is TRUE:

– If values isn’t numeric: Each levels of the affected values vector will get it’s own color
from the colors_aff vector using the grDevices::colorRampPalette() and the same
will be done for the unaffected individuals using the colors_unaff.

– If values is numeric: The mean of the affected individuals will be compared to the mean
of the unaffected individuals and the colors will be set up such as the color gradient follow
the direction of the affection.

Value

A list of three elements

• mods : The processed values column as a numeric factor

get_dataframe 49

• affected : A logical vector indicating if the individual is affected

• sc_fill : A dataframe containing the description of each modality of the scale

Examples

aff <- generate_aff_inds(seq_len(5), threshold = 3, sup_thres_aff = TRUE)
generate_fill(seq_len(5), aff$affected, aff$labels)
generate_fill(seq_len(5), aff$affected, aff$labels, keep_full_scale = TRUE)

get_dataframe Get dataframe name

Description

Extract the name of the different dataframe present in a file

Usage

get_dataframe(file)

Arguments

file The file path

Details

This function detect the extension of the file and extract if necessary the different dataframe / sheet
names available.

Value

A vector of all the dataframe name present.

Examples

Not run:
get_dataframe('path/to/my/file.txt')

End(Not run)

50 get_families_table

get_famid Get family id

Description

Get the family id ftom the individuals identifiers.

Usage

get_famid(obj)

S4 method for signature 'character'
get_famid(obj)

Arguments

obj A character vector of individual ids

Details

The family id is the first part of the individual id, separated by an underscore. If the individual id
does not contain an underscore, then the family id is set to NA.

Value

A character vector of family ids

Examples

get_famid(c("A", "1_B", "C_2", "D_", "_E", "F"))

get_families_table Summarise the families information for a given variable in a data
frame

Description

This function summarises the families information for a given variable in a data frame. It returns
the most numerous modality for each family and the number of individuals in the family.

Usage

get_families_table(df, var)

get_title 51

Arguments

df a data frame

var the variable to summarise

Value

a data frame with the family information

Examples

df <- data.frame(
famid = c(1, 1, 2, 2, 3, 3),
health = c("A", "B", "A", "A", "B", "B")

)
get_families_table(df, "health")

get_title Get the title of the family information table

Description

This function generates the title of the family information table depending on the selected family
and subfamily and other parameters.

Usage

get_title(
family_sel,
subfamily_sel,
family_var,
mod,
inf_selected,
kin_max,
keep_parents,
nb_rows,
short_title = FALSE

)

Arguments

family_sel the selected family

subfamily_sel the selected subfamily

family_var the selected family variable

mod the selected affected modality

inf_selected the selected informative individuals

kin_max the maximum kinship

52 get_twin_rel

keep_parents the keep parents option

nb_rows the number of individuals

short_title a boolean to generate a short title

Value

a string with the title

Examples

get_title(1, 1, "health", "A", "All", 3, TRUE, 10, FALSE)
get_title(1, 1, "health", "A", "All", 3, TRUE, 10, TRUE)
get_title(1, 1, "health", "A", "All", 3, FALSE, 10, FALSE)

get_twin_rel Get twin relationships

Description

Get twin relationships

Usage

get_twin_rel(obj)

Arguments

obj A Pedigree object

Details

This routine function determine the twin relationships in a Pedigree. It determine the order of the
twins in the Pedigree. It is used by auto_hint().

Value

A list containing components

1. twinset the set of twins

2. twinrel the twins relationships

3. twinord the order of the twins

See Also

auto_hint()

health_sel_ui 53

health_sel_ui Shiny module to select a health variable in a pedigree

Description

This module allows to select health variables in a pedigree object. The function is composed of two
parts: the UI and the server. The UI is called with the function health_sel_ui() and the server
with the function health_sel_server().

Usage

health_sel_ui(id)

health_sel_server(
id,
pedi,
var = NULL,
as_num = NULL,
mods_aff = NULL,
threshold = NULL,
sup_threshold = NULL

)

health_sel_demo()

Arguments

id A string to identify the module.

pedi A reactive pedigree object.

Value

A reactive list with the following informations:actions-box

• health_var: the selected health variable,

• to_num: a boolean to know if the health variable needs to be considered as numeric,

• mods_aff: a character vector of the affected modalities,

• threshold: a numeric threshold to determine affected individuals,

• sup_threshold: a boolean to know if the affected individuals are strickly superior to the thresh-
old.

Examples

if (interactive()) {
health_sel_demo()

}

54 Hints-class

Hints-class Hints object

Description

The hints are used to specify the order of the individuals in the pedigree and to specify the order of
the spouses.

Constructor ::
You either need to provide horder or spouse in the dedicated parameters (together or separately),
or inside a list.

Usage

Hints(horder, spouse)

S4 method for signature 'list,missing_OR_NULL'
Hints(horder, spouse)

S4 method for signature 'numeric,data.frame'
Hints(horder, spouse)

S4 method for signature 'numeric,missing_OR_NULL'
Hints(horder, spouse)

Arguments

horder A named numeric vector with one element per subject in the Pedigree. It de-
termines the relative horizontal order of subjects within a sibship, as well as
the relative order of processing for the founder couples. (For this latter, the fe-
male founders are ordered as though they were sisters). The names of the vector
should be the individual identifiers.

spouse A data.frame with one row per hinted marriage, usually only a few marriages
in a pedigree will need an added hint, for instance reverse the plot order of a
husband/wife pair. Each row contains the id of the left spouse (i.e. idl), the id
of the right hand spouse (i.e. idr), and the anchor (i.e : anchor : 1 = left, 2 =
right, 0 = either). Children will preferentially appear under the parents of the
anchored spouse.

Value

A Hints object.

Hints-class 55

Slots

horder A numeric named vector with one element per subject in the Pedigree. It determines the
relative horizontal order of subjects within a sibship, as well as the relative order of processing
for the founder couples. (For this latter, the female founders are ordered as though they were
sisters).

spouse A data.frame with one row per hinted marriage, usually only a few marriages in a Pedigree
will need an added hint, for instance reverse the plot order of a husband/wife pair. Each row
contains the identifiers of the left spouse, the right hand spouse, and the anchor (i.e : 1 = left,
2 = right, 0 = either).

Accessors

• horder(x) : Get the horder vector

• horder(x) <- value : Set the horder vector

• spouse(x) : Get the spouse data.frame

• spouse(x) <- value : Set the spouse data.frame

Generics

• as.list(x): Convert a Hints object to a list

• subset(x, i, keep = TRUE): Subset a Hints object based on the individuals identifiers given.

– i : A vector of individuals identifiers to keep.
– keep : A logical value indicating if the individuals should be kept or deleted.

See Also

Pedigree()

Examples

Hints(
list(

horder = c("1" = 1, "2" = 2, "3" = 3),
spouse = data.frame(

idl = c("1", "2"),
idr = c("2", "3"),
anchor = c(1, 2)

)
)

)

Hints(
horder = c("1" = 1, "2" = 2, "3" = 3),
spouse = data.frame(

idl = c("1", "2"),
idr = c("2", "3"),

56 ibd_matrix

anchor = c(1, 2)
)

)

Hints(
horder = c("1" = 1, "2" = 2, "3" = 3)

)

ibd_matrix IBD matrix

Description

Transform identity by descent (IBD) matrix data from the form produced by external programs such
as SOLAR into the compact form used by the coxme and lmekin routines.

Usage

ibd_matrix(id1, id2, ibd, idmap, diagonal)

Arguments

id1 A character vector with the id of the first individuals of each pairs or a matrix or
data frame with 3 columns: id1, id2, and ibd

id2 A character vector with the id of the second individuals of each pairs

ibd the IBD value for that pair

idmap an optional 2 column matrix or data frame whose first element is the internal
value (as found in id1 and id2, and whose second element will be used for the
dimnames of the result

diagonal optional value for the diagonal element. If present, any missing diagonal ele-
ments in the input data will be set to this value.

Details

The IBD matrix for a set of n subjects will be an n by n symmetric matrix whose i,j element is the
contains, for some given genetic location, a 0/1 indicator of whether 0, 1/2 or 2/2 of the alleles for
i and j are identical by descent. Fractional values occur if the IBD fraction must be imputed. The
diagonal will be 1. Since a large fraction of the values will be zero, programs such as Solar return
a data set containing only the non-zero elements. As well, Solar will have renumbered the subjects
as seq_len(n) in such a way that families are grouped together in the matrix; a separate index file
contains the mapping between this new id and the original one. The final matrix should be labeled
with the original identifiers.

Value

a sparse matrix of class dsCMatrix. This is the same form used for kinship matrices.

inf_sel_ui 57

See Also

kinship()

Examples

df <- data.frame(
id1 = c("1", "2", "1"),
id2 = c("2", "3", "4"),
ibd = c(0.5, 0.16, 0.27)

)
ibd_matrix(df$id1, df$id2, df$ibd, diagonal = 2)

inf_sel_ui Shiny module to select the informative individuals in a pedigree

Description

This module allows to select informative individuals in a pedigree object. They will be used to
subset the pedigree object with the function useful_inds(). Further filtering options are available
(max kinship and keep parents). The function is composed of two parts: the UI and the server. The
UI is called with the function inf_sel_ui() and the server with the function inf_sel_server().

Usage

inf_sel_ui(id)

inf_sel_server(id, pedi)

inf_sel_demo(pedi)

Arguments

id A string to identify the module.

pedi A reactive pedigree object.

Value

A reactive pedigree object subselected from the informative individuals.

Examples

if (interactive()) {
data("sampleped")
pedi <- shiny::reactive({

Pedigree(sampleped[sampleped$famid == "1",])
})
inf_sel_demo(pedi)

}

58 is_founder

is_disconnected Are individuals disconnected

Description

Check which individuals are disconnected.

Usage

is_disconnected(id, dadid, momid)

Arguments

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

Details

An individuals is considered disconnected if the kinship with all the other individuals is 0.

Value

A vector of boolean of the same size as id with TRUE if the individual is disconnected and FALSE
otherwise

Examples

is_disconnected(
c("1", "2", "3", "4", "5"),
c("3", "3", NA, NA, NA),
c("4", "4", NA, NA, NA)

)

is_founder Are individuals founders

Description

Check which individuals are founders.

Usage

is_founder(momid, dadid, missid = NA_character_)

is_informative 59

Arguments

momid A vector containing for each subject, the identifiers of the biologicals mothers.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

Value

A vector of boolean of the same size as dadid and momid with TRUE if the individual has no parents
(i.e is a founder) and FALSE otherwise.

Examples

is_founder(c("3", "3", NA, NA), c("4", "4", NA, NA))

is_informative Find informative individuals

Description

Select the ids of the informative individuals.

Usage

S4 method for signature 'character_OR_integer'
is_informative(obj, avail, affected, informative = "AvAf")

S4 method for signature 'Ped'
is_informative(obj, informative = "AvAf", reset = FALSE)

S4 method for signature 'Pedigree'
is_informative(obj, col_aff = NULL, informative = "AvAf", reset = FALSE)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-
fected, TRUE = affected, NA = unknown).

informative Informative individuals selection can take 5 values:

• ’AvAf’ (available and affected),
• ’AvOrAf’ (available or affected),
• ’Av’ (available only),

60 is_informative

• ’Af’ (affected only),
• ’All’ (all individuals)
• A numeric/character vector of individuals id
• A boolean

reset If TRUE, the isinf slot is reset

col_aff A character vector with the name of the column to be used for the affection
status.

Details

Depending on the informative parameter, the function will extract the ids of the informative indi-
viduals. In the case of a numeric vector, the function will return the same vector. In the case of a
boolean, the function will return the ids of the individuals if TRUE, NA otherwise. In the case of
a string, the function will return the ids of the corresponding informative individuals based on the
avail and affected columns.

Value

When obj is a vector:
A vector of individuals informative identifiers.

When obj is a Pedigree:
The Pedigree object with its isinf slot updated.

Examples

is_informative(c("A", "B", "C", "D", "E"), informative = c("A", "B"))
is_informative(c("A", "B", "C", "D", "E"), informative = c(1, 2))
is_informative(c("A", "B", "C", "D", "E"), informative = c("A", "B"))
is_informative(c("A", "B", "C", "D", "E"), avail = c(1, 0, 0, 1, 1),

affected = c(0, 1, 0, 1, 1), informative = "AvAf")
is_informative(c("A", "B", "C", "D", "E"), avail = c(1, 0, 0, 1, 1),

affected = c(0, 1, 0, 1, 1), informative = "AvOrAf")
is_informative(c("A", "B", "C", "D", "E"),

informative = c(TRUE, FALSE, TRUE, FALSE, TRUE))

data("sampleped")
ped <- Pedigree(sampleped)
ped <- is_informative(ped, col_aff = "affection_mods")
isinf(ped(ped))

data("sampleped")
ped <- Pedigree(sampleped)
ped <- is_informative(ped, col_aff = "affection_mods")
isinf(ped(ped))

is_parent 61

is_parent Are individuals parents

Description

Check which individuals are parents.

Usage

S4 method for signature 'character_OR_integer'
is_parent(obj, dadid, momid, missid = NA_character_)

S4 method for signature 'Ped'
is_parent(obj, missid = NA_character_)

Arguments

obj A vector of each subjects identifiers or a Ped object

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

Value

A vector of boolean of the same size as obj with TRUE if the individual is a parent and FALSE
otherwise

Examples

is_parent(c("1", "2", "3", "4"), c("3", "3", NA, NA), c("4", "4", NA, NA))

data(sampleped)
ped <- Pedigree(sampleped)
is_parent(ped(ped))

is_valid_hints Check if a Hints object is valid

62 is_valid_ped

Description

Check if horder and spouse slots are valid:

• horder is named numeric vector
• spouse is a data.frame

– Has the three idr, idl, anchor columns
– idr and idl are different and doesn’t contains NA
– idr and idl couple are unique
– anchor column only have right, left or either values

• all ids in spouse needs to be in the names of the horder vector

Usage

is_valid_hints(object)

Arguments

object A Hints object.

