
Package ‘csaw’
November 20, 2024

Version 1.41.0

Date 2023-11-29

Title ChIP-Seq Analysis with Windows

Depends GenomicRanges, SummarizedExperiment

Imports Rcpp, Matrix, BiocGenerics, Rsamtools, edgeR, limma, methods,
S4Vectors, IRanges, GenomeInfoDb, stats, BiocParallel, metapod,
utils

Suggests AnnotationDbi, org.Mm.eg.db,
TxDb.Mmusculus.UCSC.mm10.knownGene, testthat, GenomicFeatures,
GenomicAlignments, knitr, BiocStyle, rmarkdown, BiocManager

LinkingTo Rhtslib, zlibbioc, Rcpp

biocViews MultipleComparison, ChIPSeq, Normalization, Sequencing,
Coverage, Genetics, Annotation, DifferentialPeakCalling

Description Detection of differentially bound regions in ChIP-seq data with sliding windows,
with methods for normalization and proper FDR control.

License GPL-3

NeedsCompilation yes

SystemRequirements C++11, GNU make

VignetteBuilder knitr

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/csaw

git_branch devel

git_last_commit 9f3a2bc

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2024-11-20

Author Aaron Lun [aut, cre],
Gordon Smyth [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2 Contents

Contents

calculateCPM . 3
checkBimodality . 4
cluster-direction . 6
clusterFDR . 8
clusterWindows . 10
clusterWindowsList . 12
combineTests . 14
correlateReads . 17
csawUsersGuide . 19
defunct . 20
detailRanges . 21
empiricalFDR . 23
extractReads . 25
filterWindows . 27
findMaxima . 31
getBestTest . 32
getPESizes . 35
getWidths . 36
maximizeCcf . 37
mergeWindows . 39
mergeWindowsList . 41
minimalTests . 43
mixedTests . 45
normFactors . 47
normOffsets . 49
overlapStats . 50
profileSites . 53
readParam . 56
regionCounts . 58
Result wrappers . 60
ResultList wrappers . 61
scaledAverage . 63
SEmethods . 65
strandedCounts . 66
upweightSummit . 68
windowCounts . 70
wwhm . 72

Index 74

calculateCPM 3

calculateCPM Calculate CPM

Description

Calculate counts-per-million (CPM) values for each feature.

Usage

calculateCPM(object, use.norm.factors=TRUE, use.offsets=FALSE,
log=TRUE, prior.count=1, assay.id="counts")

Arguments

object A SummarizedExperiment object containing a count matrix, as produced by
windowCounts.

use.norm.factors

A logical scalar indicating whether to use normalization factors, if available.

use.offsets A logical scalar indicating whether to use offsets, if available.

log A logical scalar indicating whether log2-transformed CPM values should be
returned.

prior.count A numeric scalar specifying the prior count to add when log=TRUE.

assay.id A string or integer scalar indicating which assay of y contains the counts.

Details

CPMs are calculated in the standard manner when log=FALSE, use.offsets=FALSE and use.norm.factors=FALSE.

When log=TRUE, a library size-adjusted prior count is added to both the counts and the library sizes,
see cpm for details.

When use.norm.factors=TRUE, the effective library size is used for computing CPMs, provided
that normalization factors are available in object. This is defined as the product of the library size
in object$totals and the normalization factor in object$norm.factors.

If use.offsets=TRUE, the offsets are converted into effective library sizes using scaleOffset.
If log=TRUE, this is done after addition of a prior count to both the counts and library sizes, see
addPriorCount for details.

Value

A matrix of the same dimensions as object, containing (log-)transformed CPM values for each
feature in each sample.

Author(s)

Aaron Lun

4 checkBimodality

See Also

cpm, scaleOffset, addPriorCount

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data1 <- windowCounts(bamFiles, width=50, filter=1)
head(calculateCPM(data1))

data1$norm.factors <- c(0.5, 1.5)
head(calculateCPM(data1))

head(calculateCPM(data1, log=FALSE))

With offsets:
assay(data1, "offset") <- matrix(rnorm(nrow(data1)*ncol(data1)),

nrow=nrow(data1), ncol=ncol(data1))
head(calculateCPM(data1, use.offsets=TRUE))

head(calculateCPM(data1, use.offsets=FALSE))

checkBimodality Check bimodality of regions

Description

Compute the maximum bimodality score across all base pairs in each region.

Usage

checkBimodality(bam.files, regions, width=100, param=readParam(),
prior.count=2, invert=FALSE, BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

regions A GenomicRanges object specifying the regions over which bimodality is to be
calculated.

width An integer scalar or list indicating the span with which to compute bimodality.

param A readParam object containing read extraction parameters.

prior.count A numeric scalar specifying the prior count to compute bimodality scores.

invert A logical scalar indicating whether bimodality score should be inverted.

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.

checkBimodality 5

Details

Consider a base position x. This function counts the number of forward- and reverse-strand reads
within the interval [x-width+1, x]. It then calculates the forward:reverse ratio after adding prior.count
to both counts. This is repeated for the interval [x, x+width-1], and the reverse:forward ratio is
then computed. The smaller of these two ratios is used as the bimodality score.

Sites with high bimodality scores will be enriched for forward- and reverse-strand enrichment on
the left and right of the site, respectively. Given a genomic region, this function will treat each base
position as a site. The largest bimodality score across all positions will be reported for each region.
The idea is to assist with the identification of transcription factor binding sites, which exhibit strong
strand bimodality. The function will be less useful for broad targets like histone marks.

If multiple bam.files are specified, they are effectively pooled so that counting uses all reads in
all files. A separate value of width can be specified for each library, to account for differences in
fragmentation – see the ext argument for windowCounts for more details. In practice, this is usually
unnecessary. Setting width to the average fragment length yields satisfactory results in most cases.

If invert is set, the bimodality score will be flipped around, i.e., it will be maximized when reverse-
strand coverage dominates on the left, and forward-strand coverage dominates on the right. This
is designed for use in CAGE analyses where this inverted bimodality is symptomatic of enhancer
RNAs.

Value

A numeric vector containing the maximum bimodality score across all bases in each region.

Author(s)

Aaron Lun

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(100, 580, 500, 1500)))

checkBimodality(bamFiles, incoming)
checkBimodality(bamFiles, incoming, width=200)
checkBimodality(bamFiles, incoming, param=readParam(minq=20, dedup=TRUE))
checkBimodality(bamFiles, incoming, prior.count=5)

Works on PE data; scores are computed from paired reads.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both"))
checkBimodality(bamFile, incoming[1:3], param=readParam(pe="both", max.frag=100))

6 cluster-direction

cluster-direction Reporting cluster-level direction in csaw

Description

An overview of the strategies used to obtain cluster-level summaries of the direction of change,
based on the directionality information of individual tests. This is relevant to all functions that
aggregate per-test statistics into a per-cluster summary, e.g., combineTests, minimalTests. It
assumes that there are zero, one or many columns of log-fold changes in the data.frame of per-test
statistics, typically specified using a fc.cols argument.

Counting the per-test directions

For each cluster, we will report the number of tests that are up (positive values) or down (nega-
tive) for each column of log-fold change values listed in fc.col. This provide some indication
of whether the change is generally positive or negative - or both - across tests in the cluster. If a
cluster contains non-negligble numbers of both up and down tests, this indicates that there may be
a complex differential event within that cluster (see comments in mixedTests).

To count up/down tests, we apply a multiple testing correction to the p-values within each cluster.
Only the tests with adjusted p-values no greater than fc.threshold are counted as being up or
down. We can interpret this as a test of conditional significance; assuming that the cluster is inter-
esting (i.e., contains at least one true positive), what is the distribution of the signs of the changes
within that cluster? Note that this procedure has no bearing on the p-value reported for the cluster
itself.

The nature of the per-test correction within each cluster varies with each function. In most cases,
there is a per-test correction that naturally accompanies the per-cluster p-value:

• For combineTests, the Benjamini-Hochberg correction is used.

• For minimalTests, the Holm correction is used.

• For getBestTest with by.pval=TRUE, the Holm correction is used. We could also use the
Bonferroni correction here but Holm is universally more powerful so we use that instead.

• For getBestTest with by.pval=FALSE, all tests bar the one with the highest abundance are
simply ignored, which mimics the application of an independent filter. No correction is applied
as only one test remains.

• For mixedTests and empiricalFDR, the Benjamini-Hochberg correction is used, given that
both functions just call combineTests on the one-sided p-values in each direction. Here, the
number of up tests is obtained using the one-sided p-values for a positive change; similarly,
the number of down tests is obtained using the one-sided p-values for a negative change.

Representative tests and their log-fold changes

For each combining procedure, we identify a representative test for the entire cluster. This is based
on the observation that, in each method, there is often one test that is especially important for
computing the cluster-level p-value.

cluster-direction 7

• For combineTests, the representative is the test with the lowest BH-adjusted p-value before
enforcing monotonicity. This is because the p-value for this test is directly used as the com-
bined p-value in Simes’ method.

• For minimalTests, the test with the xth-smallest p-value is used as the representative. See
the function’s documentation for the definition of x.

• For getBestTest with by.pval=TRUE, the test with the lowest p-value is used.

• For getBestTest with by.pval=FALSE, the test with the highest abundance is used.

• For mixedTests, two representative tests are reported in each direction. The representative
test in each direction is defined using combineTests as described above.

• For empiricalFDR, the test is chosen in the same manner as described for combineTests after
converting all p-values to their one-sided counterparts in the “desirable” direction, i.e., up tests
when neg.down=TRUE and down tests otherwise.

The index of the associated test is reported in the output as the "rep.test" field along with its
log-fold changes. For clusters with simple differences, the log-fold change for the representative is
a good summary of the effect size for the cluster.

Determining the cluster-level direction

When only one log-fold change column is specified, we will try to determine which direction con-
tributes to the combined p-value. This is done by tallying the directions of all tests with (weighted)
p-values below that of the representative test. If all tests in a cluster have positive or negative log-
fold changes, that cluster’s direction is reported as "up" or "down" respectively; otherwise it is
reported as "mixed". This is stored as the "direction" field in the returned data frame.

Assessing the contribution of per-test p-values to the cluster-level p-value is roughly equivalent to
asking whether the latter would increase if all tests in one direction were assigned p-values of unity.
If there is an increase, then tests changing in that direction must contribute to the combined p-value
calculations. In this manner, clusters are labelled based on whether their combined p-values are
driven by tests with only positive, negative or mixed log-fold changes. (Note that this interpretation
is not completely correct for minimalTests due to equality effects from enforcing monotonicity in
the Holm procedure, but this is of little practical consequence.)

Users should keep in mind that the label only describes the direction of change among the most
significant tests in the cluster. Clusters with complex differences may still be labelled as changing
in only one direction, if the tests changing in one direction have much lower p-values than the tests
changing in the other direction (even if both sets of p-values are significant). More rigorous checks
for mixed changes should be performed with mixedTests.

There are several functions for which the "direction" is set to a constant value:

• For mixedTests, it is simply set to "mixed" for all clusters. This reflects the fact that the
reported p-value represents the evidence for mixed directionality in this function; indeed, the
field itself is simply reported for consistency, given that we already know we are looking for
mixed clusters!

• For empiricalFDR, it is set to "up" when neg.down=FALSE and "down" otherwise. This
reflects the fact that the empirical FDR reflects the significance of changes in the desired
direction.

8 clusterFDR

Author(s)

Aaron Lun

See Also

combineTests, minimalTests, getBestTest, empiricalFDR annd mixedTests for the functions
that do the work.

clusterFDR Compute the cluster-level FDR

Description

Compute the FDR across clusters based on the test-level FDR threshold

Usage

clusterFDR(ids, threshold, weights=NULL)

controlClusterFDR(target, adjp, FUN, ..., weights=NULL,
grid.length=21, iterations=4)

Arguments

ids An integer vector of cluster IDs for each significant test below threshold.

threshold A numeric scalar, specifying the FDR threshold used to define the significant
tests.

target A numeric scalar specifying the desired cluster-level FDR threshold.

adjp A numeric vector of window-level adjusted p-values.

FUN A clustering function that takes a logical vector indicating which windows are
significant, and returns an integer vector of cluster IDs (see below).