Value

A character vector with the errors or TRUE if no errors.

is_valid_ped Check if a Ped object is valid

Description

Multiple checks are done here

Usage

is_valid_ped(object)

Arguments

object A Ped object.

Details

1. Check that the ped ids slots have the right values
2. Check that the sex, steril, status, avail and affected slots have the right values
3. Check that dad are male and mom are female
4. Check that individuals have both parents or none

Value

A character vector with the errors or TRUE if no errors.

is_valid_pedigree 63

is_valid_pedigree Check if a Pedigree object is valid

Description

Multiple checks are done here

Usage

is_valid_pedigree(object)

Arguments

object A Ped object.

Details

1. Check that the all Rel id are in the Ped object

2. Check that twins have same parents

3. Check that MZ twins have same sex

4. Check that all columns used in scales are in the Ped object

5. Check that all fill & border modalities are in the Ped object column

6. Check that all id used in Hints object are in the Ped object

7. Check that all spouse in Hints object are male / female

Value

A character vector with the errors or TRUE if no errors.

is_valid_rel Check if a Rel object is valid

Description

Multiple checks are done here

Usage

is_valid_rel(object)

Arguments

object A Ped object.

64 is_valid_scales

Details

1. Check that the "id1", "id2", "code", "famid" slots exist

2. Check that the "code" slots have the right values (i.e. "MZ twin", "DZ twin", "UZ twin",
"Spouse")

3. Check that all "id1" are different to "id2"

4. Check that all "id1" are smaller than "id2"

5. Check that no duplicate relation are present

Value

A character vector with the errors or TRUE if no errors.

is_valid_scales Check if a Scales object is valid

Description

Check if the fill and border slots are valid:

• fill slot is a data.frame with "order", "column_values", "column_mods", "mods", "labels",
"affected", "fill", "density", "angle" columns.

– "affected" is logical.
– "density", "angle", "order", "mods" are numeric.
– "column_values", "column_mods", "labels", "fill" are character.

• border slot is a data.frame with "column_values", "column_mods", "mods", "labels", "border"
columns.

– "column_values", "column_mods", "labels", "border" are character.
– "mods" is numeric.

Usage

is_valid_scales(object)

Arguments

object A Scales object.

Value

A character vector with the errors or TRUE if no errors.

kindepth 65

kindepth Individual’s depth in a pedigree

Description

Computes the depth of each subject in the Pedigree.

Usage

S4 method for signature 'character_OR_integer'
kindepth(obj, dadid, momid, align_parents = FALSE, force = FALSE)

S4 method for signature 'Pedigree'
kindepth(obj, align_parents = FALSE, force = FALSE)

S4 method for signature 'Ped'
kindepth(obj, align_parents = FALSE, force = FALSE)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

align_parents If align_parents = TRUE, go one step further and try to make both parents of
each child have the same depth. (This is not always possible). It helps the
drawing program by lining up pedigrees that ’join in the middle’ via a marriage.

force If force = TRUE, the function will return the depth minus min(depth) if depth
reach a state with no founders is not possible.

Details

Mark each person as to their depth in a Pedigree; 0 for a founder, otherwise :

depth = 1 +max(fatherDepth,motherDepth)

In the case of an inbred Pedigree a perfect alignment may not exist.

Value

An integer vector containing the depth for each subject

Author(s)

Terry Therneau, updated by Louis Le Nézet

66 kinship

See Also

align()

Examples

kindepth(
c("A", "B", "C", "D", "E"),
c("C", "D", "0", "0", "0"),
c("E", "E", "0", "0", "0")

)
data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == "1",])
kindepth(ped1)

kinship Kinship matrix

Description

Compute the kinship matrix for a set of related autosomal subjects. The function is generic, and can
accept a Pedigree, a Ped or a vector as the first argument.

Usage

S4 method for signature 'Ped'
kinship(obj, chrtype = "autosome")

S4 method for signature 'character'
kinship(obj, dadid, momid, sex, chrtype = "autosome")

S4 method for signature 'Pedigree'
kinship(obj, chrtype = "autosome")

Arguments

obj A Pedigree or Ped object or a vector of subject identifiers.

chrtype chromosome type. The currently supported types are ’autosome’ and ’X’ or ’x’.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

kinship 67

Details

The function will usually be called with a Pedigree. The call with a Ped or a vector is provided for
backwards compatibility with an earlier release of the library that was less capable. Note that when
using with a Ped or a vector, any information on twins is not available to the function.

When called with a Pedigree, the routine will create a block-diagonal-symmetric sparse matrix
object of class dsCMatrix. Since the [i, j] value of the result is 0 for any two unrelated individuals
i and j and a Matrix utilizes sparse representation, the resulting object is often orders of magnitude
smaller than an ordinary matrix.

Two genes G1 and G2 are identical by descent (IBD) if they are both physical copies of the same
ancestral gene; two genes are identical by state if they represent the same allele. So the brown eye
gene that I inherited from my mother is IBD with hers; the same gene in an unrelated individual is
not.

The kinship coefficient between two subjects is the probability that a randomly selected allele from a
locus will be IBD between them. It is obviously 0 between unrelated individuals. For an autosomal
site and no inbreeding it will be 0.5 for an individual with themselves, .25 between mother and
child, .125 between an uncle and neice, etc.

The computation is based on a recursive algorithm described in Lange, which assumes that the
founder alleles are all independent.

Value

When obj is a vector:
A matrix of kinship coefficients.

When obj is a Pedigree:
A matrix of kinship coefficients ordered by families present in the Pedigree object.

References

K Lange, Mathematical and Statistical Methods for Genetic Analysis, Springer-Verlag, New York,
1997.

See Also

make_famid(), kindepth()

Examples

kinship(c("A", "B", "C", "D", "E"), c("C", "D", "0", "0", "0"),
c("E", "E", "0", "0", "0"), sex = c(1, 2, 1, 2, 1))

kinship(c("A", "B", "C", "D", "E"), c("C", "D", "0", "0", "0"),
c("E", "E", "0", "0", "0"), sex = c(1, 2, 1, 2, 1),
chrtype = "x"

)

data(sampleped)
ped <- Pedigree(sampleped)
kinship(ped)

68 make_famid

make_class_info Make class information

Description

Make class information

Usage

make_class_info(x)

Arguments

x A list of class

Value

A character vector of class information

Examples

Pedixplorer:::make_class_info(list(1, "a", 1:3, list(1, 2)))

make_famid Compute family id

Description

Construct a family identifier from pedigree information

Usage

S4 method for signature 'character'
make_famid(obj, dadid, momid)

S4 method for signature 'Pedigree'
make_famid(obj)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

make_rownames 69

Details

Create a vector of length n, giving the family ’tree’ number of each subject. If the Pedigree is
totally connected, then everyone will end up in tree 1, otherwise the tree numbers represent the
disconnected subfamilies. Singleton subjects give a zero for family number.

Value

When used with a character vector:
An integer vector giving family groupings

When used with a Pedigree object:
An updated Pedigree object with the family id added and with all ids updated

See Also

kinship()

Examples

make_famid(
c("A", "B", "C", "D", "E", "F"),
c("C", "D", "0", "0", "0", "0"),
c("E", "E", "0", "0", "0", "0")

)

data(sampleped)
ped1 <- Pedigree(sampleped[,-1])
make_famid(ped1)

make_rownames Make rownames for rectangular data display

Description

Make rownames for rectangular data display

Usage

make_rownames(x_rownames, nrow, nhead, ntail)

Arguments

x_rownames The rownames of the data

nrow The number of rows in the data

nhead The number of rownames to display at the beginning

ntail The number of rownames to display at the end

70 minnbreast

Value

A character vector of rownames

Examples

Pedixplorer:::make_rownames(rownames(mtcars), nrow(mtcars), 3, 3)

minnbreast Minnesota Breast Cancer Study

Description

Data from the Minnesota Breast Cancer Family Study. This contains extended pedigrees from 426
families, each identified by a single proband in 1945-1952, with follow up for incident breast cancer.

Usage

data(minnbreast)

Format

A data frame with 28081 observations, one line per subject, on the following 14 variables.

• id : Subject identifier

• proband : If 1, this subject is one of the original 426 probands

• fatherid : Identifier of the father, if the father is part of the data set; zero otherwise

• motherid : Identifier of the mother, if the mother is part of the data set; zero otherwise

• famid : Family identifier

• endage : Age at last follow-up or incident cancer

• cancer : 1 = breast cancer (females) or prostate cancer (males), 0 = censored

• yob : Year of birth

• education : Amount of education: 1-8 years, 9-12 years, high school graduate, vocational
education beyond high school, some college but did not graduate, college graduate, post-
graduate education, refused to answer on the questionnaire

• marstat : Marital status: married, living with someone in a marriage-like relationship, sepa-
rated or divorced, widowed, never married, refused to answer the questionaire

• everpreg : Ever pregnant at the time of baseline survey

• parity : Number of births

• nbreast : Number of breast biopsies

• sex : M or F

• bcpc : Part of one of the families in the breast / prostate cancer substudy: 0 = no, 1 = yes.
Note that subjects who were recruited to the overall study after the date of the BP substudy
are coded as zero.

minnbreast 71

Details

The original study was conducted by Dr. Elving Anderson at the Dight Institute for Human Genetics
at the University of Minnesota. From 1944 to 1952, 544 sequential breast cancer cases seen at the
University Hospital were enrolled, and information gathered on parents, siblings, offspring, aunts
/ uncles, and grandparents with the goal of understanding possible familial aspects of brest cancer.
In 1991 the study was resurrected by Dr Tom Sellers.

Of the original 544 he excluded 58 prevalent cases, along with another 19 who had less than 2
living relatives at the time of Dr Anderson’s survey. Of the remaining 462 families 10 had no living
members, 23 could not be located and 8 refused, leaving 426 families on whom updated pedigrees
were obtained.

This gave a study with 13351 males and 12699 females (5183 marry-ins). Primary questions were
the relationship of early life exposures, breast density, and pharmacogenomics on incident breast
cancer risk. For a subset of the families data was gathered on prostate cancer risk for male subjects
via questionnaires sent to men over 40. Other than this, data items other than parentage are limited
to the female subjects. In 2003 a second phase of the study was instituted. The pedigrees were
further extended to the numbers found in this data set, and further data gathered by questionnaire.

References

Epidemiologic and genetic follow-up study of 544 Minnesota breast cancer families: design and
methods. Sellers TA, Anderson VE, Potter JD, Bartow SA, Chen PL, Everson L, King RA, Kuni
CC, Kushi LH, McGovern PG, et al. Genetic Epidemiology, 1995; 12(4):417-29.

Evaluation of familial clustering of breast and prostate cancer in the Minnesota Breast Cancer Fam-
ily Study. Grabrick DM, Cerhan JR, Vierkant RA, Therneau TM, Cheville JC, Tindall DJ, Sellers
TA. Cancer Detect Prev. 2003; 27(1):30-6.

Risk of breast cancer with oral contraceptive use in women with a family history of breast cancer.
Grabrick DM, Hartmann LC, Cerhan JR, Vierkant RA, Therneau TM, Vachon CM, Olson JE, Couch
FJ, Anderson KE, Pankratz VS, Sellers TA. JAMA. 2000; 284(14):1791-8.

Examples

data(minnbreast)
breastped <- Pedigree(minnbreast,

cols_ren_ped = list(
"indId" = "id", "fatherId" = "fatherid",
"motherId" = "motherid", "gender" = "sex", "family" = "famid"

), missid = "0", col_aff = "cancer"
)
summary(breastped)
scales(breastped)
#plot family 8, proband is solid, slash for cancers
if (interactive()) {

plot(breastped[famid(ped(breastped)) == "8"], aff_mark = TRUE)
}

72 min_dist_inf

min_dist_inf Minimum distance to the informative individuals

Description

Compute the minimum distance between the informative individuals and all the others. This dis-
tance is a transformation of the maximum kinship degree between the informative individuals and
all the others. This transformation is done by taking the log2 of the inverse of the maximum kinship
degree.

minDist = log2(1/max(kinship))

Therefore, the minimum distance is 0 when the maximum kinship is 1 and is infinite when the
maximum kinship is 0. For siblings, the kinship value is 0.5 and the minimum distance is 1. Each
time the kinship degree is divided by 2, the minimum distance is increased by 1.

Usage

S4 method for signature 'character'
min_dist_inf(obj, dadid, momid, sex, id_inf)

S4 method for signature 'Pedigree'
min_dist_inf(obj, reset = FALSE, ...)

S4 method for signature 'Ped'
min_dist_inf(obj, reset = FALSE)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

... Additional arguments

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

id_inf An identifiers vector of informative individuals.

reset If TRUE, the kin and if isinf columns is reset

na_to_length 73

Value

When obj is a vector:
A vector of the minimum distance between the informative individuals and all the others corre-
sponding to the order of the individuals in the obj vector.

When obj is a Pedigree:
The Pedigree object with a new slot named ’kin’ containing the minimum distance between each
individuals and the informative individuals. The isinf slot is also updated with the informative
individuals.

See Also

kinship()

Examples

min_dist_inf(
c("A", "B", "C", "D", "E"),
c("C", "D", "0", "0", "0"),
c("E", "E", "0", "0", "0"),
sex = c(1, 2, 1, 2, 1),
id_inf = c("D", "E")

)

data(sampleped)
ped <- is_informative(

Pedigree(sampleped),
informative = "AvAf", col_aff = "affection_mods"

)
kin(ped(min_dist_inf(ped, col_aff = "affection_mods")))

na_to_length NA to specific length

Description

Check if all value in a vector is NA or NULL. If so set all of them to a new value matching the length
of the template. If not check that the size of the vector is equal to the template.

Usage

na_to_length(x, temp, value)

Arguments

x The vector to check.

temp A template vector to use to determine the length.

value The value to use to fill the vector.

74 norm_ped

Value

A vector with the same length as temp.

Examples

na_to_length(NA, rep(0, 4), "NewValue")
na_to_length(c(1, 2, 3, NA), rep(0, 4), "NewValue")

norm_ped Normalise a Ped object dataframe

Description

Normalise dataframe for a Ped object

Usage

norm_ped(
ped_df,
na_strings = c("NA", ""),
missid = NA_character_,
try_num = FALSE,
cols_used_del = FALSE

)

Arguments

ped_df A data.frame with the individuals informations. The minimum columns required
are:

• indID individual identifiers -> id

• fatherId biological fathers identifiers -> dadid

• motherId biological mothers identifiers -> momdid

• gender sex of the individual -> sex

• family family identifiers -> famid

The family column, if provided, will be merged to the ids field separated by an
underscore using the upd_famid() function.
The following columns are also recognize and will be transformed with the
vect_to_binary() function:

• sterilisation status -> steril

• available status -> avail

• vitalStatus, is the individual dead -> status

• affection status -> affected

The values recognized for those columns are 1 or 0, TRUE or FALSE.

na_strings Vector of strings to be considered as NA values.

norm_ped 75

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

try_num Boolean defining if the function should try to convert all the columns to numeric.

cols_used_del Boolean defining if the columns that will be used should be deleted.

Details

Normalise a dataframe and check for columns correspondance to be able to use it as an input to
create a Ped object. Multiple test are done and errors are checked. Sex is calculated based on the
gender column.

The steril column need to be a boolean either TRUE, FALSE or ’NA’. Will be considered available
any individual with no ’NA’ values in the available column. Duplicated indId will nullify the
relationship of the individual. All individuals with errors will be remove from the dataframe and
will be transfered to the error dataframe.

A number of checks are done to ensure the dataframe is correct:

On identifiers::
• All ids (id, dadid, momid, famid) are not empty (!= "")
• All id are unique (no duplicated)
• All dadid and momid are unique in the id column (no duplicated)
• id is not the same as dadid or momid
• Either have both parents or none

On sex::
• All sex code are either male, female, terminated or unknown.
• No parents are steril
• All fathers are male
• All mothers are female

Value

A dataframe with different variable correctly standardized and with the errors identified in the error
column

See Also

Ped() Ped Pedigree()

Examples

df <- data.frame(
indId = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
fatherId = c("A", 0, 1, 3, 0, 4, 1, 0, 6, 6),
motherId = c(0, 0, 2, 2, 0, 5, 2, 0, 8, 8),
gender = c(1, 2, "m", "man", "f", "male", "m", "m", "f", "f"),
available = c("A", "1", 0, NA, 1, 0, 1, 0, 1, 0),
famid = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2),
sterilisation = c("TRUE", "FALSE", TRUE, FALSE, 1, 0, 1, 0, 1, "TRUE"),

76 norm_rel

vitalStatus = c("TRUE", "FALSE", TRUE, FALSE, 1, 0, 1, 0, 1, 0),
affection = c("TRUE", "FALSE", TRUE, FALSE, 1, 0, 1, 0, 1, 0)

)
tryCatch(

norm_ped(df),
error = function(e) print(e)

)

norm_rel Normalise a Rel object dataframe

Description

Normalise a dataframe and check for columns correspondance to be able to use it as an input to
create a Ped object.

Usage

norm_rel(rel_df, na_strings = c("NA", ""), missid = NA_character_)

Arguments

rel_df A data.frame with the special relationships between individuals. See Rel() for
more informations. The minimum columns required are id1, id2 and code.
The famid column can also be used to specify the family of the individuals. If a
matrix is given, the columns needs to be ordered as id1, id2, code and famid.
The code values are:

• 1 = Monozygotic twin
• 2 = Dizygotic twin
• 3 = twin of unknown zygosity
• 4 = Spouse

The value relation code recognized by the function are the one defined by the
rel_code_to_factor() function.

na_strings Vector of strings to be considered as NA values.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

Details

The famid column, if provided, will be merged to the ids field separated by an underscore using the
upd_famid() function. The code column will be transformed with the rel_code_to_factor().
Multiple test are done and errors are checked.

A number of checks are done to ensure the dataframe is correct:

On identifiers::

num_child 77

• All ids (id1, id2) are not empty (!= "")
• id1 and id2 are not the same

On code:
• All code are recognised as either "MZ twin", "DZ twin", "UZ twin" or "Spouse"

Value

A dataframe with the errors identified

Examples

df <- data.frame(
id1 = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
id2 = c(2, 3, 4, 5, 6, 7, 8, 9, 10, 1),
code = c("MZ twin", "DZ twin", "UZ twin", "Spouse",

1, 2, 3, 4, "MzTwin", "sp oUse"),
famid = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2)

)
norm_rel(df)

num_child Number of childs

Description

Compute the number of childs per individual

Usage

S4 method for signature 'character_OR_integer'
num_child(obj, dadid, momid, rel_df = NULL, missid = NA_character_)

S4 method for signature 'Pedigree'
num_child(obj, reset = FALSE)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

rel_df A data.frame with the special relationships between individuals. See Rel() for
more informations. The minimum columns required are id1, id2 and code.
The famid column can also be used to specify the family of the individuals. If a
matrix is given, the columns needs to be ordered as id1, id2, code and famid.
The code values are:

78 num_child

• 1 = Monozygotic twin
• 2 = Dizygotic twin
• 3 = twin of unknown zygosity
• 4 = Spouse

The value relation code recognized by the function are the one defined by the
rel_code_to_factor() function.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

reset If TRUE, the num_child_tot, num_child_ind and the num_child_dir columns
are reset.

Details

Compute the number of direct child but also the number of indirect child given by the ones related
with the linked spouses. If a relation ship dataframe is given, then even if no children is present
between 2 spouses, the indirect childs will still be added.

Value

When obj is a vector:
A dataframe with the columns num_child_dir, num_child_ind and num_child_tot giving re-
spectively the direct, indirect and total number of child.

When obj is a Pedigree object:
An updated Pedigree object with the columns num_child_dir, num_child_ind and num_child_tot
added to the Pedigree ped slot.

Examples

num_child(
obj = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10"),
dadid = c("3", "3", "6", "8", "0", "0", "0", "0", "0", "0"),
momid = c("4", "5", "7", "9", "0", "0", "0", "0", "0", "0"),
rel_df = data.frame(

id1 = "10",
id2 = "3",
code = "Spouse"

)
)

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == "1",])
ped1 <- num_child(ped1, reset = TRUE)
summary(ped(ped1))

parent_of 79

parent_of Get parents of individuals

Description

Get the parents of individuals.

Usage

S4 method for signature 'character_OR_integer'
parent_of(obj, dadid, momid, id2)

S4 method for signature 'Ped'
parent_of(obj, id2)

S4 method for signature 'Pedigree'
parent_of(obj, id2)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

id2 A vector of individuals identifiers to get the parents from

Value

A vector of individuals identifiers corresponding to the parents of the individuals in id2

Examples

data(sampleped)
ped <- Pedigree(sampleped)
parent_of(ped, "1_121")

paste0max Print0 to max

Description

Print0 the elements inside a vector until a maximum is reached.

Usage

paste0max(x, max = 5, sep = "", ...)

80 Ped-class

Arguments

x A vector.

max The maximum number of elements to print.

... Additional arguments passed to print0

Value

The character vector aggregated until the maximum is reached.

Ped-class Ped object

Description

S4 class to represent the identity informations of the individuals in a pedigree.

Constructor ::
You either need to provide a vector of the same size for each slot or a data.frame with the
corresponding columns.
The metadata will correspond to the columns that do not correspond to the Ped slots.

Usage

S4 method for signature 'data.frame'
Ped(obj, cols_used_init = FALSE, cols_used_del = FALSE)

S4 method for signature 'character_OR_integer'
Ped(
obj,
sex,
dadid,
momid,
famid = NA,
steril = NA,
status = NA,
avail = NA,
affected = NA,
missid = NA_character_,
useful = NA,
isinf = NA,
kin = NA_real_

)

Ped-class 81

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

cols_used_init Boolean defining if the columns that will be used should be initialised to NA.

cols_used_del Boolean defining if the columns that will be used should be deleted.

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

steril A logical vector with the sterilisation status of the individuals (i.e. FALSE = not
sterilised, TRUE = sterilised, NA = unknown).

status A logical vector with the affection status of the individuals (i.e. FALSE = alive,
TRUE = dead, NA = unknown).

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-
fected, TRUE = affected, NA = unknown).

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

useful A logical vector with the usefulness status of the individuals (i.e. FALSE = not
useful, TRUE = useful).

isinf A logical vector indicating if the individual is informative or not (i.e. FALSE =
not informative, TRUE = informative).

kin A numeric vector with minimal kinship value between the individuals and the
informative individuals.

Details

The minimal needed informations are id, dadid, momid and sex. The other slots are used to store
recognized informations. Additional columns can be added to the Ped object and will be stored in
the elementMetadata slot of the Ped object.

Value

A Ped object.

82 Ped-class

Slots

id A character vector with the id of the individuals.

dadid A character vector with the id of the father of the individuals.

momid A character vector with the id of the mother of the individuals.

sex An ordered factor vector for the sex of the individuals (i.e. male < female < unknown <
terminated).

famid A character vector with the family identifiers of the individuals (optional).

steril A logical vector with the sterilisation status of the individuals (i.e. FALSE = not sterilised,
TRUE = sterilised, NA = unknown).

status A logical vector with the affection status of the individuals (i.e. FALSE = alive, TRUE =
dead, NA = unknown).

avail A logical vector with the availability status of the individuals (i.e. FALSE = not available,
TRUE = available, NA = unknown).

affected A logical vector with the affection status of the individuals (i.e. FALSE = not affected,
TRUE = affected, NA = unknown).

useful A logical vector with the usefulness status of the individuals (i.e. FALSE = not useful, TRUE
= useful).

isinf A logical vector indicating if the individual is informative or not (i.e. FALSE = not informa-
tive, TRUE = informative).

kin A numeric vector with minimal kinship value between the individuals and the useful individu-
als.

num_child_tot A numeric vector with the total number of children of the individuals.

num_child_dir A numeric vector with the number of children of the individuals.

num_child_ind A numeric vector with the number of children of the individuals.

elementMetadata A DataFrame with the additional metadata columns of the Ped object.

metadata Meta informations about the pedigree.

Accessors

For all the following accessors, the x parameters is a Ped object. Each getters return a vector of the
same length as x with the values of the corresponding slot. For each getter, you have a setter with
the same name, to be use as slot(x) <- value. The value parameter is a vector of the same length
as x, except for the mcols() accessors where value is a list or a data.frame with each elements with
the same length as x.

• id(x) : Individuals identifiers

• dadid(x) : Individuals’ father identifiers

• momid(x) : Individuals’ mother identifiers

• famid(x) : Individuals’ family identifiers

• sex(x) : Individuals’ gender

Ped-class 83

• affected(x) : Individuals’ affection status

• avail(x) : Individuals’ availability status

• status(x) : Individuals’ death status

• isinf(x) : Individuals’ informativeness status

• kin(x) : Individuals’ kinship distance to the informative individuals

• useful(x) : Individuals’ usefullness status

• mcols(x) : Individuals’ metadata

Generics

• summary(x): Compute the summary of a Ped object

• show(x): Convert the Ped object to a data.frame and print it with its summary.

• as.list(x): Convert a Ped object to a list with the metadata columns at the end.

• as.data.frame(x): Convert a Ped object to a data.frame with the metadata columns at the
end.

• subset(x, i, del_parents = FALSE, keep = TRUE): Subset a Ped object based on the indi-
viduals identifiers given.

– i : A vector of individuals identifiers to keep.
– del_parents : A value indicating if the parents of the individuals should be deleted.
– keep : A logical value indicating if the individuals should be kept or deleted.

See Also

Pedigree()

Examples

data(sampleped)
Ped(sampleped)

Ped(
obj = c("1", "2", "3", "4", "5", "6"),
dadid = c("4", "4", "6", "0", "0", "0"),
momid = c("5", "5", "5", "0", "0", "0"),
sex = c(1, 2, 3, 1, 2, 1),
missid = "0"

)

84 Pedigree-class

Pedigree-class Pedigree object

Description

A pedigree is a ensemble of individuals linked to each other into a family tree. A Pedigree object
store the informations of the individuals and the special relationships between them. It also permit
to store the informations needed to plot the pedigree (i.e. scales and hints).

Constructor ::
Main constructor of the package. This constructor help to create a Pedigree object from different
data.frame or a set of vectors.
If any errors are found in the data, the function will return the data.frame with the errors of the
Ped object and the Rel object.

Usage

Pedigree(obj, ...)

S4 method for signature 'character_OR_integer'
Pedigree(
obj,
dadid,
momid,
sex,
famid = NA,
avail = NULL,
affected = NULL,
status = NULL,
steril = NULL,
rel_df = NULL,
missid = NA_character_,
col_aff = "affection",
normalize = TRUE,
...