... Additional arguments to be passed to FUN.

weights A numeric vector of frequency weights, for internal use.

grid.length Integer scalar specifying the number of points to use in the grid search.

iterations Integer scalar specifying the number of iterations of the grid search.

Value

For clusterFDR, a numeric scalar is returned as the cluster-level FDR.

For controlClusterFDR, a list is returned containing two numeric scalars – threshold, the window-
level FDR threshold to control the cluster-level FDR near target; and FDR, the estimate of the
cluster-level FDR corresponding to threshold.

clusterFDR 9

Definition of the cluster-level FDR

The clusterFDR function computes an informal estimate of the cluster-level FDR, where each
cluster is formed by aggregating only significant tests. In the context of ChIP-seq, each significant
test refers to a DB window that is detected at a FDR below threshold. The idea is to obtain an
error rate while reporting the precise coordinates of a DB subinterval in a complex region.

This complements the standard pipeline based on combineTests, which defines regions indepen-
dently of the DB status of the windows. In a complex region, the precise coordinates of the DB
subinterval cannot be reported. Here, we overcome this by clustering directly on DB windows and
applying post-hoc control of the cluster-level FDR. See clusterWindows for more details.

The cluster-level FDR is defined as the proportion of reported clusters that have no true positives.
Simply using threshold on the window-level adjusted p-values is not sufficient to control this,
as the cluster- and window-level FDRs are not equivalent. Instead, the observed number of false
positive tests is estimated based on threshold and the total number of significant tests, and a
conservative estimate for the number of false positive clusters (where all tests are true nulls) is
computed.

However, note that the calculation of the cluster-level FDR here is not statistically rigorous. This is
not guaranteed to be an upper bound, especially with few or correlated tests. Thus, users should use
the standard combineTests-based pipeline wherever possible. Clustering on significant windows
should only be performed where the precise coordinates of the DB subinterval are important for
interpretation.

Searching for the best threshold

controlClusterFDR will identify the window-level FDR threshold required to control the cluster-
level FDR at target. The former is not a simple function of the latter (neither continuous nor
guaranteed to be monotonic), so a grid search is used. Clusters of significant windows are iden-
tified at each window-level threshold, and the corresponding cluster-level FDR is computed with
clusterFDR.

The grid is initially defined with grid.length equally spaced points in [0, target]. At each
iteration, the grid points with cluster-level FDRs above and below target are chosen, and the
grid is redefined within that interval. This is repeated for iterations iterations, and the largest
window-level threshold that achieves a cluster-level FDR below target is chosen.

The FUN argument should be a function that accepts a logical vector specifying significance, and
returns an integer vector of cluster IDs. If, for example, it accepts an input vector ix, then the output
should contain cluster IDs corresponding to the entries of which(ix). This is because cluster IDs
are only defined for significant tests, given that only those tests are used for clustering.

A consequence of this search strategy is that the returned window-level FDR threshold will always
be less than target. In other words, each window should be significantly DB on its own merits
(i.e., after controlling the window-level FDR) before it is placed into a cluster. This protects against
scenarios where very large thresholds yield low cluster-level FDRs, due to the formation of a few
large clusters.

Note about weights

In both functions, the weights argument is assumed to contain frequency weights of significant
tests/windows. For example, a weight of 2 for a test would be equivalent to repeating that test (i.e.,

10 clusterWindows

repeating the same window so it shows up twice in your analysis). These weights should be the
same as those used during weighted FDR control to compute adjusted p-values. In general, you
should not set this argument unless you know what you’re doing.

Author(s)

Aaron Lun

See Also

mergeWindows, combineTests, clusterWindows

Examples

Setting up the windows and p-values.
set.seed(100)
windows <- GRanges("chrA", IRanges(1:1000, 1:1000))
test.p <- runif(1000)
test.p[c(1:10, 100:110, 220:240)] <- 0 # 3 significant subintervals.

Defining significant windows.
threshold <- 0.05
is.sig <- p.adjust(test.p, method="BH") <= threshold

Assuming that we only cluster significant windows.
merged <- mergeWindows(windows[is.sig], tol=0)
clusterFDR(merged$id, threshold)

Setting up another example with more subintervals.
test.p <- runif(1000)
test.p[rep(1:2, 50) + rep(0:49, each=2) * 20] <- 0
adj.p <- p.adjust(test.p, method="BH")
clusterFUN <- function(x) { mergeWindows(windows[x], tol=0)$id }
controlClusterFDR(0.05, adj.p, clusterFUN)

clusterWindows Cluster DB windows into clusters

Description

Clusters significant windows into clusters while controlling the cluster-level FDR.

Usage

clusterWindows(
ranges,
tab,
target,
pval.col = NULL,

clusterWindows 11

fc.col = NULL,
signs = FALSE,
tol,
...,
weights = NULL,
grid.length = 21,
iterations = 4

)

Arguments

ranges A GRanges or RangedSummarizedExperiment object containing window coor-
dinates.

tab A data.frame of results with a PValue field for each window.

target A numeric scalar indicating the desired cluster-level FDR.

pval.col A string or integer scalar specifying the column of tab with the p-values. De-
faults to "PValue".

fc.col A string or integer scalar specifying the column of tab with the log-fold changes.
Defaults to "logFC".

signs A logical scalar indicating whether the sign of the log-fold change (specified by
fc.col) should be used in mergeWindows.

tol, ... Arguments to be passed to mergeWindows.

weights, grid.length, iterations
Arguments to be passed to controlClusterFDR.

Details

In this function, windows are identified as significantly DB based on the BH-adjusted p-values in
tab. Only those windows are then used directly for clustering via mergeWindows, which subse-
quently yields DB regions consisting solely of DB windows. If tol is not specified, it is set to 100
bp by default and a warning is raised. If fc.col is used to specify the column of log-fold changes,
clusters are formed according to the sign of the log-fold change in mergeWindows.

DB-based clustering is obviously not blind to the DB status, so standard methods for FDR control
are not valid. Instead, post-hoc control of the cluster-level FDR is applied by using controlClusterFDR,
which attempts to control the cluster-level FDR at target (which is set to 0.05 if not specified).
Our aim here is to provide some interpretable results when DB-blind clustering is not appropriate,
e.g., for diffuse marks involving long stretches of the genome. Reporting each marked stretch in its
entirety would be cumbersome, so this method allows the DB subintervals to be identified directly.

The output stats DataFrame is generated by running combineTests on the ids and tab for only
the significant windows. Here, the fc.threshold argument is set to the p-value threshold used to
identify significant windows. We also remove the FDR field from the output as this has little meaning
when the clusters are not blind to the clustering. Indeed, the p-value is only retained for purposes
of ranking.

12 clusterWindowsList

Value

A named list containing:

• ids, an integer vector of cluster IDs for each window in ranges. Non-significant windows
that were not used to construct regions are marked with NA values.

• regions, a GRanges containing the coordinates for each cluster.

• FDR, a numeric scalar containing the estimate of the cluster-level FDR for the returned regions.

• threshold, a numeric scalar containing the per-window FDR threshold used to identify sig-
nificant windows.

• stats, a DataFrame containing some descriptive per-cluster statistics.

Author(s)

Aaron Lun

See Also

mergeWindows, controlClusterFDR

Examples

set.seed(10)
x <- round(runif(100, 100, 1000))
gr <- GRanges("chrA", IRanges(x, x+5))
tab <- data.frame(PValue=rbeta(length(x), 1, 50), logFC=rnorm(length(x)))

clusterWindows(gr, tab, target=0.05, tol=10)
clusterWindows(gr, tab, target=0.05, tol=10, fc.col="logFC")

clusterWindowsList Consolidate DB clusters

Description

Consolidate DB results from multiple analyses with cluster-level FDR control.

Usage

clusterWindowsList(ranges.list, tab.list, equiweight=TRUE, ...)

clusterWindowsList 13

Arguments

ranges.list A list of GRanges or RangedSummarizedExperiment objects, usually containing
windows of varying sizes from separate calls to windowCounts.

tab.list A list of data.frames of differential binding results, usually from separate anal-
yses at differing window sizes. Each should contain one row per interval for the
corresponding entry of ranges.list.

equiweight a logical scalar indicating whether equal weighting from each analysis should
be enforced

... arguments to be passed to clusterWindows

Details

This function consolidates DB results from multiple analyses, typically involving different window
sizes. The aim is to provide comprehensive detection of DB at a range of spatial resolutions. Sig-
nificant windows from each analysis are identified and used for clustering with clusterWindows.
This represents the post-hoc counterpart to mergeResultsList.

Some effort is required to equalize the contribution of the results from each analysis. This is done
by setting equiweight=TRUE, where the weight of each window is inversely proportional to the
number of windows from that analysis. These weights are used as frequency weights for window-
level FDR control (to identify DB windows prior to clustering). Otherwise, the final results would
be dominated by large number of small windows.

Users can cluster by the sign of log-fold changes, to obtain clusters of DB windows of the same
sign. However, note that nested windows with opposite signs may give unintuitive results - see
mergeWindows for details.

Value

A named list is returned containing:

ranges: A GRanges object containing the concatenated intervals from all elements of x. The
element-wise metadata of this object contains the integer field origin, an integer field speci-
fying the index of x from which each interval was obtained.

ids: An integer vectors indicating the cluster ID for each window in ranges. Non-significant
windows that were not assigned to a cluster have IDs of NA, as described in ?clusterWindows.

regions: A GRanges object containing the coordinates for each cluster.

FDR: A numeric scalar containing the cluster-level FDR estimate.

Author(s)

Aaron Lun

See Also

clusterWindows, the equivalent function for a single GRanges input.

mergeResultsList, for a more rigorous approach to clustering windows.

14 combineTests

Examples

Making up some GRanges.
low <- GRanges("chrA", IRanges(runif(100, 1, 1000), width=5))
med <- GRanges("chrA", IRanges(runif(40, 1, 1000), width=10))
high <- GRanges("chrA", IRanges(runif(10, 1, 1000), width=20))

Making up some DB results.
dbl <- data.frame(logFC=rnorm(length(low)), PValue=rbeta(length(low), 1, 20))
dbm <- data.frame(logFC=rnorm(length(med)), PValue=rbeta(length(med), 1, 20))
dbh <- data.frame(logFC=rnorm(length(high)), PValue=rbeta(length(high), 1, 20))
result.list <- list(dbl, dbm, dbh)

Consolidating.
cons <- clusterWindowsList(list(low, med, high), result.list, tol=20)
cons$region
cons$id
cons$FDR

Without weights.
cons <- clusterWindowsList(list(low, med, high), result.list, tol=20,

equiweight=FALSE)
cons$FDR

Using the signs.
cons <- clusterWindowsList(list(low, med, high), result.list, tol=20,

fc.col="logFC")
cons$FDR

combineTests Combine statistics across multiple tests

Description

Combines p-values across clustered tests using Simes’ method to control the cluster-level FDR.

Usage

combineTests(
ids,
tab,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05

)

combineTests 15

Arguments

ids An integer vector or factor containing the cluster ID for each test.

tab A data.frame of results with PValue and at least one logFC field for each test.

weights A numeric vector of weights for each test. Defaults to 1 for all tests.

pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue".

fc.col An integer or character vector specifying the columns of tab containing the
log-fold changes. Defaults to all columns in tab starting with "logFC".

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction" for more
details.

Details

All tests with the same value of ids are used to define a single cluster. This function applies
Simes’ procedure to the per-test p-values to compute the combined p-value for each cluster, which
represents evidence against the global null hypothesis, i.e., all individual nulls are true in each
cluster. The BH method is then applied to control the FDR across all clusters.

Rejection of the global null is more relevant than the significance of each individual test when
multiple tests in a cluster represent parts of the same underlying event, e.g., differentially bound
genomic regions consisting of clusters of windows. Control of the FDR across tests may not equate
to control of the FDR across clusters; we ensure the latter by explicitly computing cluster-level
p-values for use in the BH method.

We use Simes’ method as it is relatively relaxed and rejects the global null upon observing any
change in the cluster. More stringent methods are available in functions like minimalTests and
getBestTest.