)

S4 method for signature 'data.frame'
Pedigree(
obj = data.frame(indId = character(), fatherId = character(), motherId = character(),
gender = numeric(), family = character(), available = numeric(), vitalStatus =
numeric(), affection = numeric(), sterilisation = numeric()),

rel_df = data.frame(id1 = character(), id2 = character(), code = numeric(), famid =
character()),

cols_ren_ped = list(indId = "id", fatherId = "dadid", motherId = "momid", family =
"famid", gender = "sex", sterilisation = "steril", affection = "affected", available
= "avail", vitalStatus = "status"),

Pedigree-class 85

cols_ren_rel = list(id1 = "indId1", id2 = "indId2", famid = "family"),
hints = list(horder = NULL, spouse = NULL),
normalize = TRUE,
missid = NA_character_,
col_aff = "affection",
na_strings = c("NA", "N/A", "None", "none", "null", "NULL"),
...

)

Arguments

obj A vector of the individuals identifiers or a data.frame with the individuals infor-
mations. See Ped() for more informations.

... Arguments passed on to generate_colors

dadid A vector containing for each subject, the identifiers of the biologicals fathers.

momid A vector containing for each subject, the identifiers of the biologicals mothers.

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

affected A logical vector with the affection status of the individuals (i.e. FALSE = un-
affected, TRUE = affected, NA = unknown). Can also be a data.frame with the
same length as obj. If it is a matrix, it will be converted to a data.frame and the
columns will be named after the col_aff argument.

status A logical vector with the affection status of the individuals (i.e. FALSE = alive,
TRUE = dead, NA = unknown).

steril A logical vector with the sterilisation status of the individuals (i.e. FALSE = not
sterilised, TRUE = sterilised, NA = unknown).

rel_df A data.frame with the special relationships between individuals. See Rel() for
more informations. The minimum columns required are id1, id2 and code.
The famid column can also be used to specify the family of the individuals. If a
matrix is given, the columns needs to be ordered as id1, id2, code and famid.
The code values are:

• 1 = Monozygotic twin
• 2 = Dizygotic twin
• 3 = twin of unknown zygosity
• 4 = Spouse

86 Pedigree-class

The value relation code recognized by the function are the one defined by the
rel_code_to_factor() function.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

col_aff A character vector with the name of the column to be used for the affection
status.

normalize A logical to know if the data should be normalised.

cols_ren_ped A named list with the columns to rename for the pedigree dataframe. This is
useful if you want to use a dataframe with different column names. The names
of the list should be the new column names and the values should be the old
column names. The default values are to be used with normalize = TRUE.

cols_ren_rel A named list with the columns to rename for the relationship matrix. This is
useful if you want to use a dataframe with different column names. The names
of the list should be the new column names and the values should be the old
column names.

hints A Hints object or a named list containing horder and spouse.

na_strings Vector of strings to be considered as NA values.

Details

If the normalization is set to TRUE, then the data will be standardized using the function norm_ped()
and norm_rel().

If a data.frame is given, the columns names needed will depend if the normalization is selected or
not. If the normalization is selected, the columns names needed are as follow and if not the columns
names needed are in parenthesis:

• indID: the individual identifier (id)

• fatherId: the identifier of the biological father (dadid)

• motherId: the identifier of the biological mother (momid)

• gender: the sex of the individual (sex)

• family: the family identifier of the individual (famid)

• sterilisation: the sterilisation status of the individual (steril)

• available: the availability status of the individual (avail)

• vitalStatus: the death status of the individual (status)

• affection: the affection status of the individual (affected)

• ...: other columns that will be stored in the elementMetadata slot

The minimum columns required are :

• indID / id

• fatherId / dadid

• motherId / momid

• gender / sex

Pedigree-class 87

The family / famid column can also be used to specify the family of the individuals and will
be merge to the indId / id field separated by an underscore. The columns sterilisation,
available, vitalStatus, affection will be transformed with the vect_to_binary() function
when the normalisation is selected. If you do not use the normalisation, the columns will be checked
to be 0 or 1.

If affected is a data.frame, col_aff will be overwritten by the column names of the data.frame.

Value

A Pedigree object.

Slots

ped A Ped object for the identity informations. See Ped() for more informations.

rel A Rel object for the special relationships. See Rel() for more informations.

scales A Scales object for the filling and bordering colors used in the plot. See Scales() for
more informations.

hints A Hints object for the ordering of the individuals in the plot. See Hints() for more infor-
mations.

Accessors

• ped(x, slot) : Get the value of a specific slot of the Ped object

• ped(x) : Get the Ped object

• ped(x, slot) <- value : Set the value of a specific slot of the Ped object Wrapper of slot(ped(x))
<- value

• ped(x) <- value : Set the Ped object

• mcols(x) : Get the metadata of a Pedigree object. This function is a wrapper around mcols(ped(x)).

• mcols(x) <- value : Set the metadata of a Pedigree object. This function is a wrapper around
mcols(ped(x)) <- value.

• rel(x, slot) : Get the value of a specific slot of the Rel object

• rel(x) : Get the Rel object

• rel(x, slot) <- value : Set the value of a specific slot of the Rel object Wrapper of slot(rel(x))
<- value

• rel(x) <- value : Set the Rel object

• scales(x) : Get the Scales object

• scales(x) <- value : Set the Scales object

• fill(x) : Get the fill data.frame from the Scales object. Wrapper of fill(scales(x))

88 Pedigree-class

• fill(x) <- value : Set the fill data.frame from the Scales object. Wrapper of fill(scales(x))
<- value

• border(x) : Get the border data.frame from the Scales object. Wrapper of border(scales(x))

• border(x) <- value : Set the border data.frame from the Scales object. Wrapper of border(scales(x))
<- value

• hints(x) : Get the Hints object

• hints(x) <- value : Set the Hints object

• horder(x) : Get the horder vector from the Hints object. Wrapper of horder(hints(x))

• horder(x) <- value : Set the horder vector from the Hints object. Wrapper of horder(hints(x))
<- value

• spouse(x) : Get the spouse data.frame from the Hints object. Wrapper of spouse(hints(x)).

• spouse(x) <- value : Set the spouse data.frame from the Hints object. Wrapper of spouse(hints(x))
<- value.

Generics

• length(x): Get the length of a Pedigree object. Wrapper of length(ped(x)).

• show(x): Print the information of the Ped and Rel object inside the Pedigree object.

• summary(x): Compute the summary of the Ped and Rel object inside the Pedigree object.

• as.list(x): Convert a Pedigree object to a list

• subset(x, i, keep = TRUE): Subset a Pedigree object based on the individuals identifiers
given.

– i : A vector of individuals identifiers to keep.
– del_parents : A logical value indicating if the parents of the individuals should be

deleted.
– keep : A logical value indicating if the individuals should be kept or deleted.

• x[i, del_parents, keep]: Subset a Pedigree object based on the individuals identifiers
given.

See Also

Pedigree() Ped() Rel() Scales() Hints()

Ped() Rel() Scales()

ped_avaf_infos_ui 89

Examples

Pedigree(
obj = c("1", "2", "3", "4", "5", "6"),
dadid = c("4", "4", "6", "0", "0", "0"),
momid = c("5", "5", "5", "0", "0", "0"),
sex = c(1, 2, 3, 1, 2, 1),
avail = c(0, 1, 0, 1, 0, 1),
affected = matrix(c(

0, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 1

), ncol = 2),
col_aff = c("aff1", "aff2"),
missid = "0",
rel_df = matrix(c(

"1", "2", 2
), ncol = 3, byrow = TRUE),

)

data(sampleped)
Pedigree(sampleped)

ped_avaf_infos_ui Shiny modules to display family information

Description

This module allows to display the health and availability data for all individuals in a pedigree object.
The output is a datatable. The function is composed of two parts: the UI and the server. The UI is
called with the function ped_avaf_infos_ui() and the server with the function ped_avaf_infos_server().

Usage

ped_avaf_infos_ui(id, height = "auto")

ped_avaf_infos_server(id, pedi, title = "Family informations", height = "auto")

ped_avaf_infos_demo(height = "auto")

Arguments

id A string to identify the module.

height The height of the datatable.

pedi A reactive pedigree object.

title The title of the module.

Value

A reactive dataframe with the selected columns renamed to the names of cols_needed and cols_supl.

90 ped_shiny

Examples

if (interactive()) {
ped_avaf_infos_demo()

}

ped_server Create the server logic for the ped_shiny application

Description

Create the server logic for the ped_shiny application

Usage

ped_server(input, output, session, precision = 2)

Arguments

input The input object from a Shiny app.

output The output object from a Shiny app.

session The session object from a Shiny app.

precision Number of decimal for the position of the boxes in the plot.

Value

shiny::shinyServer()

Examples

if (interactive()) {
ped_shiny()

}

ped_shiny Run Pedixplorer Shiny application

Description

This function creates a shiny application to manage and visualize pedigree data using the ped_ui()
and ped_server() functions.

ped_shiny 91

Usage

ped_shiny(
port = getOption("shiny.port"),
host = getOption("shiny.host", "127.0.0.1"),
precision = 2

)

Arguments

port (optional) Specify port the application should list to.

host (optional) The IPv4 address that the application should listen on.

precision Number of decimal for the position of the boxes in the plot.

Details

The application is composed of several modules:

• Data import

• Data column selection

• Data download

• Family selection

• Health selection

• Informative selection

• Subfamily selection

• Plotting pedigree

• Family information

Value

Running Shiny Application

Examples

if (interactive()) {
ped_shiny()

}

92 ped_to_legdf

ped_to_legdf Create plotting legend data frame from a Pedigree

Description

Convert a Pedigree to a legend data frame for it to be plotted afterwards with plot_fromdf().

Usage

S4 method for signature 'Pedigree'
ped_to_legdf(
obj,
boxh = 1,
boxw = 1,
cex = 1,
adjx = 0,
adjy = 0,
lwd = par("lwd")

)

Arguments

obj A Pedigree object

boxh Height of the polygons elements

boxw Width of the polygons elements

cex Character expansion of the text

adjx default=0. Controls the horizontal text adjustment of the labels in the legend.

adjy default=0. Controls the vertical text adjustment of the labels in the legend.

lwd default=par("lwd"). Controls the bordering line width of the elements in the
legend.

Details

The data frame contains the following columns:

• x0, y0, x1, y1: coordinates of the elements

• type: type of the elements

• fill: fill color of the elements

• border: border color of the elements

• angle: angle of the shading of the elements

• density: density of the shading of the elements

• cex: size of the elements

• label: label of the elements

ped_to_plotdf 93

• tips: tips of the elements (used for the tooltips)

• adjx: horizontal text adjustment of the labels

• adjy: vertical text adjustment of the labels

All those columns are used by plot_fromdf() to plot the graph.

Value

A list containing the legend data frame and the user coordinates.

Examples

data("sampleped")
ped <- Pedigree(sampleped)
leg_df <- ped_to_legdf(ped)
summary(leg_df$df)
plot_fromdf(leg_df$df, usr = c(-1,15,0,7))

ped_to_plotdf Create plotting data frame from a Pedigree

Description

Convert a Pedigree to a data frame with all the elements and their characteristic for them to be
plotted afterwards with plot_fromdf().

Usage

S4 method for signature 'Pedigree'
ped_to_plotdf(
obj,
packed = TRUE,
width = 6,
align = c(1.5, 2),
align_parents = TRUE,
force = FALSE,
cex = 1,
symbolsize = cex,
pconnect = 0.5,
branch = 0.6,
aff_mark = TRUE,
id_lab = "id",
label = NULL,
precision = 3,
lwd = par("lwd"),
tips = NULL,
...

)

94 ped_to_plotdf

Arguments

obj A Pedigree object

... Other arguments passed to par()

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

width For a packed output, the minimum width of the plot, in inches.

align For a packed Pedigree, align children under parents TRUE, to the extent possible
given the page width, or align to to the left margin FALSE. This argument can
be a two element vector, giving the alignment parameters, or a logical value. If
TRUE, the default is c(1.5, 2), or if numeric the routine alignped4() will be
called.

align_parents If align_parents = TRUE, go one step further and try to make both parents of
each child have the same depth. (This is not always possible). It helps the
drawing program by lining up pedigrees that ’join in the middle’ via a marriage.

force If force = TRUE, the function will return the depth minus min(depth) if depth
reach a state with no founders is not possible.

cex Character expansion of the text

symbolsize Size of the symbols

pconnect When connecting parent to children the program will try to make the connecting
line as close to vertical as possible, subject to it lying inside the endpoints of the
line that connects the children by at least pconnect people. Setting this option
to a large number will force the line to connect at the midpoint of the children.

branch defines how much angle is used to connect various levels of nuclear families.

aff_mark If TRUE, add a aff_mark to each box corresponding to the value of the affection
column for each filling scale.

id_lab The column name of the id for each individuals.

label If not NULL, add a label to each box under the id corresponding to the value of
the column given.

precision The number of decimal places to round the solution to.

lwd default=par("lwd"). Controls the line width of the segments, arcs and polygons.

tips A character vector of the column names of the data frame to use as tooltips. If
NULL, no tooltips are added.

Details

The data frame contains the following columns:

• x0, y0, x1, y1: coordinates of the elements

• type: type of the elements

• fill: fill color of the elements

• border: border color of the elements

• angle: angle of the shading of the elements

ped_ui 95

• density: density of the shading of the elements

• cex: size of the elements

• label: label of the elements

• tips: tips of the elements (used for the tooltips)

• adjx: horizontal text adjustment of the labels

• adjy: vertical text adjustment of the labels

All those columns are used by plot_fromdf() to plot the graph.

Value

A list containing the data frame and the user coordinates.

See Also

plot_fromdf() ped_to_legdf()

Examples

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == 1,])
plot_df <- ped_to_plotdf(ped1)
summary(plot_df$df)
plot_fromdf(plot_df$df, usr = plot_df$par_usr$usr,

boxh = plot_dfpar_usrboxh, boxw = plot_dfpar_usrboxw
)

ped_ui Create the user interface for the ped_shiny application

Description

Create the user interface for the ped_shiny application

Value

shiny::shinyUI()

Examples

if (interactive()) {
ped_shiny()

}

96 plot,Pedigree,missing-method

permute Generate all possible permutation

Description

Given a vector of length n, generate all possible permutations of the numbers 1 to n. This is a
recursive routine, and is not very efficient.

Usage

permute(x)

Arguments

x A vector of length n

Value

A matrix with n cols and n! rows

plot,Pedigree,missing-method

Plot Pedigrees

Description

This function is used to plot a Pedigree object.

It is a wrapper for plot_fromdf() and ped_to_plotdf() as well as ped_to_legdf() if legend =
TRUE.

Usage

S4 method for signature 'Pedigree,missing'
plot(
x,
aff_mark = TRUE,
id_lab = "id",
label = NULL,
ggplot_gen = FALSE,
cex = 1,
symbolsize = 1,
branch = 0.6,
packed = TRUE,
align = c(1.5, 2),
align_parents = TRUE,

plot,Pedigree,missing-method 97

force = FALSE,
width = 6,
title = NULL,
subreg = NULL,
pconnect = 0.5,
fam_to_plot = 1,
legend = FALSE,
leg_cex = 0.8,
leg_symbolsize = 0.5,
leg_loc = NULL,
leg_adjx = 0,
leg_adjy = 0,
precision = 2,
lwd = par("lwd"),
ped_par = list(),
leg_par = list(),
tips = NULL

)

Arguments

x A Pedigree object.

aff_mark If TRUE, add a aff_mark to each box corresponding to the value of the affection
column for each filling scale.

id_lab The column name of the id for each individuals.

label If not NULL, add a label to each box under the id corresponding to the value of
the column given.

ggplot_gen If TRUE add the segments to the ggplot object

cex Character expansion of the text

symbolsize Size of the symbols

branch defines how much angle is used to connect various levels of nuclear families.

packed Should the Pedigree be compressed. (i.e. allow diagonal lines connecting par-
ents to children in order to have a smaller overall width for the plot.)

align For a packed Pedigree, align children under parents TRUE, to the extent possible
given the page width, or align to to the left margin FALSE. This argument can
be a two element vector, giving the alignment parameters, or a logical value. If
TRUE, the default is c(1.5, 2), or if numeric the routine alignped4() will be
called.

align_parents If align_parents = TRUE, go one step further and try to make both parents of
each child have the same depth. (This is not always possible). It helps the
drawing program by lining up pedigrees that ’join in the middle’ via a marriage.

force If force = TRUE, the function will return the depth minus min(depth) if depth
reach a state with no founders is not possible.

width For a packed output, the minimum width of the plot, in inches.

title The title of the plot.

98 plot,Pedigree,missing-method

subreg A 4-element vector for (min x, max x, min depth, max depth), used to edit away
portions of the plot coordinates returned by ped_to_plotdf(). This is useful
for zooming in on a particular region of the Pedigree.

pconnect When connecting parent to children the program will try to make the connecting
line as close to vertical as possible, subject to it lying inside the endpoints of the
line that connects the children by at least pconnect people. Setting this option
to a large number will force the line to connect at the midpoint of the children.

fam_to_plot default=1. If the Pedigree contains multiple families, this parameter can be used
to select which family to plot. It can be a numeric value or a character value. If
numeric, it is the index of the family to plot returned by unique(xpedfamid).
If character, it is the family id to plot.

legend default=FALSE. If TRUE, a legend will be added to the plot.

leg_cex default=0.8. Controls the size of the legend text.

leg_symbolsize default=0.5. Controls the size of the legend symbols.

leg_loc default=NULL. If NULL, the legend will be placed in the upper right corner of
the plot. Otherwise, a 4-element vector of the form (x0, x1, y0, y1) can be used
to specify the location of the legend. The legend will be fitted to the specified
and might be distorted if the aspect ratio of the legend is different from the aspect
ratio of the specified location.

leg_adjx default=0. Controls the horizontal labels adjustment of the legend.

leg_adjy default=0. Controls the vertical labels adjustment of the legend.

precision The number of decimal places to round the solution to.

lwd default=par("lwd"). Controls the line width of the segments, arcs and polygons.

ped_par default=list(). A list of parameters to use as graphical parameteres for the main
plot.

leg_par default=list(). A list of parameters to use as graphical parameters for the legend.

tips A character vector of the column names of the data frame to use as tooltips. If
NULL, no tooltips are added.

Details

Two important parameters control the looks of the result. One is the user specified maximum width.
The smallest possible width is the maximum number of subjects on a line, if the user’s suggestion
is too low it is increased to 1 + that amount (to give just a little wiggle room).

To make a Pedigree where all children are centered under parents simply make the width large
enough, however, the symbols may get very small.

The second is align, a vector of 2 alignment parameters a and b. For each set of siblings at a set of
locations x and with parents at p=c(p1,p2) the alignment penalty is

(1/ka)
∑

i = 1k[(xi − (p1 + p2)/2)]2

∑
(x− (p))2/(ka)

plot_download_ui 99

Where k is the number of siblings in the set.

When a = 1 moving a sibship with k sibs one unit to the left or right of optimal will incur the same
cost as moving one with only 1 or two sibs out of place.

If a = 0 then large sibships are harder to move than small ones, with the default value a = 1.5 they
are slightly easier to move than small ones. The rationale for the default is as long as the parents are
somewhere between the first and last siblings the result looks fairly good, so we are more flexible
with the spacing of a large family. By tethering all the sibs to a single spot they are kept close to
each other. The alignment penalty for spouses is b(x1 − x2)

2, which tends to keep them together.
The size of b controls the relative importance of sib-parent and spouse-spouse closeness.

Value

an invisible list containing

• df : the data.frame used to plot the Pedigree

• par_usr : the user coordinates used to plot the Pedigree

• ggplot : the ggplot object if ggplot_gen = TRUE

Side Effects

Creates plot on current plotting device.

See Also

Pedigree()

Examples

data(sampleped)
pedAll <- Pedigree(sampleped)
if (interactive()) { plot(pedAll) }

plot_download_ui Shiny module to export plot

Description

This module allow to export multiple type of plot from a reactive object. The file type cur-
rently supported are png, pdf and html. The function is composed of two parts: the UI and the
server. The UI is called with the function plot_download_ui() and the server with the function
plot_download_server().

100 plot_fromdf

Usage

plot_download_ui(id)

plot_download_server(
id,
my_plot,
filename = "saveplot",
label = "Download",
width = 500,
height = 500,
ext = "png"

)

plot_download_demo()

Arguments

id A string.

my_plot Reactive object containing the plot.

filename A string to name the file.

label A string to name the download button.

width A numeric to set the width of the plot.

height A numeric to set the height of the plot.

ext A string to set the extension of the file.

Value

A shiny module to export a plot.

Examples

if (interactive()) {
plot_download_demo()

}

plot_fromdf Create a plot from a data.frame

Description

This function is used to create a plot from a data.frame.

If ggplot_gen = TRUE, the plot will be generated with ggplot2 and will be returned invisibly.

plot_fromdf 101

Usage

plot_fromdf(
df,
usr = NULL,
title = NULL,
ggplot_gen = FALSE,
boxw = 1,
boxh = 1,
add_to_existing = FALSE

)

Arguments

df A data.frame with the following columns:

• type: The type of element to plot. Can be text, segments, arc or other
polygons. For polygons, the name of the polygon must be in the form
poly_*_* where poly is one of the type given by polygons(), the first * is
the number of slice in the polygon and the second * is the position of the
division of the polygon.

• x0: The x coordinate of the center of the element.
• y0: The y coordinate of the center of the element.
• x1: The x coordinate of the end of the element. Only used for segments

and arc.
• y1: The y coordinate of the end of the element. Only used for segments

and arc.
• fill: The fill color of the element.
• border: The border color of the element.
• density: The density of the element.
• angle: The angle of the element.
• label: The label of the element. Only used for text.
• cex: The size of the element.
• adjx: The x adjustment of the element. Only used for text.
• adjy: The y adjustment of the element. Only used for text.

usr The user coordinates of the plot.

title The title of the plot.

ggplot_gen If TRUE add the segments to the ggplot object

boxw Width of the polygons elements

boxh Height of the polygons elements
add_to_existing

If TRUE, the plot will be added to the current plot.

Value

an invisible ggplot object and a plot on the current plotting device

102 plot_legend

Examples

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == 1,])
lst <- ped_to_plotdf(ped1)
if (interactive()) {

plot_fromdf(lstdf, lstpar_usr$usr,
boxw = lstpar_usrboxw, boxh = lstpar_usrboxh

)
}

plot_legend Plot legend

Description

Small internal function to be used for plotting a Pedigree object legend

Usage

plot_legend(
obj,
cex = 1,
boxw = 0.1,
boxh = 0.1,
adjx = 0,
adjy = 0,
leg_loc = c(0, 1, 0, 1),
add_to_existing = FALSE,
usr = NULL,
lwd = par("lwd")

)

Arguments

obj A Pedigree object

cex Character expansion of the text

boxw Width of the polygons elements

boxh Height of the polygons elements

adjx default=0. Controls the horizontal text adjustment of the labels in the legend.

adjy default=0. Controls the vertical text adjustment of the labels in the legend.

lwd default=par("lwd"). Controls the bordering line width of the elements in the
legend.

plot_legend_ui 103

Value

an invisible list containing

• df : the data.frame used to plot the Pedigree

• par_usr : the user coordinates used to plot the Pedigree

Side Effects

Creates plot on current plotting device.

plot_legend_ui Shiny module to generate pedigree graph legend.

Description

This module allows to plot the legend of a pedigree object. The function is composed of two parts:
the UI and the server. The UI is called with the function plot_legend_ui() and the server with
the function plot_legend_server().

Usage

plot_legend_ui(id, height = "400px")

plot_legend_server(
id,
pedi,
leg_loc = c(0, 1, 0, 1),
lwd = par("lwd"),
boxw = 0.1,
boxh = 0.1,
adjx = 0,
adjy = 0

)

plot_legend_demo(height = "400px", leg_loc = c(0.2, 0.8, 0.2, 0.6))

Arguments

id A string.

pedi A reactive pedigree object.

lwd default=par("lwd"). Controls the bordering line width of the elements in the
legend.

boxw Width of the polygons elements

boxh Height of the polygons elements

adjx default=0. Controls the horizontal text adjustment of the labels in the legend.

adjy default=0. Controls the vertical text adjustment of the labels in the legend.

104 plot_ped_ui

Value

A static UI with the legend.

Examples

if (interactive()) {
plot_legend_demo()

}

plot_ped_ui Shiny module to generate pedigree graph.

Description

This module allows to plot a pedigree object. The plot can be interactive. The function is composed
of two parts: the UI and the server. The UI is called with the function plot_ped_ui() and the
server with the function plot_ped_server().

Usage

plot_ped_ui(id)

plot_ped_server(
id,
pedi,
title,
precision = 2,
max_ind = 500,
lwd = par("lwd"),
tips = NULL

)

plot_ped_demo(pedi, precision = 2, max_ind = 500, tips = NULL)

Arguments

id A string.

pedi A reactive pedigree object.

title A string to name the plot.

precision An integer to set the precision of the plot.

max_ind An integer to set the maximum number of individuals to plot.

lwd default=par("lwd"). Controls the line width of the segments, arcs and polygons.

tips A character vector of the column names of the data frame to use as tooltips. If
NULL, no tooltips are added.

polyfun 105

Value

A reactive ggplot or the pedigree object.

Examples

if (interactive()) {
data("sampleped")
pedi <- shiny::reactive({

Pedigree(sampleped[sampleped$famid == "1",])
})
plot_ped_demo(pedi)

}

polyfun Polygonal element

Description

Create a list of x and y coordinates for a polygon with a given number of slices and a list of coordi-
nates for the polygon.

Usage

polyfun(nslice, coor)

Arguments

nslice Number of slices in the polygon

coor Element form which to generate the polygon containing x and y coordinates and
theta

Value

a list of x and y coordinates

Examples

polyfun(2, list(
x = c(-0.5, -0.5, 0.5, 0.5),
y = c(-0.5, 0.5, 0.5, -0.5),
theta = -c(3, 5, 7, 9) * pi / 4

))

106 read_data

polygons List of polygonal elements

Description

Create a list of polygonal elements with x, y coordinates and theta for the square, circle, diamond
and triangle. The number of slices in each element can be specified.

Usage

polygons(nslice = 1)

Arguments

nslice Number of slices in each element If nslice > 1, the elements are created with
polyfun().

Value

a list of polygonal elements with x, y coordinates and theta by slice.

Examples

polygons()
polygons(4)

read_data Read data from file path

Description

Read dataframe based on the extension of the file

Usage

read_data(
file,
sep = ";",
quote = "'",
header = TRUE,
df_name = NA,
strings_as_factors = FALSE,
to_char = TRUE,
na_values = c("", "NA", "NULL", "None")

)

Rel-class 107

Arguments

file The file path

sep A string defining the separator to use for the file

quote A string defining the quote to use

header A boolean defining if the dataframe contain a header or not

df_name A string defining the name of the dataframe / sheet to use
strings_as_factors

A boolean defining if all the strings should be interpreted ad factor

to_char A boolean defining if all the dataset should be read as character.