The importance of each test within a cluster can be adjusted by supplying different relative weights
values. This may be useful for downweighting low-confidence tests, e.g., those in repeat regions. In
Simes’ procedure, weights are interpreted as relative frequencies of the tests in each cluster. Note
that these weights have no effect between clusters.

To obtain ids, a simple clustering approach for genomic windows is implemented in mergeWindows.
However, anything can be used so long as it is independent of the p-values and does not compro-
mise type I error control, e.g., promoters, gene bodies, independently called peaks. Any tests with
NA values for ids will be ignored.

Value

A DataFrame with one row per cluster and various fields:

• An integer field num.tests, specifying the total number of tests in each cluster.

• Two integer fields num.up.* and num.down.* for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction"
for more details.

• A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

16 combineTests

• A numeric field FDR, containing the BH-adjusted cluster-level p-value.

• A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction" for more details.

• One integer field rep.test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction" for more details.

• One numeric field rep.* for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction" for more details.

Each row is named according to the ID of the corresponding cluster.

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73, 751-754.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B 57, 289-300.

Benjamini Y and Hochberg Y (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24,
407-418.

Lun ATL and Smyth GK (2014). De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res. 42, e95

See Also

groupedSimes, which does the heavy lifting.

minimalTests and getBestTest, for another method of combining p-values for each cluster.

mergeWindows, for one method of generating ids.

glmQLFTest, for one method of generating tab.

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
combined <- combineTests(ids, tab)
head(combined)

With window weighting.
w <- round(runif(100, 1, 5))
combined <- combineTests(ids, tab, weights=w)
head(combined)

With multiple log-FCs.
tab$logFC.whee <- rnorm(100, 5)
combined <- combineTests(ids, tab)
head(combined)

correlateReads 17

Manual specification of column IDs.
combined <- combineTests(ids, tab, fc.col=c(1,4), pval.col=3)
head(combined)

combined <- combineTests(ids, tab, fc.col="logFC.whee", pval.col="PValue")
head(combined)

correlateReads Compute correlation coefficients between reads

Description

Computes the auto- or cross-correlation coefficients between read positions across a set of delay
intervals.

Usage

correlateReads(bam.files, max.dist=1000, cross=TRUE, param=readParam(),
BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

max.dist An integer scalar specifying the maximum delay distance over which correlation
coefficients will be calculated.

cross A logical scalar specifying whether cross-correlations should be computed.

param A readParam object containing read extraction parameters.

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.

Details

If cross=TRUE, reads are separated into those mapping on the forward and reverse strands. Positions
on the forward strand are shifted forward by a delay interval. The chromosome-wide correlation co-
efficient between the shifted forward positions and the original reverse positions are computed. This
is repeated for all delay intervals less than max.dist. A weighted mean for the cross-correlation is
taken across all chromosomes, with weighting based on the number of reads.

Cross-correlation plots can be used to check the quality of immunoprecipitation for ChIP-Seq ex-
periments involving transcription factors or punctate histone marks. Strong immunoprecipitation
should result in a peak at a delay corresponding to the fragment length. A spike may also be ob-
served at the delay corresponding to the read length. This is probably an artefact of the mapping
process where unique mapping occurs to the same sequence on each strand.

18 correlateReads

By default, marked duplicate reads are removed from each BAM file prior to calculation of co-
efficients. This is strongly recommended, even if the rest of the analysis will be performed with
duplicates retained. Otherwise, the read length spike will dominate the plot, such that the fragment
length peak will no longer be easily visible.

If cross=FALSE, auto-correlation coefficients are computed without use of strand information. This
is designed to guide estimation of the average width of enrichment for diffuse histone marks. For
example, the width can be defined as the delay distance at which the autocorrelations become neg-
ligble. However, this tends to be ineffective in practice as diffuse marks tend to have very weak
correlations to begin with.

If multiple BAM files are specified in bam.files, the reads from all libraries are pooled prior to
calculation of the correlation coefficients. This is convenient for determining the average correlation
profile across an entire dataset. Separate calculations for each file will require multiple calls to
correlateReads.

Paired-end data is also supported, whereby correlations are computed using only those reads in
proper pairs. This may be less meaningful as the presence of proper pairs will inevitably result in a
strong peak at the fragment length. Instead, IP efficiency can be diagnosed by treating paired-end
data as single-end, e.g., with pe="first" in readParam.

Value

A numeric vector of length max.dist+1 containing the correlation coefficients for each delay inter-
val from 0 to max.dist.

Author(s)

Aaron Lun

References

Kharchenko PV, Tolstorukov MY and Park, PJ (2008). Design and analysis of ChIP-seq experi-
ments for DNA-binding proteins. Nat. Biotechnol. 26, 1351-1359.

See Also

ccf

Examples

n <- 20
bamFile <- system.file("exdata", "rep1.bam", package="csaw")
par(mfrow=c(2,2))

x <- correlateReads(bamFile, max.dist=n)
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, param=readParam(dedup=TRUE))
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, cross=FALSE)
plot(0:n, x, xlab="delay (bp)", ylab="acf")

csawUsersGuide 19

Also works on paired-end data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
x <- correlateReads(bamFile, param=readParam(pe="both"))
head(x)

csawUsersGuide View csaw user’s guide

Description

Finds the location of the user’s guide and opens it for viewing.

Usage

csawUsersGuide()

Details

The csaw package is designed for de novo detection of differentially bound regions from ChIP-
seq data. It provides methods for window-based counting, normalization, filtering and statistical
analyses via edgeR. The user guide for this package can be obtained by running this function.

The user’s guide is obtained online from the csawUsersGuide package. We do not build the guide
as a vignette in csaw itself due to the time-consuming nature of the code when run on realistic case
studies. This does mean, though, that this function requires an internet connection to work properly.

Value

The user’s guide is opened on the system’s default browser.

Author(s)

Aaron Lun

See Also

browseURL

Examples

if (interactive()) csawUsersGuide()

20 defunct

defunct Defunct functions

Description

Functions that have passed on to the function afterlife. Their successors are also listed.

Usage

filterWindows(...)

consolidateWindows(...)

consolidateTests(...)

consolidateOverlaps(...)

Arguments

... Ignored arguments.

Details

filterWindows is succeeded by filterWindowsGlobal and related functions, which provide a
more focused programmatic interface.

consolidateWindows is succeeded by mergeWindowsList and findOverlapsList.

consolidateTests and consolidateOverlaps are succeeded by mergeResultsList and overlapResultsList,
respectively.

Value

All functions error out with a defunct message pointing towards its descendent (if available).

Author(s)

Aaron Lun

Examples

try(filterWindows())

detailRanges 21

detailRanges Add annotation to ranges

Description

Add detailed exon-based annotation to specified genomic regions.

Usage

detailRanges(incoming, txdb, orgdb, dist=5000, promoter=c(3000, 1000),
key.field="ENTREZID", name.field="SYMBOL", ignore.strand=TRUE)

Arguments

incoming A GRanges object containing the ranges to be annotated.

txdb A TxDb object for the genome of interest.

orgdb An OrgDb object for the genome of interest.

dist An integer scalar specifying the flanking distance to annotate.

promoter An integer vector of length 2, where first and second values define the promoter
as some distance upstream and downstream from the TSS, respectively.

key.field A character scalar specifying the key type in orgdb corresponding to the gene
IDs in txdb.

name.field A character scalar specifying the column from orgdb to use as the gene name.

ignore.strand A logical scalar indicating whether strandedness in incoming should be ignored.

Details

This function adds annotations to a given set of genomic regions in the form of compact char-
acter strings specifying the features overlapping and flanking each region. The aim is to de-
termine the genic context of empirically identified regions, for some basic biological interpreta-
tion of binding/marking in those regions. All neighboring genes within a specified range are re-
ported, rather than just the closest gene to the region. If a region in incoming is stranded and
ignore.strand=FALSE, annotated features will only be reported if they lie on the same strand as
that region.

If incoming is missing, then the annotation will be provided directly to the user in the form of
a GRanges object. This may be more useful when further work on the annotation is required.
Features are labelled as exons ("E"), promoters ("P") or gene bodies ("G"). Overlaps to introns
can be identified by finding those regions that overlap with gene bodies but not with any of the
corresponding exons.

The default settings for key.field and name.field will work for human and mouse genomes, but
may not work for other organisms. The key.field should specify the key type in the orgdb object
that corresponds to the gene IDs of the txdb object. For example, in S. cerevisiae, key.field is
set to "ORF" to match the gene IDs in the corresponding TxDb object, while name.field is set to
"GENENAME" to obtain the gene symbols.

22 detailRanges

Value

If incoming is not provided, a GRanges object will be returned containing ranges for the exons,
promoters and gene bodies. Gene keys (e.g., Entrez IDs) are povided as row names. Gene symbols
and feature types are stored as metadata.

If incoming is a GRanges object, a list will be returned with overlap, left and right elements.
Each element is a character vector of length equal to the number of ranges in incoming. Each non-
empty string records the gene symbol, the overlapped exons and the strand. For left and right,
the gap between the range and the annotated feature is also included.

Explanation of fields

For annotated features overlapping a region, the character string in the overlap output vector will
be of the form GENE:STRAND:TYPE. GENE is the gene symbol by default, but reverts to the key
(default Entrez ID) if no symbol is defined. STRAND is simply the strand of the gene, either "+" or
"-". The TYPE indicates the feature types that are overlapped - exon ("E"), promoter ("P") and/or
intron ("I"). Note that intron overlaps are only reported if the region does not overlap an exon
directly.

For annotated features flanking the region within a distance of dist, the TYPE is instead the distance
to the feature. This represents the gap between the edge of the region and the closest exon for that
gene. Flanking promoters are not reported, as it is more informative to report the distance to the
exon directly; and flanking an intron should be impossible without overlapping an exon directly
(and thus should not be reported, see above). Note that exons directly overlapping the supplied
region are not considered for flanking annotation, as the distance would be negative.

The strand information is often useful in conjunction with the left/right flanking features. For ex-
ample, if an exon for a negative-strand gene is to the left, the current region must be upstream
of that exon. Conversely, if the exon for a positive-strand gene is to the left, the region must be
downstream. The opposite applies for features to the right of the current region.

Author(s)

Aaron Lun

Examples

library(org.Mm.eg.db)
library(TxDb.Mmusculus.UCSC.mm10.knownGene)

current <- readRDS(system.file("exdata", "exrange.rds", package="csaw"))
output <- detailRanges(current, orgdb=org.Mm.eg.db,

txdb=TxDb.Mmusculus.UCSC.mm10.knownGene)
head(output$overlap)
head(output$right)
head(output$left)

empiricalFDR 23

empiricalFDR Control the empirical FDR

Description

Control the empirical FDR across clusters for comparisons to negative controls, based on tests that
are significant in the “wrong” direction.

Usage

empiricalFDR(
ids,
tab,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05,
neg.down = TRUE

)

Arguments

ids An integer vector or factor containing the cluster ID for each test.

tab A data.frame of results with PValue and at least one logFC field for each test.

weights A numeric vector of weights for each test. Defaults to 1 for all tests.

pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue".

fc.col An integer or string specifying the single column of tab containing the log-fold
change.

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction" for more
details.

neg.down A logical scalar indicating if negative log-fold changes correspond to the “wrong”
direction.

Details

Some experiments involve comparisons to negative controls where there should be no signal/binding.
In such case, genuine differences should only occur in one direction, i.e., up in the non-control
samples. Thus, the number of significant tests that change in the wrong direction can be used as an
estimate of the number of false positives.

This function converts two-sided p-values in tab[,pval.col] to one-sided counterparts in the
wrong direction. It combines the one-sided p-values for each cluster using combineTests. The
number of significant clusters at some p-value threshold represents the estimated number of false
positive clusters.

24 empiricalFDR

The same approach is applied for one-sided p-values in the right direction, where the number of
detected clusters at the threshold represents the total number of discoveries. Dividing the number
of false positives by the number of discoveries yields the empirical FDR at each p-value threshold.
Monotonicity is enforced (i.e., the empirical FDR only decreases with decreasing p-value) as is the
fact that the empirical FDR must be below unity.