Details

This function detect the extension of the file and proceed to use the according function to read it
with the parameters given by the user.

Value

A dataframe.

Examples

Not run:
read_data('path/to/my/file.txt', sep=',', header=FALSE)

End(Not run)

Rel-class Rel object

Description

S4 class to represent the special relationships in a Pedigree.

Constructor ::
You either need to provide a vector of the same size for each slot or a data.frame with the
corresponding columns.

Usage

S4 method for signature 'data.frame'
Rel(obj)

S4 method for signature 'character_OR_integer'
Rel(obj, id2, code, famid = NA_character_)

108 Rel-class

Arguments

obj A character vector with the id of the first individuals of each pairs or a data.frame
with all the informations in corresponding columns.

id2 A character vector with the id of the second individuals of each pairs

code A character, factor or numeric vector corresponding to the relation code of the
individuals:

• MZ twin = Monozygotic twin
• DZ twin = Dizygotic twin
• UZ twin = twin of unknown zygosity
• Spouse = Spouse The following values are recognized:
• character() or factor() : "MZ twin", "DZ twin", "UZ twin", "Spouse" with

of without space between the words. The case is not important.
• numeric() : 1 = "MZ twin", 2 = "DZ twin", 3 = "UZ twin", 4 = "Spouse"

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

Details

A Rel object is a list of special relationships between individuals in the pedigree. It is used to create
a Pedigree object. The minimal needed informations are id1, id2 and code.

If a famid is provided, the individuals id will be aggregated to the famid character to ensure the
uniqueness of the id.

Value

A Rel object.

Slots

id1 A character vector with the id of the first individual.

id2 A character vector with the id of the second individual.

code An ordered factor vector with the code of the special relationship.
(i.e. MZ twin < DZ twin < UZ twin < Spouse).

famid A character vector with the famid of the individuals.

Accessors

For all the following accessors, the x parameters is a Rel object. Each getters return a vector of the
same length as x with the values of the corresponding slot.

• code(x) : Relationships’ code

• id1(x) : Relationships’ first individuals’ identifier

• id2(x) : Relationships’ second individuals’ identifier

relped 109

• famid(x) : Relationships’ individuals’ family identifier

• famid(x) <- value : Set the relationships’ individuals’ family identifier

– value : A character or integer vector of the same length as x with the family identifiers

Generics

• summary(x): Compute the summary of a Rel object

• show(x): Convert the Rel object to a data.frame and print it with its summary.

• as.list(x): Convert a Rel object to a list

• as.data.frame(x): Convert a Rel object to a data.frame

• subset(x, i, keep = TRUE): Subset a Rel object based on the individuals identifiers given.

– i : A vector of individuals identifiers to keep.
– keep : A logical value indicating if the individuals should be kept or deleted.

See Also

Pedigree()

Examples

rel_df <- data.frame(
id1 = c("1", "2", "3"),
id2 = c("2", "3", "4"),
code = c(1, 2, 3)

)
Rel(rel_df)

Rel(
obj = c("1", "2", "3"),
id2 = c("2", "3", "4"),
code = c(1, 2, 3)

)

relped Relped data

Description

Small set of related individuals for testing purposes.

Usage

data("relped")

110 rel_code_to_factor

Format

The dataframe is composed of 4 columns:

• id1 : the first individual identifier,
• id2 : the second individual identifier,
• code : the relationship between the two individuals,
• famid : the family identifier. The relationship codes are:
• 1 for Monozygotic twin
• 2 for Dizygotic twin
• 3 for Twin of unknown zygosity
• 4 for Spouse relationship

Details

This is a small fictive data set of relation that accompanies the sampleped data set. The aim was
to create a data set with a variety of relationships. There is 8 relations with 4 different types of
relationships.

Examples

data("relped")
data("sampleped")
pedi <- Pedigree(sampleped, relped)
summary(pedi)
if (interactive()) { plot(pedi) }

rel_code_to_factor Relationship code variable to ordered factor

Description

Relationship code variable to ordered factor

Usage

rel_code_to_factor(code)

Arguments

code A character, factor or numeric vector corresponding to the relation code of the
individuals:

• MZ twin = Monozygotic twin
• DZ twin = Dizygotic twin
• UZ twin = twin of unknown zygosity
• Spouse = Spouse The following values are recognized:
• character() or factor() : "MZ twin", "DZ twin", "UZ twin", "Spouse" with

of without space between the words. The case is not important.
• numeric() : 1 = "MZ twin", 2 = "DZ twin", 3 = "UZ twin", 4 = "Spouse"

sampleped 111

Value

an ordered factor vector containing the transformed variable "MZ twin" < "DZ twin" < "UZ twin"
< "Spouse"

Examples

rel_code_to_factor(c(1, 2, 3, 4, "MZ twin", "DZ twin", "UZ twin", "Spouse"))

sampleped Sampleped data

Description

Small sample pedigree data set for testing purposes.

Usage

data("sampleped")

Format

A data frame with 55 observations, one line per subject, on the following 7 variables.

• famid : Family identifier

• id : Subject identifier

• dadid : Identifier of the father, if the father is part of the data set; zero otherwise

• momid : Identifier of the mother, if the mother is part of the data set; zero otherwise

• sex : 1 for male or 2 for female

• affected : 1 or 0

• avail : 1 or 0

• num : Numerical test variable from 0 to 6 randomly distributed

Details

This is a small fictive pedigree data set, with 55 individuals in 2 families. The aim was to create a
data set with a variety of pedigree structures.

Examples

data("sampleped")
pedi <- Pedigree(sampleped)
summary(pedi)
if (interactive()) { plot(pedi) }

112 Scales-class

Scales-class Scales object

Description

A Scales object is a list of two data.frame. The first one is used to represent the affection status
of the individuals and therefore the filling of the individuals in the pedigree plot. The second one
is used to represent the availability status of the individuals and therefore the border color of the
individuals in the pedigree plot.

Constructor ::
You need to provide both fill and border in the dedicated parameters. However this is usually
done using the generate_colors() function with a Pedigree object.

Usage

Scales(fill, border)

S4 method for signature 'data.frame,data.frame'
Scales(fill, border)

Arguments

fill A data.frame with the informations for the affection status. The columns needed
are:

• ’order’: the order of the affection to be used
• ’column_values’: name of the column containing the raw values in the Ped

object
• ’column_mods’: name of the column containing the mods of the trans-

formed values in the Ped object
• ’mods’: all the different mods
• ’labels’: the corresponding labels of each mods
• ’affected’: a logical value indicating if the mod correspond to an affected

individuals
• ’fill’: the color to use for this mods
• ’density’: the density of the shading
• ’angle’: the angle of the shading

border A data.frame with the informations for the availability status. The columns
needed are:

• ’column_values’: name of the column containing the raw values in the Ped
object

• ’column_mods’: name of the column containing the mods of the trans-
formed values in the Ped object

• ’mods’: all the different mods
• ’labels’: the corresponding labels of each mods
• ’border’: the color to use for this mods

Scales-class 113

Value

A Scales object.

Slots

fill A data.frame with the informations for the affection status. The columns needed are:

• ’order’: the order of the affection to be used
• ’column_values’: name of the column containing the raw values in the Ped object
• ’column_mods’: name of the column containing the mods of the transformed values in

the Ped object
• ’mods’: all the different mods
• ’labels’: the corresponding labels of each mods
• ’affected’: a logical value indicating if the mod correspond to an affected individuals
• ’fill’: the color to use for this mods
• ’density’: the density of the shading
• ’angle’: the angle of the shading

border A data.frame with the informations for the availability status. The columns needed are:

• ’column_values’: name of the column containing the raw values in the Ped object
• ’column_mods’: name of the column containing the mods of the transformed values in

the Ped object
• ’mods’: all the different mods
• ’labels’: the corresponding labels of each mods
• ’border’: the color to use for this mods

Accessors

• fill(x) : Get the fill data.frame

• fill(x) <- value : Set the fill data.frame

• border(x) : Get the border data.frame

• border(x) <- value : Set the border data.frame from the Scales object.

Generics

• as.list(x): Convert a Scales object to a list

See Also

Pedigree()

generate_colors()

114 set_plot_area

Examples

Scales(
fill = data.frame(

order = 1,
column_values = "affected",
column_mods = "affected_mods",
mods = c(0, 1),
labels = c("unaffected", "affected"),
affected = c(FALSE, TRUE),
fill = c("white", "red"),
density = c(NA, 20),
angle = c(NA, 45)

),
border = data.frame(

column_values = "avail",
column_mods = "avail_mods",
mods = c(0, 1),
labels = c("not available", "available"),
border = c("black", "blue")

)
)

set_plot_area Set plotting area

Description

Set plotting area

Usage

set_plot_area(cex, id, maxlev, xrange, symbolsize, precision = 3, ...)

Arguments

cex Character expansion of the text

id A character vector with the identifiers of each individuals

maxlev Maximum level

xrange Range of x values

symbolsize Size of the symbols

precision The number of significant digits to round the solution to.

... Other arguments passed to par()

Value

List of user coordinates, old par, box width, box height, label height and leg height

sex_to_factor 115

sex_to_factor Gender variable to ordered factor

Description

Gender variable to ordered factor

Usage

sex_to_factor(sex)

Arguments

sex A character, factor or numeric vector corresponding to the gender of the indi-
viduals. This will be transformed to an ordered factor with the following levels:
male < female < unknown < terminated The following values are recognized:

• character() or factor() : "f", "m", "woman", "man", "male", "female", "un-
known", "terminated"

• numeric() : 1 = "male", 2 = "female", 3 = "unknown", 4 = "terminated"

Value

an ordered factor vector containing the transformed variable "male" < "female" < "unknown" <
"terminated"

Examples

sex_to_factor(c(1, 2, 3, 4, "f", "m", "man", "female"))

shift Shift set of siblings to the left or right

Description

Shift set of siblings to the left or right

Usage

shift(id, sibs, goleft, hint, twinrel, twinset)

116 shrink

Arguments

id The id of the subject to be shifted

sibs The ids of the siblings

goleft If TRUE, shift to the left, otherwise to the right

hint The current hint vector

twinrel The twin relationship matrix

twinset The twinset vector

Details

This routine is used by auto_hint(). It shifts a set of siblings to the left or right, so that the
marriage is on the edge of the set of siblings, closest to the spouse. It also shifts the subject himself,
so that he is on the edge of the set of siblings, closest to the spouse. It also shifts the monozygotic
twins, if any, so that they are together within the set of twins.

Value

The updated hint vector

See Also

auto_hint()

shrink Shrink Pedigree object

Description

Shrink Pedigree object to specified bit size with priority placed on trimming uninformative sub-
jects. The algorithm is useful for getting a Pedigree condensed to a minimally informative size for
algorithms or testing that are limited by size of the Pedigree.

If avail or affected are NULL, they are extracted with their corresponding accessors from the Ped
object.

Usage

S4 method for signature 'Pedigree'
shrink(obj, avail = NULL, affected = NULL, max_bits = 16)

S4 method for signature 'Ped'
shrink(obj, avail = NULL, affected = NULL, max_bits = 16)

shrink 117

Arguments

obj A Pedigree or Ped object.
avail A logical vector with the availability status of the individuals (i.e. FALSE = not

available, TRUE = available, NA = unknown).
affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-

fected, TRUE = affected, NA = unknown).
max_bits Optional, the bit size for which to shrink the Pedigree

Details

Iteratively remove subjects from the Pedigree. The random removal of members was previously
controlled by a seed argument, but we remove this, forcing users to control randomness outside the
function. First remove uninformative subjects, i.e., unavailable (not genotyped) with no available
descendants. Next, available terminal subjects with unknown phenotype if both parents available.
Last, iteratively shrinks Pedigrees by preferentially removing individuals (chosen at random if there
are multiple of the same status):

1. Subjects with unknown affected status
2. Subjects with unaffected affected status
3. Affected subjects.

Value

A list containing the following elements:

• pedObj: Pedigree object after trimming
• id_trim: Vector of ids trimmed from Pedigree
• id_lst: List of ids trimmed by category
• bit_size: Vector of bit sizes after each trimming step
• avail: Vector of availability status after trimming
• pedSizeOriginal: Number of subjects in original Pedigree
• pedSizeIntermed: Number of subjects after initial trimming
• pedSizeFinal: Number of subjects after final trimming

Author(s)

Original by Dan Schaid, updated by Jason Sinnwell and Louis Le Nézet

See Also

Pedigree(), bit_size()

Examples

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == '1',])
shrink(ped1, max_bits = 12)

118 subregion

sketch Sketch of the family information table

Description

Simple function to create a sketch of the family information table.

Usage

sketch(var_name)

Arguments

var_name the name of the health variable

Value

An html sketch of the family information table

subregion Subset a region of a Pedigree

Description

Subset a region of a Pedigree

Usage

subregion(df, subreg = NULL)

Arguments

df A data frame with all the plot coordinates

subreg A 4-element vector for (min x, max x, min depth, max depth), used to edit away
portions of the plot coordinates returned by ped_to_plotdf(). This is useful
for zooming in on a particular region of the Pedigree.

Value

A subset of the plot coordinates

unrelated 119

unrelated Find Unrelated subjects

Description

Determine set of maximum number of unrelated available subjects from a Pedigree.

Usage

S4 method for signature 'Ped'
unrelated(obj, avail = NULL)

S4 method for signature 'Pedigree'
unrelated(obj, avail = NULL)

Arguments

obj A Pedigree or Ped object.

avail A logical vector with the availability status of the individuals (i.e. FALSE = not
available, TRUE = available, NA = unknown).

Details

Determine set of maximum number of unrelated available subjects from a Pedigree, given vectors
id, father, and mother for a Pedigree structure, and status vector of TRUE / FALSE for whether each
subject is available (e.g. has DNA).

This is a greedy algorithm that uses the kinship matrix, sequentially removing rows/cols that are
non-zero for subjects that have the most number of zero kinship coefficients (greedy by choosing
a row of kinship matrix that has the most number of zeros, and then remove any cols and their
corresponding rows that are non-zero. To account for ties of the count of zeros for rows, a random
choice is made. Hence, running this function multiple times can return different sets of unrelated
subjects.

If avail is NULL, it is extracted with its corresponding accessor from the Ped object.

Value

A vector of the ids of subjects that are unrelated.

Author(s)

Dan Schaid and Shannon McDonnell updated by Jason Sinnwell

120 upd_famid

Examples

data(sampleped)
fam1 <- sampleped[sampleped$famid == 1,]
ped1 <- Pedigree(fam1)
unrelated(ped1)
some possible vectors
[1] '110' '113' '133' '109'
[1] '113' '118' '141' '109'
[1] '113' '118' '140' '109'
[1] '110' '113' '116' '109'
[1] '113' '133' '141' '109'

upd_famid Update family prefix in individuals id

Description

Update the family prefix in the individuals identifiers. Individuals identifiers are constructed as
follow famid_id. Therefore to update their family prefix the ids are split by the first underscore and
the first part is overwritten by famid.

Usage

S4 method for signature 'character,ANY'
upd_famid(obj, famid, missid = NA_character_)

S4 method for signature 'Ped,character_OR_integer'
upd_famid(obj, famid)

S4 method for signature 'Ped,missing'
upd_famid(obj)

S4 method for signature 'Rel,character_OR_integer'
upd_famid(obj, famid)

S4 method for signature 'Rel,missing'
upd_famid(obj)

S4 method for signature 'Pedigree,character_OR_integer'
upd_famid(obj, famid)

S4 method for signature 'Pedigree,missing'
upd_famid(obj)

useful_inds 121

Arguments

obj Ped or Pedigree object or a character vector of individual ids

famid A character vector with the family identifiers of the individuals. If provide, will
be aggregated to the individuals identifiers separated by an underscore.

missid A character vector with the missing values identifiers. All the id, dadid and
momid corresponding to those values will be set to NA_character_.

Details

If famid is missing, then the famid() function will be called on the object.

Value

A character vector of individual ids with family prefix updated

Examples

upd_famid(c("1", "2", "B_3"), c("A", "B", "A"))
upd_famid(c("1", "B_2", "C_3", "4"), c("A", NA, "A", NA))

data(sampleped)
ped1 <- Pedigree(sampleped[,-1])
id(ped(ped1))
new_fam <- make_famid(id(ped(ped1)), dadid(ped(ped1)), momid(ped(ped1)))
id(ped(upd_famid(ped1, new_fam)))

data(sampleped)
ped1 <- Pedigree(sampleped[,-1])
make_famid(ped1)

useful_inds Usefulness of individuals

Description

Compute the usefulness of individuals

Usage

S4 method for signature 'character'
useful_inds(
obj,
dadid,
momid,
avail,
affected,
num_child_tot,

122 useful_inds

id_inf,
keep_infos = FALSE

)

S4 method for signature 'Pedigree'
useful_inds(
obj,
informative = "AvAf",
keep_infos = FALSE,
reset = FALSE,
max_dist = NULL

)

S4 method for signature 'Ped'
useful_inds(
obj,
informative = "AvAf",
keep_infos = FALSE,
reset = FALSE,
max_dist = NULL

)

Arguments

obj A character vector with the id of the individuals or a data.frame with all the
informations in corresponding columns.

dadid A vector containing for each subject, the identifiers of the biologicals fathers.
momid A vector containing for each subject, the identifiers of the biologicals mothers.
avail A logical vector with the availability status of the individuals (i.e. FALSE = not

available, TRUE = available, NA = unknown).
affected A logical vector with the affection status of the individuals (i.e. FALSE = unaf-

fected, TRUE = affected, NA = unknown).
num_child_tot A numeric vector of the number of children of each individuals
id_inf An identifiers vector of informative individuals.
keep_infos Boolean to indicate if parents with unknown status but available or reverse

should be kept
informative Informative individuals selection can take 5 values:

• ’AvAf’ (available and affected),
• ’AvOrAf’ (available or affected),
• ’Av’ (available only),
• ’Af’ (affected only),
• ’All’ (all individuals)
• A numeric/character vector of individuals id
• A boolean

reset Boolean to indicate if the useful column should be reset
max_dist The maximum distance to informative individuals

vect_to_binary 123

Details

Check for the informativeness of the individuals based on the informative parameter given, the
number of children and the usefulness of their parents. A useful slot is added to the Ped object
with the usefulness of the individual.

Value

When obj is a vector:
A vector of useful individuals identifiers

When obj is a Pedigree or Ped object:
The Pedigree or Ped object with the slot ’useful’ containing TRUE for useful individuals and FALSE
otherwise.

Examples

data(sampleped)
ped1 <- Pedigree(sampleped[sampleped$famid == "1",])
ped(useful_inds(ped1, informative = "AvAf"))

vect_to_binary Vector variable to binary vector

Description

Transform a vector to a binary vector. All values that are not 0, 1, TRUE, FALSE, or NA are transformed
to NA.

Usage

vect_to_binary(vect, logical = FALSE)

Arguments

vect A character, factor, logical or numeric vector corresponding to a binary variable
(i.e. 0 or 1). The following values are recognized:

• character() or factor() : "TRUE", "FALSE", "0", "1", "NA" will be respec-
tively transformed to 1, 0, 0, 1, NA. Spaces and case are ignored. All other
values will be transformed to NA.

• numeric() : 0 and 1 are kept, all other values are transformed to NA.
• logical() : TRUE and FALSE are tansformed to 1 and0.

logical Boolean defining if the output should be a logical vector instead of a numeric
vector (i.e. 0 and 1 becomes FALSE and ‘TRUE).

Value

numeric binary vector of the same size as vect with 0 and 1

124 vect_to_binary

Examples

vect_to_binary(
c(0, 1, 2, 3.6, "TRUE", "FALSE", "0", "1", "NA", "B", TRUE, FALSE, NA)

)

Index

∗ Pedigree-plot
circfun, 22
draw_arc, 27
draw_polygon, 28
draw_segment, 29
draw_text, 30
ped_to_legdf, 92
ped_to_plotdf, 93
plot,Pedigree,missing-method, 96
plot_fromdf, 100
polyfun, 105
polygons, 106
set_plot_area, 114
subregion, 118

∗ alignment,
auto_hint, 16
best_hint, 17

∗ alignment
alignped1, 8
alignped2, 10
alignped3, 11
alignped4, 13

∗ auto_hint
auto_hint, 16
best_hint, 17
duporder, 31
findsibs, 36
findspouse, 37
get_twin_rel, 52
permute, 96
shift, 115

∗ data_import,
get_dataframe, 49
read_data, 106

∗ datasets
minnbreast, 70
relped, 109
sampleped, 111

∗ data

data_import_ui, 26
∗ generate_scales,

generate_aff_inds, 42
∗ generate_scales

generate_border, 44
generate_colors, 45
generate_fill, 47

∗ internal,
alignped1, 8
alignped2, 10
alignped3, 11
alignped4, 13
auto_hint, 16
find_avail_affected, 38
find_avail_noninform, 39
find_unavailable, 40
ped_to_legdf, 92
ped_to_plotdf, 93
plot_fromdf, 100

∗ internal
ancestors, 14
anchor_to_factor, 15
check_columns, 19
check_num_na, 21
check_slot_fd, 21
check_values, 22
circfun, 22
color_picker_ui, 23
create_text_column, 23
data_col_sel_ui, 24
data_download_ui, 25
data_import_ui, 26
descendants, 27
draw_arc, 27
draw_polygon, 28
draw_segment, 29
draw_text, 30
duporder, 31
exclude_stray_marryin, 32

125

126 INDEX

exclude_unavail_founders, 32
family_check, 33
family_sel_ui, 35
findsibs, 36
findspouse, 37
generate_aff_inds, 42
generate_border, 44
generate_fill, 47
get_dataframe, 49
get_famid, 50
get_families_table, 50
get_title, 51
get_twin_rel, 52
health_sel_ui, 53
inf_sel_ui, 57
is_disconnected, 58
is_founder, 58
is_valid_hints, 61
is_valid_ped, 62
is_valid_pedigree, 63
is_valid_rel, 63
is_valid_scales, 64
make_class_info, 68
make_rownames, 69
na_to_length, 73
paste0max, 79
ped_avaf_infos_ui, 89
ped_server, 90
ped_ui, 95
permute, 96
plot_download_ui, 99
plot_legend, 102
plot_legend_ui, 103
plot_ped_ui, 104
polyfun, 105
polygons, 106
read_data, 106
rel_code_to_factor, 110
set_plot_area, 114
sex_to_factor, 115
shift, 115
sketch, 118
subregion, 118
vect_to_binary, 123

∗ ped_avaf_infos
family_infos_table, 35
sketch, 118

∗ plot_legend

plot_legend, 102
∗ shrink

bit_size, 18
exclude_stray_marryin, 32
exclude_unavail_founders, 32
find_avail_affected, 38
find_avail_noninform, 39
find_unavailable, 40
shrink, 116
useful_inds, 121

[,Pedigree,ANY,missing,ANY-method
(Pedigree-class), 84

affected (Ped-class), 80
affected,Ped-method (Ped-class), 80
affected<- (Ped-class), 80
affected<-,Ped,numeric_OR_logical-method

(Ped-class), 80
align, 6
align(), 9, 11, 12, 14, 15, 17, 18, 31, 36, 37,

66
align,Pedigree-method (align), 6
alignped1, 8
alignped1(), 7
alignped2, 10
alignped2(), 7, 9
alignped3, 11
alignped3(), 7
alignped4, 13
alignped4(), 7
ancestors, 14
anchor_to_factor, 15
as.data.frame,Ped-method (Ped-class), 80
as.data.frame,Rel-method (Rel-class),

107
as.list,Hints-method (Hints-class), 54
as.list,Ped-method (Ped-class), 80
as.list,Pedigree-method

(Pedigree-class), 84
as.list,Rel-method (Rel-class), 107
as.list,Scales-method (Scales-class),

112
auto_hint, 16
auto_hint(), 7, 17, 18, 31, 37, 52, 116
auto_hint,Pedigree-method (auto_hint),

16
avail (Ped-class), 80
avail,Ped-method (Ped-class), 80
avail<- (Ped-class), 80

INDEX 127

avail<-,Ped,numeric_OR_logical-method
(Ped-class), 80

best_hint, 17
best_hint(), 17
best_hint,Pedigree-method (best_hint),

17
bit_size, 18
bit_size(), 5, 117
bit_size,character_OR_integer-method

(bit_size), 18
bit_size,Ped-method (bit_size), 18
bit_size,Pedigree-method (bit_size), 18
border (Scales-class), 112
border,Pedigree-method

(Pedigree-class), 84
border,Scales-method (Scales-class), 112
border<- (Scales-class), 112
border<-,Pedigree,data.frame-method

(Pedigree-class), 84
border<-,Scales,data.frame-method

(Scales-class), 112

check_columns, 19
check_num_na, 21
check_slot_fd, 21
check_values, 22
circfun, 22
code (Rel-class), 107
code,Rel-method (Rel-class), 107
color_picker_demo (color_picker_ui), 23
color_picker_server (color_picker_ui),

23
color_picker_ui, 23
create_text_column, 23

dadid (Ped-class), 80
dadid,Ped-method (Ped-class), 80
dadid<- (Ped-class), 80
dadid<-,Ped,character_OR_integer-method

(Ped-class), 80
data_col_sel_demo (data_col_sel_ui), 24
data_col_sel_server (data_col_sel_ui),

24
data_col_sel_ui, 24
data_download_demo (data_download_ui),

25
data_download_server

(data_download_ui), 25

data_download_ui, 25
data_import_demo (data_import_ui), 26
data_import_server (data_import_ui), 26
data_import_ui, 26
descendants, 27
descendants,character_OR_integer,character_OR_integer-method

(descendants), 27
descendants,character_OR_integer,Ped-method

(descendants), 27
descendants,character_OR_integer,Pedigree-method

(descendants), 27
draw_arc, 27
draw_polygon, 28
draw_segment, 29
draw_text, 30
duporder, 31

exclude_stray_marryin, 32
exclude_stray_marryin(), 40
exclude_unavail_founders, 32
exclude_unavail_founders(), 40

famid (Ped-class), 80
famid,Ped-method (Ped-class), 80
famid,Rel-method (Rel-class), 107
famid<- (Ped-class), 80
famid<-,Ped,character_OR_integer-method

(Ped-class), 80
famid<-,Rel,character_OR_integer-method

(Rel-class), 107
family_check, 33
family_check,character_OR_integer-method

(family_check), 33
family_check,Ped-method (family_check),

33
family_check,Pedigree-method

(family_check), 33
family_infos_table, 35
family_sel_demo (family_sel_ui), 35
family_sel_server (family_sel_ui), 35
family_sel_ui, 35
fill (Scales-class), 112
fill,Pedigree-method (Pedigree-class),