The p-values specified in pval.col are assumed to be originally computed from some two-sided
test, where the distribution of p-values is the same regardless of the direction of the log-fold change
(under both the null and alternative hypothesis). This rules out p-values computed from ANODEV
where multiple contrasts are tested at once; or from methods that yield asymmetric p-value distri-
butions, e.g., GLM-based TREAT.

Value

A DataFrame with one row per cluster and various fields:

• An integer field num.tests, specifying the total number of tests in each cluster.

• Two integer fields num.up.* and num.down.* for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction"
for more details.

• A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

• A numeric field FDR, containing the empirical FDR corresponding to that cluster’s p-value.

• A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction" for more details.

• One integer field rep.test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction" for more details.

• One numeric field rep.* for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction" for more details.

Each row is named according to the ID of the corresponding cluster.

Caution

Control of the empirical FDR is best used for very noisy data sets where the BH method is not
adequate. The BH method only protects against statistical false positives under the null hypothesis
that the log-fold change is zero. However, the empirical FDR also protects against experimental
false positives, caused by non-specific binding that yields uninteresting (but statistically significant)
DB.

The downside is that the empirical FDR calculation relies on the availability of a good estimate of
the number of false positives. It also assumes that the distribution of p-values is the same for non-
specific binding events in both directions (i.e., known events with negative log-FCs and unknown
events among those with positive log-FCs). Even if the log-fold changes are symmetric around
zero, this does not mean that the p-value distributions will be the same, due to differences in library
size and number between control and ChIP samples.

In summary, the BH method in combineTests is more statistically rigorous and should be preferred
for routine analyses.

extractReads 25

Author(s)

Aaron Lun

References

Zhang Y et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

See Also

combineTests, used to combine the p-values in each direction.

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
empirical <- empiricalFDR(ids, tab)
head(empirical)

extractReads Extract reads from a BAM file

Description

Extract reads from a BAM file with the specified parameter settings.

Usage

extractReads(bam.file, region, ext=NA, param=readParam(), as.reads=FALSE)

Arguments

bam.file A character string containing the path to a sorted and indexed BAM file. Alter-
natively, a BamFile object describing a BAM file and its index.

region A GRanges object of length 1 describing the region of interest.

ext An integer scalar or list specifying the fragment length for directional read ex-
tension.

param A readParam object specifying how reads should be extracted.

as.reads A logical scalar indicating whether reads should be returned instead of frag-
ments for paired-end data.

26 extractReads

Details

This function extracts the reads from a BAM file overlapping a given genomic interval. The inter-
pretation of the values in param is the same as that throughout the package. The aim is to supply
the raw data for visualization, in a manner that maintains consistency with the rest of the analysis.

If pe!="both" in param, stranded intervals corresponding to the reads will be reported. If ext is
not NA, directional read extension will also be performed – see windowCounts for more details. If
pe="both", intervals are unstranded and correspond to fragments from proper pairs.

If as.reads=TRUE and pe="both", the reads in each proper pair are returned directly as a GRanges-
List of length 2. The two internal GRanges are of the same length and contain the forward and re-
verse reads for each proper pair in parallel. In other words, the nth elements of the first and second
GRanges represent the nth proper pair.

Any strandedness of region is ignored. If strand-specific extraction is desired, this can be done by
setting param$forward via reform. Alternatively, the returned GRanges can be filtered to retain
only the desired strand.

Value

If pe!="both" or as.reads=FALSE, a GRanges object is returned containing the read (for single-
end data) or fragment intervals (for paired-end data).

If pe="both" and as.reads=TRUE, a GRangesList is returned containing the paired reads – see
Details.

Author(s)

Aaron Lun

See Also

readParam, windowCounts

Examples

bamFile <- system.file("exdata", "rep1.bam", package="csaw")
extractReads(bamFile, GRanges("chrA", IRanges(100, 500)))
extractReads(bamFile, GRanges("chrA", IRanges(100, 500)),

param=readParam(dedup=TRUE))
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)))

bamFile <- system.file("exdata", "pet.bam", package="csaw")
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="both"))
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="first"))

Extracting as reads.
extractReads(bamFile, GRanges("chrB", IRanges(100, 500)),

param=readParam(pe="both"), as.reads=TRUE)

Dealing with the extension length.

filterWindows 27

bamFile <- system.file("exdata", "rep1.bam", package="csaw")
my.reg <- GRanges("chrA", IRanges(10, 200))
extractReads(bamFile, my.reg)
extractReads(bamFile, my.reg, ext=100)

filterWindows Filtering methods for RangedSummarizedExperiment objects

Description

Convenience functions to compute filter statistics for windows, based on proportions or using en-
richment over background.

Usage

filterWindowsGlobal(data, background, assay.data="counts",
assay.back="counts", prior.count=2, grid.pts=21)

filterWindowsLocal(data, background, assay.data="counts",
assay.back="counts", prior.count=2)

filterWindowsControl(data, background, assay.data="counts",
assay.back="counts", prior.count=2, scale.info=NULL)

filterWindowsProportion(data, assay.data="counts", prior.count=2)

scaleControlFilter(data.bin, back.bin, assay.data="counts",
assay.back="counts")

Arguments

data A RangedSummarizedExperiment object containing window-level counts.

background A RangedSummarizedExperiment object to be used for estimating background
enrichment.

• For filterWindowsGlobal, this should contain counts for large contiguous
bins across the genome, for the same samples used to construct data.

• For filterWindowsLocal, this should contain counts for regions in which
rowRanges(data) is nested, for the same samples used to construct data.

• For filterWindowsControl, this should contain count for the same re-
gions as rowRanges(data) for control samples.

assay.data A string or integer scalar specifying the assay containing window/bin counts in
data.

assay.back A string or integer scalar specifying the assay containing window/bin counts in
background.

prior.count A numeric scalar, specifying the prior count to use in scaledAverage.

28 filterWindows

scale.info A list containing the output of scaleControlFilter, i.e., a normalization factor
and library sizes for ChIP and control samples.

data.bin A RangedSummarizedExperiment containing bin-level counts for ChIP libraries.

back.bin A RangedSummarizedExperiment containing bin-level counts for control li-
braries.

grid.pts An integer scalar specifying the number of grid points to use for interpolation
when data contains variable-width intervals, e.g., for peaks or other regions
instead of windows.

Details

The aim of these functions is to compute a filter statistic for each window, according to various
abundance-based definitions that are discussed below. Windows can then be filtered to retain those
with large filter statistics. This selects for high-abundance windows that are more likely to contain
genuine binding sites and thus are more interesting for downstream (differential binding) analyses.

Value

All filtering functions return a named list containing:

• abundances, a numeric vector containing the average abundance of each row in data.

• filter, a numeric vector containing the filter statistic for the given type for each row. The
definition of this filter statistic will vary across the different methods.

• back.abundances, a numeric vector containing the background abundance for each row in
data. Not reported for filterWindowsProportion.

For scaleControlFilter, a named list is returned containing:

• scale, a numeric scalar containing the scaling factor for multiplying the control counts.

• data.totals, a numeric vector containing the library sizes for data.

• back.totals, anumeric vector containing the library sizes for background.

Proportion-based filtering

filterWindowsProportion supposes that a certain percentage of the genome (by length) is gen-
uinely bound. The filter statistic is defined as the ratio of the rank in abundance to the total number
of windows. Rank is in ascending order, i.e., higher abundance windows have higher ratios. Win-
dows are retained that have rank ratios above a threshold, e.g., 0.99 if 1% of the genome is assumed
to be bound.

The definition of the rank is dependent on the total number of windows in the genome. However,
empty windows or bins are automatically discarded in windowCounts (exacerbated if filter is
set above unity). This will result in underestimation of the rank or overestimation of the global
background. To avoid this, the total number of windows is inferred from the spacing.

filterWindows 29

Global background filtering

filterWindowsGlobal uses the median average abundance across the genome as a global estimate
of the background abundance. This assumes that background contains unfiltered counts for large
(2 - 10 kbp) genomic bins, from which the background abundance can be stably computed. The
filter statistic for each window is defined as the difference between the window abundance and the
global background, after adjusting for the differences in widths between windows and bins.

Similarly to filterWindowsProportion, the total number of bins is inferred from their width in
background. This avoids overestimating the global background if some filtering has already been
applied to the bins.

The calculation is fairly straightforward for window-level counts where all rowRanges(data) are
of the same width. If the widths are variable (e.g., because data contains counts for peaks, genes
or other irregular features), the adjustment for differences in width needs to performed separately
for each unique width. If there are more than grid.pts unique widths, we expedite this process by
computing the adjustment for grid.pts widths and interpolating to obtain the adjusted background
at each width.

If background is not supplied, the background abundance is directly computed from entries in
data. This assumes that data contains windows for most of the regions in the genome, and that the
coverage is sufficiently high across most windows to obtain a stable background estimate.

Local background filtering

filterWindowsLocal compares the abundance of each window to the flanking regions. This con-
siders each window to contain the entirety of a binding event, where any coverage of the surround-
ing regions is treated as background enrichment. It is analogous to the behaviour of peak-calling
methods and accounts for local fluctuations in background, e.g., due to differences in mappability,
sequenceability or accessibility.

We assume that each region in data is nested within each corresponding region of background. The
counts of each row in data are then subtracted from those of the corresponding row in background.
The average abundance of the remaining counts is computed and used as the background abundance.
The filter statistic is defined by subtracting the background abundance from the corresponding win-
dow abundance for each row.

To generate background, we suggest using regionCounts on a resized rowRanges(data) - see
Examples.

Control-based filtering

In filterWindowsControl, we assume that data contains window-level counts for ChIP samples,
while background contains counts for the same windows in the control samples. (However, it is
also possible to supply nested regions as described in filterWindowsLocal, where each interval in
background includes the flanking regions around the corresponding entry in data.) For each win-
dow in data, the background abundance is defined as the average abundance of the corresponding
row in background. The filter statistic is defined as the difference between the window’s average
abundance and its background abundance.

Composition biases are likely to be present between ChIP and control samples, where increased
binding at some loci reduces coverage of other loci in the ChIP samples. This incorrectly re-
sults in smaller filter statistics for the latter loci, as the fold-change over the input is reduced. To

30 filterWindows

correct for this, a normalization factor between ChIP and control samples can be computed with
scaleControlFilter and passed to filterWindowsControl using the scale.info argument. A
warning is raised if scale.info=NULL.

To use scaleControlFilter, users should supply two RangedSummarizedExperiment objects,
each containing the counts for large (~10 kbp) bins in the ChIP and control samples. The difference
in the average abundance between the two objects is computed for each bin. The median of the
differences across all bins is used as a normalization factor to correct the filter statistics for each
window. The assumption is that most bins represent background regions, such that a systematic
difference in abundance between ChIP and control should represent the composition bias.

scaleControlFilter will also store the library sizes for each object in its output. This is used to
check that data and background have the same library sizes. Otherwise, the normalization factor
computed with bin-level counts cannot be correctly applied to the window-level counts.

Details on filter statistic calculations

When computing the filter statistic in background-based methods the abundances of bins/regions
in background must be rescaled for comparison to those of smaller windows - see getWidths and
scaledAverage for more details. In particular, the effective width of the window is often larger
than the width used in windowCounts due to the counting of fragments rather than reads. The
fragment length is extracted from data$ext and background$ext, though users will need to set
data$rlen or background$rlen for unextended reads (i.e., ext=NA).

The prior.count protects against inflated log-fold increases when the background counts are near
zero. A low prior is sufficient if background has large counts, which is usually the case for wide
regions. Otherwise, if the set of windows with large filter statistics are dominated by low counts,
prior.count should be increased to a larger value like 5.

See Also

windowCounts, aveLogCPM, getWidths, scaledAverage

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)

Proportion-based (keeping top 1%)
stats <- filterWindowsProportion(data)
head(stats$filter)
keep <- stats$filter > 0.99
new.data <- data[keep,]

Global background-based (keeping fold-change above 3).
background <- windowCounts(bamFiles, bin=TRUE, width=300)
stats <- filterWindowsGlobal(data, background)
head(stats$filter)
keep <- stats$filter > log2(3)

Local background-based.
locality <- regionCounts(bamFiles, resize(rowRanges(data), fix="center", 300))
stats <- filterWindowsLocal(data, locality)

findMaxima 31

head(stats$filter)
keep <- stats$filter > log2(3)

Control-based, with binning for normalization (pretend rep2.bam is a control).
binned <- windowCounts(bamFiles, width=10000, bin=TRUE)
chip.bin <- binned[,1]
con.bin <- binned[,2]
scinfo <- scaleControlFilter(chip.bin, con.bin)

chip.data <- data[,1]
con.data <- data[,2]
stats <- filterWindowsControl(chip.data, con.data,

prior.count=5, scale.info=scinfo)

head(stats$filter)
keep <- stats$filter > log2(3)

findMaxima Find local maxima

Description

Find the local maxima for a given set of genomic regions.

Usage

findMaxima(regions, range, metric, ignore.strand=TRUE)

Arguments

regions a GRanges object

range an integer scalar specifying the range of surrounding regions to consider as local

metric a numeric vector of values for which the local maxima is found

ignore.strand a logical scalar indicating whether to consider the strandedness of regions

Details

For each region in regions, this function will examine all regions within range on either side. It
will then determine if the current region has the maximum value of metric across this range. A
typical metric to maximize might be the sum of counts or the average abundance across all libraries.

Preferably, regions should contain regularly sized and spaced windows or bins, e.g., from windowCounts.
The sensibility of using this function for arbitrary regions is left to the user. In particular, the algo-
rithm will not support nested regions and will fail correspondingly if any are detected.

If ignore.strand=FALSE, the entries in regions are split into their separate strands. The function
is run separately on the entries for each strand, and the results are collated into a single output. This
may be useful for strand-specific applications.

32 getBestTest

Value

A logical vector indicating whether each region in regions is a local maxima.

Author(s)

Aaron Lun

See Also

windowCounts, aveLogCPM

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)
regions <- rowRanges(data)
metric <- edgeR::aveLogCPM(asDGEList(data))
findMaxima(regions, range=10, metric=metric)
findMaxima(regions, range=50, metric=metric)
findMaxima(regions, range=100, metric=metric)

findMaxima(regions, range=10, metric=runif(length(regions)))
findMaxima(regions, range=50, metric=runif(length(regions)))
findMaxima(regions, range=100, metric=runif(length(regions)))

getBestTest Get the best test in a cluster

Description

Find the test with the greatest significance or the highest abundance in each cluster.

Usage

getBestTest(
ids,
tab,
by.pval = TRUE,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05,
cpm.col = NULL

)

getBestTest 33

Arguments

ids An integer vector or factor containing the cluster ID for each test.

tab A data.frame of results with PValue and at least one logFC field for each test.

by.pval Logical scalar indicating whether the best test should be selected on the basis of
the smallest p-value. If FALSE, the best test is defined as that with the highest
abundance.

weights A numeric vector of weights for each test. Defaults to 1 for all tests.

pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue".

fc.col An integer or character vector specifying the columns of tab containing the
log-fold changes. Defaults to all columns in tab starting with "logFC".

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction" for more
details.

cpm.col An integer scalar or string specifying the column of tab containing the log-CPM
values. Defaults to "logCPM".

Details

Each cluster is defined as a set of tests with the same value of ids (any NA values are ignored). If
by.pval=TRUE, this function identifies the test with the lowest p-value as that with the strongest
evidence against the null in each cluster. The p-value of the chosen test is adjusted using the (Holm-
)Bonferroni correction, based on the total number of tests in the parent cluster. This is necessary
to obtain strong control of the family-wise error rate such that the best test can be taken from each
cluster for further consideration.

The importance of each window in each cluster can be adjusted by supplying different relative
weights values. Each weight is interpreted as a different threshold for each test in the cluster using
the weighted Holm procedure. Larger weights correspond to lower thresholds, i.e., less evidence is
needed to reject the null for tests deemed to be more important. This may be useful for upweighting
particular tests such as those for windows containing a motif for the TF of interest.

Note the difference between this function and combineTests. The latter presents evidence for any
rejections within a cluster. This function specifies the exact location of the rejection in the cluster,
which may be more useful in some cases but at the cost of conservativeness. In both cases, clustering
procedures such as mergeWindows can be used to identify the cluster.

If by.pval=FALSE, the best test is defined as that with the highest log-CPM value. This should
be independent of the p-value so no adjustment is necessary. Weights are not applied here. This
mode may be useful when abundance is correlated to rejection under the alternative hypothesis, e.g.,
picking high-abundance regions that are more likely to contain peaks.

To obtain ids, a simple clustering approach for genomic windows is implemented in mergeWindows.
However, anything can be used so long as it is independent of the p-values and does not compro-
mise type I error control, e.g., promoters, gene bodies, independently called peaks. Any tests with
NA values for ids will be ignored.

34 getBestTest

Value

A DataFrame with one row per cluster and various fields:

• An integer field num.tests, specifying the total number of tests in each cluster.

• Two integer fields num.up.* and num.down.* for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction"
for more details.

• A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

• A numeric field FDR, containing the BH-adjusted cluster-level p-value.

• A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction" for more details.

• One integer field rep.test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction" for more details.

• One numeric field rep.* for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction" for more details.

Each row is named according to the ID of the corresponding cluster.

Author(s)

Aaron Lun

See Also

combineTests and minimalTests, for other methods for obtaining cluster-level p-values.

mergeWindows, to generate ids.

glmQLFTest, for one method of generating tab.

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
best <- getBestTest(ids, tab)
head(best)

best <- getBestTest(ids, tab, cpm.col="logCPM", pval.col="PValue")
head(best)

With window weighting.
w <- round(runif(100, 1, 5))
best <- getBestTest(ids, tab, weight=w)
head(best)

By logCPM.
best <- getBestTest(ids, tab, by.pval=FALSE)
head(best)

getPESizes 35

best <- getBestTest(ids, tab, by.pval=FALSE, cpm.col=2, pval.col=3)
head(best)

getPESizes Compute fragment lengths for paired-end tags

Description

Compute the length of the sequenced fragment for each read pair in paired-end tag (PE) data.

Usage

getPESizes(bam.file, param=readParam(pe="both"))

Arguments

bam.file a character string containing the file path to a sorted and indexed BAM file

param a readParam object containing read extraction parameters

Details

This function computes a number of diagnostics for paired-end data in a supplied BAM file. The
aims is to provide an indication of the quality of library preparation and sequencing.

Firstly, a read is only considered to be mapped if it is not removed by dedup, minq, restrict or
discard in readParam. Otherwise, the alignment is not considered to be reliable. Any read pair
with exactly one unmapped read is discarded, and the number of read pairs lost in this manner is
recorded. Obviously, read pairs with both reads unmapped will be ignored completely, as will any
unpaired reads in the BAM file. Secondary and supplementary alignments are ignored completely
and do not contribute to the total - see readParam for details.

Of the mapped pairs, the valid (i.e., proper) read pairs are identified. This involves several criteria:

• Read pairs must be intrachromosomal. If the reads are on different chromosomes, the read
pair will be recorded as being interchromosomal.

• The two reads in the pair must lie on opposite strands. Otherwise, the read pair will be con-
sidered as being improperly orientated.

• The 5’ end of the forward read must not map to a higher genomic coordinate than the 5’ end of
the reverse read. Otherwise, the read pair will be considered as being improperly orientated.

Note that the 3’ end of one read is allowed to overrun the 5’ end of the other. This avoids being too
stringent in the presence of sequencing errors, untrimmed adaptors, etc. at the start or ends of reads.

Each valid read pair corresponds to a DNA fragment where both ends are sequenced. The size of the
fragment can be determined by calculating the distance between the 5’ ends of the mapped reads.
The distribution of sizes is useful for assessing the quality of the library preparation, along with all
of the recorded diagnostics. Note that any max.frag specification in param will be ignored; sizes
for all valid pairs will be returned.

36 getWidths

Value

A list containing:

sizes an integer vector of fragment lengths for all valid read pairs in the library

diagnostics an integer vector containing the total number of reads, the number of mapped
reads, number of mapped singleton reads, pairs with exactly one unmapped read,
number of improperly orientated read pairs and interchromosomal pairs

Author(s)

Aaron Lun

See Also

readParam

Examples

bamFile <- system.file("exdata", "pet.bam", package="csaw")
out <- getPESizes(bamFile, param=readParam(pe="both"))
out <- getPESizes(bamFile, param=readParam(pe="both", restrict="chrA"))
out <- getPESizes(bamFile, param=readParam(pe="both", discard=GRanges("chrA", IRanges(1, 50))))

getWidths Get region widths

Description

Get the widths of the read counting interval for each region.

Usage

getWidths(data)

Arguments

data a RangedSummarizedExperiment object, produced by windowCounts or regionCounts

Details

Widths of all regions are increased by the average fragment length during the calculations. This is
because each count represents the number of (imputed) fragments overlapping each region. Thus, a
1 bp window has an effective width that includes the average length of each fragment.

The fragment length is taken from metadata(data)$final.ext, if it is a valid integer. If NULL,
it is set to 1, and if NA, it is taken from data$ext. If the fragment lengths are different between
libraries, the average is used to compute the effective width of the window. For paired-end data,
data$ext should be an average of the inferred fragment sizes, e.g., obtained with getPESizes.

maximizeCcf 37

If final.ext is NA and any of ext are NA, the function will extract the read lengths in data$rlen.
This is because NA values of ext correspond to the use of unextended reads in windowCounts and
regionCounts. The likely read lengths are automatically computed in each function but can also
be set manually.

Value

An integer vector containing the effective width, in base pairs, of each region.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, filter=1)
getWidths(data)

Average is used when multiple fragment lengths are present.
data <- windowCounts(bamFiles, ext=list(c(50, 100), NA), filter=1)
getWidths(data)

Using the automatically computed 'rlen'.
data <- windowCounts(bamFiles, ext=NA, filter=1)
getWidths(data)
data$rlen <- 200 # Manually defining it, if required.
getWidths(data)

Paired-end data also takes the fragment length from 'ext'.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
data <- windowCounts(bamFile, param=readParam(pe="both"), filter=1)
getWidths(data)
data$ext <- 200 # Again, manual definition is accepted.
getWidths(data)

maximizeCcf Find the delay at the maximal CCF

Description

Estimate the average fragment length by maximizing the cross-correlations.

Usage

maximizeCcf(profile, ignore=100)

38 maximizeCcf

Arguments

profile a numeric vector containing a coverage profile, as produced by correlateReads

ignore an integer scalar specifying the distances to ignore

Details

This function identifies the delay distance at which the cross-correlations are maximized. This
distance can then be used as an estimate of the average fragment length, for use in directional
extension during read counting.

In some datasets, identification of the maxima is confounded by a phantom peak at the read length.
This can be overcome by ignoring the first ignore delay distances, such that the distance corre-
sponding to the true peak is used.

Obviously, this only works in TF experiments with moderate to strong enrichment, where a strong
peak in the CCF profile is present. The function may not perform sensibly in the presence of noisy
profiles containing multiple local maxima.

Value

The average fragment length is returned as an integer scalar.

Author(s)

Aaron Lun

References

Landt SG, Marinov GK, Kundaje A, et al. (2012). ChIP-seq guidelines and practices of the EN-
CODE and modENCODE consortia. Genome Res. 22, 1813-31.

See Also

correlateReads

Examples

x <- dnorm(-200:200/100) # Mocking up a profile.
maximizeCcf(x)

x2 <- x + dnorm(-50:250/10) # Adding a phantom peak
maximizeCcf(x2)
maximizeCcf(x2, ignore=0)

mergeWindows 39

mergeWindows Merge windows into clusters

Description

Uses a simple single-linkage approach to merge adjacent or overlapping windows into clusters.

Usage

mergeWindows(ranges, tol, signs=NULL, max.width=NULL, ignore.strand=TRUE)

Arguments

ranges A GRanges or RangedSummarizedExperiment object containing window coor-
dinates.

tol A numeric scalar specifying the maximum distance between adjacent windows.

signs A logical vector specifying whether each window has a positive log-FC.

max.width A numeric scalar specifying the maximum size of merged intervals.

ignore.strand A logical scalar indicating whether to consider the strandedness of ranges.