84
fill,Scales-method (Scales-class), 112
fill<- (Scales-class), 112
fill<-,Pedigree,data.frame-method

(Pedigree-class), 84

128 INDEX

fill<-,Scales,data.frame-method
(Scales-class), 112

find_avail_affected, 38
find_avail_affected,Ped-method

(find_avail_affected), 38
find_avail_affected,Pedigree-method

(find_avail_affected), 38
find_avail_noninform, 39
find_avail_noninform,Ped-method

(find_avail_noninform), 39
find_avail_noninform,Pedigree-method

(find_avail_noninform), 39
find_unavailable, 40
find_unavailable,Ped-method

(find_unavailable), 40
find_unavailable,Pedigree-method

(find_unavailable), 40
findsibs, 36
findspouse, 37
fix_parents, 41
fix_parents,character-method

(fix_parents), 41
fix_parents,data.frame-method

(fix_parents), 41

generate_aff_inds, 42
generate_border, 44
generate_border(), 47
generate_colors, 45, 85
generate_colors(), 112, 113
generate_colors,character-method

(generate_colors), 45
generate_colors,numeric-method

(generate_colors), 45
generate_colors,Pedigree-method

(generate_colors), 45
generate_fill, 47
get_dataframe, 49
get_famid, 50
get_famid,character-method (get_famid),

50
get_families_table, 50
get_title, 51
get_twin_rel, 52
grDevices::colorRampPalette(), 48

health_sel_demo (health_sel_ui), 53
health_sel_server (health_sel_ui), 53
health_sel_ui, 53

Hints, 16, 17
Hints (Hints-class), 54
hints (Pedigree-class), 84
Hints(), 87, 88
Hints,Hints,missing_OR_NULL-method

(Hints-class), 54
Hints,list,missing_OR_NULL-method

(Hints-class), 54
Hints,missing_OR_NULL,missing_OR_NULL-method

(Hints-class), 54
Hints,numeric,data.frame-method

(Hints-class), 54
Hints,numeric,missing_OR_NULL-method

(Hints-class), 54
hints,Pedigree-method (Pedigree-class),

84
Hints-class, 54
hints<- (Pedigree-class), 84
hints<-,Pedigree,Hints-method

(Pedigree-class), 84
horder (Hints-class), 54
horder,Hints-method (Hints-class), 54
horder,Pedigree-method

(Pedigree-class), 84
horder<- (Hints-class), 54
horder<-,Hints-method (Hints-class), 54
horder<-,Pedigree-method

(Pedigree-class), 84

ibd_matrix, 56
id (Ped-class), 80
id,Ped-method (Ped-class), 80
id1 (Rel-class), 107
id1,Rel-method (Rel-class), 107
id2 (Rel-class), 107
id2,Rel-method (Rel-class), 107
id<- (Ped-class), 80
id<-,Ped,character_OR_integer-method

(Ped-class), 80
inf_sel_demo (inf_sel_ui), 57
inf_sel_server (inf_sel_ui), 57
inf_sel_ui, 57
is_disconnected, 58
is_founder, 58
is_informative, 59
is_informative,character_OR_integer-method

(is_informative), 59
is_informative,Ped-method

(is_informative), 59

INDEX 129

is_informative,Pedigree-method
(is_informative), 59

is_parent, 61
is_parent,character_OR_integer-method

(is_parent), 61
is_parent,Ped-method (is_parent), 61
is_valid_hints, 61
is_valid_ped, 62
is_valid_pedigree, 63
is_valid_rel, 63
is_valid_scales, 64
isinf (Ped-class), 80
isinf,Ped-method (Ped-class), 80
isinf<- (Ped-class), 80
isinf<-,Ped,numeric_OR_logical-method

(Ped-class), 80

kin (Ped-class), 80
kin,Ped-method (Ped-class), 80
kin<- (Ped-class), 80
kin<-,Ped,numeric-method (Ped-class), 80
kindepth, 65
kindepth(), 67
kindepth,character_OR_integer-method

(kindepth), 65
kindepth,Ped-method (kindepth), 65
kindepth,Pedigree-method (kindepth), 65
kinship, 66
kinship(), 5, 57, 69, 73
kinship,character-method (kinship), 66
kinship,Ped-method (kinship), 66
kinship,Pedigree-method (kinship), 66

length,Pedigree-method
(Pedigree-class), 84

make_class_info, 68
make_famid, 68
make_famid(), 34, 67
make_famid,character-method

(make_famid), 68
make_famid,Pedigree-method

(make_famid), 68
make_rownames, 69
mcols,Pedigree-method (Pedigree-class),

84
mcols<-,Ped,data.frame-method

(Ped-class), 80
mcols<-,Ped,list-method (Ped-class), 80

mcols<-,Pedigree,ANY-method
(Pedigree-class), 84

min_dist_inf, 72
min_dist_inf,character-method

(min_dist_inf), 72
min_dist_inf,Ped-method (min_dist_inf),

72
min_dist_inf,Pedigree-method

(min_dist_inf), 72
minnbreast, 70
minnbreast(), 5
momid (Ped-class), 80
momid,Ped-method (Ped-class), 80
momid<- (Ped-class), 80
momid<-,Ped,character_OR_integer-method

(Ped-class), 80

na_to_length, 73
norm_ped, 74
norm_rel, 76
num_child, 77
num_child,character_OR_integer-method

(num_child), 77
num_child,Pedigree-method (num_child),

77

par(), 94, 114
parent_of, 79
parent_of,character_OR_integer-method

(parent_of), 79
parent_of,Ped-method (parent_of), 79
parent_of,Pedigree-method (parent_of),

79
paste0max, 79
Ped, 75
Ped (Ped-class), 80
ped (Pedigree-class), 84
Ped(), 75, 85, 87, 88
Ped,character_OR_integer-method

(Ped-class), 80
Ped,data.frame-method (Ped-class), 80
Ped,missing-method (Ped-class), 80
ped,Pedigree,ANY-method

(Pedigree-class), 84
ped,Pedigree,missing-method

(Pedigree-class), 84
Ped-class, 80
ped<- (Pedigree-class), 84

130 INDEX

ped<-,Pedigree,ANY,ANY-method
(Pedigree-class), 84

ped<-,Pedigree,missing,Ped-method
(Pedigree-class), 84

ped_avaf_infos_demo
(ped_avaf_infos_ui), 89

ped_avaf_infos_server
(ped_avaf_infos_ui), 89

ped_avaf_infos_ui, 89
ped_server, 90
ped_shiny, 90
ped_to_legdf, 92
ped_to_legdf(), 5, 95, 96
ped_to_legdf,Pedigree-method

(ped_to_legdf), 92
ped_to_plotdf, 93
ped_to_plotdf(), 7, 96, 98, 118
ped_to_plotdf,Pedigree-method

(ped_to_plotdf), 93
ped_ui, 95
Pedigree (Pedigree-class), 84
Pedigree(), 5, 55, 75, 83, 88, 99, 109, 113,

117
Pedigree,character_OR_integer-method

(Pedigree-class), 84
Pedigree,data.frame-method

(Pedigree-class), 84
Pedigree,missing-method

(Pedigree-class), 84
Pedigree-class, 84
Pedixplorer (Pedixplorer-package), 5
Pedixplorer-package, 5
permute, 96
plot(), 5
plot,Pedigree

(plot,Pedigree,missing-method),
96

plot,Pedigree,missing-method, 96
plot.Pedigree

(plot,Pedigree,missing-method),
96

plot_download_demo (plot_download_ui),
99

plot_download_server
(plot_download_ui), 99

plot_download_ui, 99
plot_fromdf, 100
plot_fromdf(), 5, 92, 93, 95, 96

plot_legend, 102
plot_legend_demo (plot_legend_ui), 103
plot_legend_server (plot_legend_ui), 103
plot_legend_ui, 103
plot_ped_demo (plot_ped_ui), 104
plot_ped_server (plot_ped_ui), 104
plot_ped_ui, 104
polyfun, 105
polyfun(), 106
polygons, 106
polygons(), 101

read_data, 106
Rel (Rel-class), 107
rel (Pedigree-class), 84
Rel(), 76, 77, 85, 87, 88
Rel,character_OR_integer-method

(Rel-class), 107
Rel,data.frame-method (Rel-class), 107
Rel,missing-method (Rel-class), 107
rel,Pedigree,ANY-method

(Pedigree-class), 84
rel,Pedigree,missing-method

(Pedigree-class), 84
Rel-class, 107
rel<- (Pedigree-class), 84
rel<-,Pedigree,ANY,ANY-method

(Pedigree-class), 84
rel<-,Pedigree,missing,Rel-method

(Pedigree-class), 84
rel_code_to_factor, 110
rel_code_to_factor(), 76, 78, 86
relped, 109

sampleped, 111
sampleped(), 5
Scales (Scales-class), 112
scales (Pedigree-class), 84
Scales(), 87, 88
Scales,data.frame,data.frame-method

(Scales-class), 112
Scales,missing,missing-method

(Scales-class), 112
scales,Pedigree-method

(Pedigree-class), 84
Scales-class, 112
scales<- (Pedigree-class), 84
scales<-,Pedigree,Scales-method

(Pedigree-class), 84

INDEX 131

set_plot_area, 114
sex (Ped-class), 80
sex,Ped-method (Ped-class), 80
sex<- (Ped-class), 80
sex<-,Ped,character_OR_integer-method

(Ped-class), 80
sex_to_factor, 115
shift, 115
show,Ped-method (Ped-class), 80
show,Pedigree-method (Pedigree-class),

84
show,Rel-method (Rel-class), 107
shrink, 116
shrink(), 5, 19, 32, 33, 38–40
shrink,Ped-method (shrink), 116
shrink,Pedigree-method (shrink), 116
sketch, 118
spouse (Hints-class), 54
spouse,Hints-method (Hints-class), 54
spouse,Pedigree-method

(Pedigree-class), 84
spouse<- (Pedigree-class), 84
spouse<-,Hints,data.frame-method

(Hints-class), 54
spouse<-,Pedigree,data.frame-method

(Pedigree-class), 84
status (Ped-class), 80
status,Ped-method (Ped-class), 80
status<- (Ped-class), 80
status<-,Ped,numeric_OR_logical-method

(Ped-class), 80
subregion, 118
subset,Hints-method (Hints-class), 54
subset,Ped-method (Ped-class), 80
subset,Pedigree-method

(Pedigree-class), 84
subset,Rel-method (Rel-class), 107
summary,Ped-method (Ped-class), 80
summary,Pedigree-method

(Pedigree-class), 84
summary,Rel-method (Rel-class), 107

unrelated, 119
unrelated,Ped-method (unrelated), 119
unrelated,Pedigree-method (unrelated),

119
upd_famid, 120
upd_famid(), 74, 76

upd_famid,character,ANY-method
(upd_famid), 120

upd_famid,Ped,character_OR_integer-method
(upd_famid), 120

upd_famid,Ped,missing-method
(upd_famid), 120

upd_famid,Pedigree,character_OR_integer-method
(upd_famid), 120

upd_famid,Pedigree,missing-method
(upd_famid), 120

upd_famid,Rel,character_OR_integer-method
(upd_famid), 120

upd_famid,Rel,missing-method
(upd_famid), 120

useful (Ped-class), 80
useful,Ped-method (Ped-class), 80
useful<- (Ped-class), 80
useful<-,Ped,numeric_OR_logical-method

(Ped-class), 80
useful_inds, 121
useful_inds,character-method

(useful_inds), 121
useful_inds,Ped-method (useful_inds),

121
useful_inds,Pedigree-method

(useful_inds), 121

vect_to_binary, 123
vect_to_binary(), 44, 74, 87

	Pedixplorer-package
	align
	alignped1
	alignped2
	alignped3
	alignped4
	ancestors
	anchor_to_factor
	auto_hint
	best_hint
	bit_size
	check_columns
	check_num_na
	check_slot_fd
	check_values
	circfun
	color_picker_ui
	create_text_column
	data_col_sel_ui
	data_download_ui
	data_import_ui
	descendants
	draw_arc
	draw_polygon
	draw_segment
	draw_text
	duporder
	exclude_stray_marryin
	exclude_unavail_founders
	family_check
	family_infos_table
	family_sel_ui
	findsibs
	findspouse
	find_avail_affected
	find_avail_noninform
	find_unavailable
	fix_parents
	generate_aff_inds
	generate_border
	generate_colors
	generate_fill
	get_dataframe
	get_famid
	get_families_table
	get_title
	get_twin_rel
	health_sel_ui
	Hints-class
	ibd_matrix
	inf_sel_ui
	is_disconnected
	is_founder
	is_informative
	is_parent
	is_valid_hints
	is_valid_ped
	is_valid_pedigree
	is_valid_rel
	is_valid_scales
	kindepth
	kinship
	make_class_info
	make_famid
	make_rownames
	minnbreast
	min_dist_inf
	na_to_length
	norm_ped
	norm_rel
	num_child
	parent_of
	paste0max
	Ped-class
	Pedigree-class
	ped_avaf_infos_ui
	ped_server
	ped_shiny
	ped_to_legdf
	ped_to_plotdf
	ped_ui
	permute
	plot,Pedigree,missing-method
	plot_download_ui
	plot_fromdf
	plot_legend
	plot_legend_ui
	plot_ped_ui
	polyfun
	polygons
	read_data
	Rel-class
	relped
	rel_code_to_factor
	sampleped
	Scales-class
	set_plot_area
	sex_to_factor
	shift
	shrink
	sketch
	subregion
	unrelated
	upd_famid
	useful_inds
	vect_to_binary
	Index