Details

Windows in ranges are merged if the gap between the end of one window and the start of the next is
no greater than tol. Adjacent windows can then be chained together to build a cluster of windows
across the linear genome. A value of zero for tol means that the windows must be contiguous
whereas negative values specify minimum overlaps.

Specification of max.width prevents the formation of excessively large clusters when many adjacent
regions are present. Any cluster that is wider than max.width is split into multiple subclusters of
(roughly) equal size. Specifically, the cluster interval is partitioned into the smallest number of
equally-sized subintervals where each subinterval is smaller than max.width. Windows are then
assigned to each subinterval based on the location of the window midpoints. Suggested values
range from 2000 to 10000 bp, but no limits are placed on the maximum size if it is NULL.

The tolerance should reflect the minimum distance at which two regions of enrichment are consid-
ered separate. If two windows are more than tol apart, they will be placed into separate clusters.
In contrast, the max.width value reflects the maximum distance at which two windows can be
considered part of the same region.

If ignore.strand=FALSE, the entries in ranges are split into their separate strands. The function
is run separately on the entries for each strand, and the results collated. The region returned in the
output will be stranded to reflect the strand of the contributing input regions. This may be useful for
strand-specific applications.

Note that, in the output, the cluster ID reported in id corresponds to the index of the cluster coordi-
nates in region.

40 mergeWindows

Value

A list containing ids, an integer vector containing the cluster ID for each window; and regions, a
GRanges object containing the start/stop coordinates for each cluster of windows.

Splitting clusters by sign

If sign!=NULL, windows are only merged if they have the same sign of the log-FC and are not
separated by intervening windows with opposite log-FC values. This can occasionally be useful to
ensure consistent changes when summarizing adjacent DB regions of opposing sign. However, it is
not recommended for routine clustering in differential analyses as the resulting clusters will not be
independent of the p-value.

To illustrate, consider any number of non-DB sites, some of which will have large log-fold change
by chance. Sites with large log-fold changes will be more likely to form large clusters when signs
is specified, as the overlapping windows are more likely to be consistent in their sign. In contrast,
sites with log-fold changes close to zero are likely to form smaller clusters as the overlapping
windows will oscillate around a log-fold change of zero. At best, this results in conservativeness in
the correction, as smaller p-values are grouped together while larger p-values form more (smaller)
clusters. At worst, this results in anticonservativeness if further filtering is applied to remove smaller
clusters with few windows.

Also, if any nested regions are present with opposing sign, sign-aware clustering may become
rather unintuitive. Imagine a chain of overlapping windows with positive log-fold changes, and in
a window in the middle of this chain, a single window with a negative log-fold change is nested.
The chain would ordinarily form a single cluster, but this is broken by the negative log-FC window.
Thus, two clusters form (before and after the negative window - three clusters, if one includes the
negative window itself) despite complete overlaps between all clusters.

Author(s)

Aaron Lun

See Also

combineTests, windowCounts

Examples

x <- round(runif(10, 100, 1000))
gr <- GRanges(rep("chrA", 10), IRanges(x, x+40))
mergeWindows(gr, 1)
mergeWindows(gr, 10)
mergeWindows(gr, 100)
mergeWindows(gr, 100, sign=rep(c(TRUE, FALSE), 5))

mergeWindowsList 41

mergeWindowsList Consolidate window sizes

Description

Consolidate windows of different sizes into a common set of regions.

Usage

mergeWindowsList(ranges.list, tol, ...)

findOverlapsList(ranges.list, regions, ...)

Arguments

ranges.list A list of RangedSummarizedExperiment and/or GRanges objects.

tol An integer scalar specifying the tolerance to use in mergeWindows.

... For mergeWindowsList, further arguments to pass to mergeWindows.

For findOverlapsList, further arguments to pass to findOverlaps.

regions A GRanges object specifying reference regions of interest for overlapping with
windows.

Details

DB analyses with csaw can be repeated using windows of different sizes to provide comprehensive
detection of DB at a range of spatial resolutions. This function merges together those sets of win-
dows of differing sizes, typically generated by multiple calls to windowCounts using different width
values. For mergeWindowsList, windows of all sizes are clustered together through mergeWindows.
For findOverlapsList, windows of all sizes are overlapped with ref using findOverlaps.

The aim is to pass the output of this function to combineTests or combineOverlaps. This takes the
statistical machinery used to combine p-values across windows for a cluster or reference region, and
recycles it to provide a rigorous method for consolidating statistics across multiple analyses with
different window sizes. However, it requires some care to balance the contribution of analyses with
different window sizes to the combined p-value. Otherwise, analyses with many small windows
will dominate the calculation for each cluster or reference region.

To compensate for this effect, both functions weight each window’s contribution to a cluster or
region. The weight is inversely proportional to the number of windows of the same size in the
same cluster or region. For mergeWindowsList, this yields a weight for each window, while
for findOverlapsList, this yields a weight for each overlap. Application of those weights in
combineTests and related functions ensures that the combined p-value is not dominated by numer-
ous small windows within a cluster.

42 mergeWindowsList

Value

mergeWindowsList returns a named list containing:

ranges: A GRanges object containing the concatenated intervals from all elements of x. The
element-wise metadata of this GRanges contains origin, an integer field specifying the index
of x from which each interval was obtained.

ids: An integer vector of length equal to ranges. This specifies the cluster (i.e., entry of merged)
to which each interval in ranges was assigned.

regions: A GRanges object containing the genomic coordinates of the clusters of merged win-
dows, as computed by mergeWindows.

weights: An numeric vector of length equal to ranges, specifying the weight of each interval.

findOverlapsList returns a named list containing:

ranges: A GRanges object containing the concatenated intervals from all elements of x. The
element-wise metadata of this object contains the integer field origin, as described above.

olap: A Hits object containing the overlaps between ref (query) and ranges (subject).

weights: A numeric vector of length equal to olap, containing the weight of each overlap.

Author(s)

Aaron Lun

See Also

mergeWindows, for the functionality behind mergeWindowsList.

findOverlaps, for the functionality behind findOverlapsList.

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
low <- windowCounts(bamFiles, width=1, filter=1)
med <- windowCounts(bamFiles, width=100, filter=1)
high <- windowCounts(bamFiles, width=500, filter=1)

cons <- mergeWindowsList(list(low, med, high), tol=100)
cons$ranges
cons$merged

of.interest <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),
IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))

cons <- findOverlapsList(list(low, med, high), regions=of.interest)
cons$ranges
cons$olap

minimalTests 43

minimalTests Require rejection of a minimal number of tests

Description

Compute a p-value for each cluster based around the rejection of a minimal number or proportion
of tests from that cluster.

Usage

minimalTests(
ids,
tab,
min.sig.n = 3,
min.sig.prop = 0.4,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05

)

Arguments

ids An integer vector or factor containing the cluster ID for each test.

tab A data.frame of results with PValue and at least one logFC field for each test.

min.sig.n Integer scalar containing the minimum number of significant barcodes when
method="holm-min".

min.sig.prop Numeric scalar containing the minimum proportion of significant barcodes when
method="holm-min".

weights A numeric vector of weights for each test. Defaults to 1 for all tests.

pval.col An integer scalar or string specifying the column of tab containing the p-values.
Defaults to "PValue".

fc.col An integer or character vector specifying the columns of tab containing the
log-fold changes. Defaults to all columns in tab starting with "logFC".

fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for
counting tests changing in each direction, see ?"cluster-direction" for more
details.

Details

All tests with the same value of ids are used to define a single cluster. For each cluster, this
function applies the Holm-Bonferroni correction to the p-values from all of its tests. It then chooses
the xth-smallest adjusted p-value as the cluster-level p-value, where x is defined from the larger of
min.sig.n and the product of min.sig.prop and the number of tests. (If x is larger than the total
number of tests, the largest per-test p-value is used instead.)

44 minimalTests

Here, a cluster can only achieve a low p-value if at least x tests also have low p-values. This favors
clusters that exhibit consistent changes across all tests, which is useful for detecting, e.g., systematic
increases in binding across a broad genomic region spanning many windows. By comparison,
combineTests will detect a strong change in a small subinterval of a large region, which may not
be of interest in some circumstances.

The importance of each test within a cluster can be adjusted by supplying different relative weights
values. This may be useful for downweighting low-confidence tests, e.g., those in repeat regions.
In the weighted Holm procedure, weights are used to downscale the per-test p-values, effectively
adjusting the distribution of per-test errors that contribute to family-wise errors. Note that these
weights have no effect between clusters.

To obtain ids, a simple clustering approach for genomic windows is implemented in mergeWindows.
However, anything can be used so long as it is independent of the p-values and does not compro-
mise type I error control, e.g., promoters, gene bodies, independently called peaks. Any tests with
NA values for ids will be ignored.

Value

A DataFrame with one row per cluster and various fields:

• An integer field num.tests, specifying the total number of tests in each cluster.

• Two integer fields num.up.* and num.down.* for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction"
for more details.

• A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

• A numeric field FDR, containing the BH-adjusted cluster-level p-value.

• A character field direction (if fc.col is of length 1), specifying the dominant direction of
change for tests in each cluster. See ?"cluster-direction" for more details.

• One integer field rep.test containing the row index (for tab) of a representative test for each
cluster. See ?"cluster-direction" for more details.

• One numeric field rep.* for each log-FC column in tab, containing a representative log-fold
change for the differential tests in the cluster. See ?"cluster-direction" for more details.

Each row is named according to the ID of the corresponding cluster.

Author(s)

Aaron Lun

References

Holm S (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65-70.

mixedTests 45

See Also

groupedHolmMin, which does the heavy lifting.

combineTests and getBestTest, for another method of combining p-values for each cluster.

mergeWindows, for one method of generating ids.

glmQLFTest, for one method of generating tab.

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
minimal <- minimalTests(ids, tab)
head(minimal)

mixedTests Tests for mixed DB clusters

Description

Intersects two one-sided tests to determine if a cluster contains tests with changes in both directions.

Usage

mixedTests(
ids,
tab,
weights = NULL,
pval.col = NULL,
fc.col = NULL,
fc.threshold = 0.05

)

mixedClusters(...)

Arguments

ids An integer vector or factor containing the cluster ID for each test.
tab A data.frame of results with PValue and at least one logFC field for each test.
weights A numeric vector of weights for each test. Defaults to 1 for all tests.
pval.col An integer scalar or string specifying the column of tab containing the p-values.

Defaults to "PValue".
fc.col An integer or string specifying the single column of tab containing the log-fold

change.
fc.threshold A numeric scalar specifying the FDR threshold to use within each cluster for

counting tests changing in each direction, see ?"cluster-direction" for more
details.

... Further arguments to pass to mixedTests.

46 mixedTests

Details

This function converts two-sided p-values to one-sided counterparts for each direction of log-fold
change. For each direction, the corresponding one-sided p-values are combined by combineTests
to yield a combined p-value for each cluster. Each cluster is associated with two combined p-values
(one in each direction), which are intersected using the Berger’s intersection-union test (IUT).

The IUT p-value provides evidence against the null hypothesis that either direction is not signifi-
cant. In short, a low p-value is only possible if there are significant changes in both directions. This
formally identifies genomic regions containing complex DB events, i.e., where depletion in one
subinterval of the bound/enriched region is accompanied by increasing binding in another subin-
terval. Examples include swaps in adjacent TF binding locations between conditions or shifts in
histone mark patterns in bidirectional promoters.

We expect that the p-values in pval.col are two-sided and independent of the sign of the log-fold
change under the null hypothesis. This is true for likelihood ratio tests but may not be true for others
(e.g., from glmTreat), so caution is required when supplying values in tab.

Value

A DataFrame with one row per cluster and various fields:

• An integer field num.tests, specifying the total number of tests in each cluster.

• Two integer fields num.up.* and num.down.* for each log-FC column in tab, containing the
number of tests with log-FCs significantly greater or less than 0, respectively. See ?"cluster-direction"
for more details.

• A numeric field containing the cluster-level p-value. If pval.col=NULL, this column is named
PValue, otherwise its name is set to colnames(tab[,pval.col]).

• A numeric field FDR, containing the BH-adjusted cluster-level p-value.

• A character field direction, set to "mixed" for all clusters. See ?"cluster-direction" for
more details.

• Two integer fields rep.up.test and rep.down.test, containing the row index (for tab)
of representative tests with positive and negative sign, respectively, for each cluster. See
?"cluster-direction" for more details.

• One numeric field rep.up.* and rep.down.* for each log-FC column in tab, containing log-
fold changes for the representative tests in the cluster. See ?"cluster-direction" for more
details.

Each row is named according to the ID of the corresponding cluster.

Author(s)

Aaron Lun

References

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

normFactors 47

See Also

combineTests, for a more general-purpose method of combining tests.

Examples

ids <- round(runif(100, 1, 10))
tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100), PValue=rbeta(100, 1, 2))
mixed <- mixedTests(ids, tab)
head(mixed)

normFactors Scaling normalization across libraries

Description

Calculate normalization factors using count data from multiple libraries.

Usage

normFactors(
object,
method = NULL,
weighted = FALSE,
...,
assay.id = "counts",
se.out = TRUE

)

Arguments

object A SummarizedExperiment object containing a count matrix and library sizes in
the totals field of the colData.
Alternatively, a DGEList object containing a count matrix in object$counts
and library sizes in object$samples$lib.size.
Alternatively, an ordinary matrix containing counts.

method Deprecated argument, ignored.

weighted A logical scalar indicating whether precision weights should be used for TMM
normalization.

... Other arguments to be passed to calcNormFactors.

assay.id An integer scalar or string specifying the assay values to use for normalization.

se.out A logical scalar indicating whether or not a SummarizedExperiment object should
be returned.
Alternatively, a SummarizedExperiment or DGEList object in which normaliza-
tion factors are to be stored.

48 normFactors

Details

This function uses the trimmed mean of M-values (TMM) method to remove composition biases,
typically in background regions of the genome. The key difference from standard TMM is that
precision weighting is turned off by default so as to avoid upweighting high-abundance regions.
These are more likely to be bound and thus more likely to be differentially bound. Assigning
excessive weight to such regions will defeat the purpose of trimming when normalizing the coverage
of background regions.

The normalization factors are always computed from object. However, if se.out is a (different)
SummarizedExperiment object, these factors are stored in se.out and the modified object. This is
useful when se.out contains counts for windows, but the normalization factors are computed using
larger bins in object. The same logic applies when se.out is a (different) DGEList object.

Note that an error is raised if the library sizes in se.out are not identical to object$totals. This is
because the normalization factors are only comparable when the library sizes are the same. Consis-
tent library sizes can be achieved by using the same readParam object in windowCounts and related
functions.

Value

If se.out=FALSE, a numeric vector containing the relative normalization factors for each library.

If se.out=TRUE, the same vector is stored in the norm.factors field of mcols(object) (if object
is a SummarizedExperiment) or object$samples (if object is a DGEList) and the modified object
is returned.

If se.out is a separate SummarizedExperiment or DGEList object, the normalization factors are
stored inside se.out and the modified object is returned.

Author(s)

Aaron Lun

References

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression anal-
ysis of RNA-seq data. Genome Biology 11, R25.

See Also

calcNormFactors, for the base method.

normOffsets, for the trended normalization strategy.

Examples

counts <- matrix(rnbinom(400, mu=10, size=20), ncol=4)
data <- SummarizedExperiment(list(counts=counts))
data$totals <- colSums(counts)

TMM normalization.
normFactors(data)

normOffsets 49

normOffsets Normalize trended biases across libraries

Description

Calculate normalization offsets by performing a loess fit to count data from multiple libraries.

Usage

normOffsets(object, ..., assay.id = "counts", se.out = TRUE)

Arguments

object A SummarizedExperiment object containing a count matrix and library sizes in
the totals field of the colData.
Alternatively, a DGEList object containing a count matrix in object$counts
and library sizes in object$samples$lib.size.
Alternatively, an ordinary matrix containing counts.

... Other arguments to be passed to loessFit.

assay.id An integer scalar or string specifying the assay values to use for normalization.

se.out A logical scalar indicating whether or not a SummarizedExperiment object should
be returned.
Alternatively, a SummarizedExperiment or DGEList object in which normaliza-
tion factors are to be stored.

Details

This function performs non-linear normalization similar to the fast loess algorithm in normalizeCyclicLoess.
The aims is to account for mean dependencies in the efficiency biases between libraries. For each
sample, a lowess curve is fitted to the log-counts against the log-average count. The fitted value for
each genomic window is used as an offset in a generalized linear model for that feature and sample.
The use of the average count provides more stability than the average log-count when low counts
are present for differentially bound regions.

The trend fits are always computed from object. However, if se.out is a (different) Summa-
rizedExperiment or DGEList object, the trend fits will be used to compute offsets for each entry in
se.out using spline interpolation. This is useful when se.out contains counts for windows in an
endogenous genome, but the trend fits are computed using spike-in chromatin regions.

An error is raised if the library sizes in se.out$totals are not identical to object$totals. This is
because the average abundances are only comparable when the library sizes are the same. Consistent
library sizes can be achieved by using the same readParam object in windowCounts and related
functions.

50 overlapStats

Value

If se.out=FALSE, a numeric matrix of dimensions equal to object, containing the offset for each
observation. These offsets have already been scaled to be comparable in magnitude to the log-
library sizes.

If se.out=TRUE, the same matrix is stored in the offset assay of object (if it is a SummarizedEx-
periment) or object$offset (if a DGEList) and the modified object is returned.

If se.out is a separate SummarizedExperiment or DGEList object, the offset matrix instead has
dimensions equal to se.out. This matrix is stored inside se.out and the modified object is returned.

Author(s)

Aaron Lun

References

Ballman KV, Grill DE, Oberg AL, Therneau TM (2004). Faster cyclic loess: normalizing RNA
arrays via linear models. Bioinformatics 20, 2778-86.

See Also

loessFit, for the fitting algorithm.

normalizeCyclicLoess, for the original inspiration for this method.

Examples

counts <- matrix(rnbinom(400, mu=10, size=20), ncol=4)
data <- SummarizedExperiment(list(counts=counts))
data$totals <- colSums(counts)

TMM normalization.
normFactors(data)

Using loess-based normalization, instead.
offsets <- normOffsets(data)
head(offsets)
offsets <- normOffsets(data, span=0.4)
offsets <- normOffsets(data, iterations=1)

overlapStats Combine statistics for overlap-based clusters

Description

Compute assorted statistics for overlaps between windows and pre-defined genomic regions in a
Hits object.

overlapStats 51

Usage

combineOverlaps(overlaps, tab, o.weights = NULL, i.weights = NULL, ...)

getBestOverlaps(overlaps, tab, o.weights = NULL, i.weights = NULL, ...)

empiricalOverlaps(overlaps, tab, o.weights = NULL, i.weights = NULL, ...)

mixedOverlaps(overlaps, tab, o.weights = NULL, i.weights = NULL, ...)

summitOverlaps(overlaps, region.best, o.summit = NULL, i.summit = NULL)

Arguments

overlaps A Hits object produced by findOverlaps, containing overlaps between regions
(query) and windows (subject).

tab A data.frame of (differential binding) statistics for each window.

o.weights A numeric vector specifying weights for each overlapped window.

i.weights A numeric vector specifying weights for each individual window.

... Other arguments to be passed to the wrapped functions.

region.best An integer vector specifying the window index that is the summit for each re-
gion.

o.summit A logical vector specifying the overlapped windows that are summits, or a cor-
responding integer vector of indices for such windows.

i.summit A logical vector specifying whether an individual window is a summit, or a
corresponding integer vector of indices.

Details

These functions provide convenient wrappers around combineTests, getBestTest, empiricalFDR,
mixedClusters and upweightSummit for handling overlaps between windows and arbitrary pre-
specified regions. They accept Hits objects produced by running findOverlaps between regions
(as the query) and windows (as the subject). Each set of windows overlapping a region is defined
as a cluster to compute various statistics.

A wrapper is necessary as a window may overlap multiple regions. If so, the multiple instances
of that window are defined as distinct “overlapped” windows, where each overlapped window
is assigned to a different region. Each overlapped window is represented by a separate entry of
overlaps. In contrast, the “individual” window just refers to the window itself, regardless of what
it overlaps. This is represented by each row of the RangedSummarizedExperiment object and the
tab derived from it.

The distinction between these two definitions is required to describe the weight arguments. The
o.weights argument refers to the weights for each region-window relationship. This allows for
different weights to be assigned to the same window in different regions. The i.weights argument
is the weight of the window itself, and is the same regardless of the region. If both are specified,
o.weights takes precedence.

52 overlapStats

For summitOverlaps, the region.best argument is designed to accept the rep.test field in the
output of getBestOverlaps (run with by.pval=FALSE). This contains the index for the individ-
ual window that is the summit within each region. In contrast, the i.summit argument indicates
whether an individual window is a summit, e.g., from findMaxima. The o.summit argument does
the same for overlapped windows, though this has no obvious input within the csaw pipeline.

Value

For combineOverlaps, getBestOverlaps, empiricalOverlaps and mixedOverlaps, a DataFrame
is returned from their respective wrapped functions. Each row of the DataFrame corresponds to a
region, where regions without overlapped windows are assigned NA values.

For summitOverlaps, a numeric vector of weights is produced. This can be used as o.weight in
the other two functions.

Author(s)

Aaron Lun

See Also

combineTests, getBestTest, empiricalFDR and upweightSummit, for the underlying functions.

findOverlaps, to generate the required Hits object.

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=1, filter=1)
of.interest <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))

Making some mock results.
N <- nrow(data)
mock <- data.frame(logFC=rnorm(N), PValue=runif(N), logCPM=rnorm(N))

olap <- findOverlaps(of.interest, rowRanges(data))
combineOverlaps(olap, mock)
getBestOverlaps(olap, mock)
empiricalOverlaps(olap, mock)

See what happens when you don't get many overlaps.
getBestOverlaps(olap[1,], mock)
combineOverlaps(olap[2,], mock)
empiricalOverlaps(olap[1,], mock)

Weighting example, with window-specific weights.
window.weights <- runif(N)
comb <- combineOverlaps(olap, mock, i.weight=window.weights)
comb <- getBestOverlaps(olap, mock, i.weight=window.weights)
comb <- empiricalOverlaps(olap, mock, i.weight=window.weights)

Weighting example, with relation-specific weights.

profileSites 53

best.by.ave <- getBestOverlaps(olap, mock, by.pval=FALSE)
w <- summitOverlaps(olap, region.best=best.by.ave$rep.test)
head(w)
stopifnot(length(w)==length(olap))
combineOverlaps(olap, mock, o.weight=w)

Running summitOverlaps for window-specific summits
(output is still relation-specific weights, though).
is.summit <- findMaxima(rowRanges(data), range=100, metric=mock$logCPM)
w <- summitOverlaps(olap, i.summit=is.summit)
head(w)

profileSites Profile binding sites

Description

Get the coverage profile around potential binding sites.

Usage

profileSites(bam.files, regions, param=readParam(), range=5000, ext=100,
average=TRUE, normalize="none", strand=c("ignore", "use", "match"),
BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to one or more BAM files. Alternatively, a
list of BamFile objects.

regions A GenomicRanges object over which profiles are to be aggregated.

param A readParam object containing read extraction parameters.

range An integer scalar specifying the range over which the profile will be collected.

ext An integer scalar or list specifying the average fragment length for single-end
data.

average A logical scalar specifying whether the profiles should be averaged across re-
gions.

normalize A string specifying how normalization of each region’s profile should be per-
formed prior to averaging.

strand A string indicating how stranded regions should be handled.

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.

54 profileSites

Details

This function computes the average coverage profile around the specified regions. Specifically, the
profile is constructed by counting the number of fragments overlapping each base in the interval
flanking each entry of regions. The interval for each entry is centred at its start location (base
zero) and spans the flanking range on either side.

Single-end reads are directionally extended to ext to impute the fragment (see windowCounts for
more details). For paired-end reads, the interval between each pair is used as the fragment. If
multiple bam.files are specified, reads are pooled across files for counting into each profile.

By default, an average of the coverage profiles across all regions is returned. Normalization of
each region’s profile is performed on by setting normalize to:

none: No normalization is performed, i.e., counts per base are directly averaged across all regions.
Thus, the shape of the average profile is largely determined by high-abundance regions.

total: The profile for each region is divided by the sum of coverages across all bases in the inter-
val. This effectively normalizes for the total number of reads in each region.

max: The profile for each region is divided by its maximum value. This ensures that the maximum
height of each region is the same.

If average=FALSE, a separate profile will be returned for each region instead. This may be useful,
e.g., for constructing heatmaps of enrichment across many regions.

The profile can be used to examine average coverage around known features of interest, like genes
or transcription start sites. Its shape can guide the choice of the window size in windowCounts,
or to determine if larger regions should be used in regionCounts. For the former, restricting the
regions to locally maximal windows with findMaxima is recommended to capture the profile of
binding events.

Value

If average=TRUE, a numeric vector of average coverages for each base position within range is
returned, where the average is taken over all regions. The vector is named according to the relative
position of each base to the start of the region. The interpretation of the coverages will depend on
the value of normalize.

If average=FALSE, an integer matrix of coverage values is returned. Each row of the matrix cor-
responds to an entry in regions, while each column corresponds to a base position with range.
Column names are set to the relative position of each base to the start of each region.

Comments on strand specificity

By default, the strandedness of the regions are ignored with strand="ignore". If strand="use",
the behaviour of this function will differ between forward- and reverse-stranded entries in regions.

• Forward-stranded or unstranded regions are processed as previously described above. Base
zero corresponds to the start of the region, negative distances correspond to the 5’ flanking
region, and positive distances correspond to the 3’ flanking region.

• Reverse-stranded regions are flipped, i.e., base zero corresponds to the end of the region.
Negative distances correspond to the 5’ flanking region on the reverse strand, while positive
distances correspond to the 3’ flanking region on this strand.

profileSites 55

This ensures that the center of the profile always corresponds to the 5’ end of the region, with
upstream regions on the left and downstream regions on the right. This may be useful for features
where strandedness is important, e.g., TSS’s.

By default, the strandedness of the region has no effect on the choice of reads that are used. If
strand="match", the profile for reverse-strand regions is constructed from reverse-strand reads
only. Similarly, only forward-strand reads are used for forward- or unstranded regions. Note that
param$forward must be set to NULL for this to work. Flipping of reverse-stranded profiles is also
performed in this setting, as described for strand="use".

Author(s)

Aaron Lun

See Also

findMaxima, windowCounts, wwhm

Examples

bamFile <- system.file("exdata", "rep1.bam", package="csaw")
data <- windowCounts(bamFile, filter=1)
rwsms <- rowSums(assay(data))
maxed <- findMaxima(rowRanges(data), range=100, metric=rwsms)

Running profileSites .
x <- profileSites(bamFile, rowRanges(data)[maxed], range=200)
plot(as.integer(names(x)), x)

x <- profileSites(bamFile, rowRanges(data)[maxed], range=500)
plot(as.integer(names(x)), x)

Introducing some strandedness.
regs <- rowRanges(data)[maxed]
strand(regs) <- sample(c("-", "+", "*"), sum(maxed), replace=TRUE)
x <- profileSites(bamFile, regs, range=500)
plot(as.integer(names(x)), x)
x2 <- profileSites(bamFile, regs, range=500, strand="use")
points(as.integer(names(x2)), x2, col="red")
x3 <- profileSites(bamFile, regs, range=500, strand="match",

param=readParam(forward=NULL))
points(as.integer(names(x3)), x3, col="blue")

Returning separate profiles.
y <- profileSites(bamFile, rowRanges(data)[maxed], range=500, average=FALSE)
dim(y)

56 readParam

readParam readParam class and methods

Description

Class to specify read loading parameters

Details

Each readParam object stores a number of parameters, each pertaining to the extraction of reads
from a BAM file. Slots are defined as:

pe: A string indicating whether paired-end data is present; set to "none", "both", "first" or
"second".

max.frag: An integer scalar, specifying the maximum fragment length corresponding to a read
pair.

dedup: A logical scalar indicating whether marked duplicate reads should be ignored.

minq: An integer scalar, specifying the minimum mapping quality score for an aligned read.

forward: A logical scalar indicating whether only forward reads should be extracted.

restrict: A character vector containing the names of allowable chromosomes from which reads
will be extracted.

discard: A GRanges object containing intervals in which any alignments will be discarded.

Removing low-quality or irrelevant reads

Marked duplicate reads will be removed with dedup=TRUE. This may be necessary when many
rounds of PCR have been performed during library preparation. However, it is not recommended
for routine counting as it will interfere with the downstream statistical methods. Note that the
duplicate field must be set beforehand in the BAM file for this argument to have any effect.

Reads can also be filtered by their mapping quality scores if minq is specified at a non-NA value.
This is generally recommended to remove low-confidence alignments. The exact threshold for minq
will depend on the range of scores provided by the aligner. If minq=NA, no filtering on the score will
be performed.

If restrict is supplied, reads will only be extracted for the specified chromosomes. This is useful
to restrict the analysis to interesting chromosomes, e.g., no contigs/scaffolds or mitochondria. Con-
versely, if discard is set, a read will be removed if the corresponding alignment is wholly contained
within the supplied ranges. This is useful for removing reads in repeat regions.

Note that secondary or supplementary alignments are ignored in all functions. The former usually
refer to alternative mapping locations for the same read, while the latter refer to chimeric reads.
Neither are of much use in a typical ChIP-seq analysis and will be discarded if they are present in
the BAM file.

readParam 57

Parameter settings for paired-end data

For pe="both", reads are extracted with the previously described filters, i.e., discard, minq, dedup.
Extracted reads are then grouped into proper pairs. Proper pairs are those where the two reads are
close together (on the same chromosome, obviously) and in an inward-facing orientation. The
fragment interval is defined as that bounded by the 5’ ends of the two reads in a proper pair.

The fragment size is defined as the length of the interval bounded by the 5’ ends of two inward-
facing reads. Those pairs with fragment sizes above max.frag are removed, as they are more
likely to be the result of mapping errors than genuinely large fragment sizes. Users should run
getPESizes to pick an appropriate value for their data sets, though thresholds of around 500-1000
bp are usually fine.

Paired-end data can also be treated as single-end data by only using one read from each pair with
pe="first" or "second". This is useful for poor-quality data where the paired-end procedure has
obviously failed, e.g., with many interchromosomal read pairs or pairs with large fragment lengths.
Treating the data as single-end may allow the analysis to be salvaged.

In all cases, users should ensure that each BAM file containing paired-end data is properly synchro-
nized prior to count loading. This can be done using standard tools like FixMateInformation from
the Picard suite (http://broadinstitute.github.io/picard).

Parameter settings for single-end data

If pe="none", reads are assumed to be single-end. Read extraction from BAM files is performed
with the same quality filters described above. If forward is NA, reads are extracted from all strands.
Otherwise, reads are only extracted from the forward or reverse strands for TRUE or FALSE, respec-
tively. This may be useful for applications requiring strand-specific counting. A special case is
forward=NULL - see strandedCounts for more details.

Any soft clipping in alignments are ignored during extraction (this is also true for paired-end data).
Soft clips are presumed to be sequencing artifacts, e.g., when the adaptor or barcodes are not prop-
erly removed from the read sequence. They are not relevant to computing genomic coverage. Thus,
in this package, any references to the length or 5’/3’ ends of the read will actually refer to that of
the alignment. This is often more appropriate, e.g., the 5’ end of the alignment represents the end
of the fragment after clipping of the artifacts.

Constructor

readParam(pe="none", max.frag=500, dedup=FALSE, minq=NA, forward=NA, restrict=NULL,
discard=GRanges()): Creates a readParam object. Each argument is placed in the corre-
sponding slot, with coercion into the appropriate type.

Subsetting

In the code snippes below, x is a readParam object.

x$name: Returns the value in slot name.

Other methods

In the code snippets below, x is a readParam object.

58 regionCounts

show(x): Describes the parameter settings in plain English.

reform(x, ...): Creates a new readParam object, based on the existing x. Any named arguments
in ... are used to modify the values of the slots in the new object, with type coercion as
necessary.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts, correlateReads, getPESizes, BiocParallelParam

Examples

blah <- readParam()
blah <- readParam(discard=GRanges("chrA", IRanges(1, 10)))
blah <- readParam(restrict='chr2')
blah$pe
blah$dedup

Use 'reform' if only some arguments need to be changed.
blah
reform(blah, dedup=TRUE)
reform(blah, pe="both", max.frag=212.0)

regionCounts Count reads overlapping each region

Description

Count the number of extended reads overlapping pre-specified regions

Usage

regionCounts(bam.files, regions, ext=100, param=readParam(),
BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

regions A GenomicRanges object containing the regions over which reads are to be
counted.

ext An integer scalar or list describing the average length of the sequenced fragment
in each library, see ?windowCounts.

param A readParam object containing read extraction parameters, or a list of such ob-
jects (one for each BAM file).

regionCounts 59

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.

Details

This function simply provides a wrapper around countOverlaps for read counting into specified
regions. It is provided so as to allow for counting with awareness of the other parameters, e.g., ext,
pe. This allows users to coordinate region-based counts with those from windowCounts. Checking
that the output totals are the same between the two calls is strongly recommended.

Note that the strandedness of regions will not be considered when computing overlaps. In other
words, both forward and reverse reads will be counted into each region, regardless of the stranded-
ness of that region. This can be altered by setting the forward slot in the param object to only count
reads from one strand or the other. The strandedness of the output rowRanges will depend on the
strand(s) from which reads were counted.

See windowCounts for more details on read extension.

Value

A RangedSummarizedExperiment object is returned containing one integer matrix. Each entry of
the matrix contains the count for each library (column) at each region (row). The coordinates of
each region are stored as the rowRanges. The total number of reads, read length and extension
length used in each library are stored in the colData. Other parameters (e.g., param) are stored in
the metadata.

Author(s)

Aaron Lun

See Also

countOverlaps, windowCounts, readParam

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))
regionCounts(bamFiles, regions=incoming)
regionCounts(bamFiles, regions=incoming, param=readParam(restrict="chrB"))

Loading PE data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
regionCounts(bamFile, regions=incoming, param=readParam(pe="both"))
regionCounts(bamFile, regions=incoming, param=readParam(max.frag=100,
pe="first", restrict="chrA"))

60 Result wrappers

Result wrappers Wrappers to get region-level results

Description

Convenience wrappers around lower-level functions to easily obtain region-level results from win-
dow statistics.

Usage

mergeResults(ranges, tab=mcols(ranges), tol, get.best=TRUE,
merge.args=list(), combine.args=list(), best.args=list())

overlapResults(ranges, tab=mcols(ranges), regions, get.best=TRUE,
overlap.args=list(), combine.args=list(), best.args=list())

Arguments

ranges A GRanges or RangedSummarizedExperiment containing genomic intervals,
usually for windows.

tab A data.frame of differential binding results with one row per interval in ranges,
to be passed to combineTests or combineOverlaps.

tol A numeric scalar to be passed to mergeWindows.

get.best A logical scalar indicating whether getBestTest or getBestOverlaps should
be run.

regions A GRanges class containing reference regions to overlap with the windows.

merge.args Further arguments to pass to mergeWindows.

overlap.args Further arguments to pass to findOverlaps.

combine.args Further arguments to pass to combineTests or combineOverlaps.

best.args Further arguments to pass to getBestTest or getBestOverlaps.

Details

mergeResults simply calls mergeWindows to identify clusters of windows corresponding to re-
gions. These clusters are used in combineTests and (optionally) getBestTest to obtain per-region
statistics.

overlapResults simply calls findOverlaps to identify all windows overlapping each reference
region. These overlaps are used in combineOverlaps and (optionally) getBestOverlaps, where
each set of overlapping windows for a reference region are used to define the latter’s statistics.

These wrapper functions are simply for convenience. No other work is performed and so users are
free to call the individual functions separately.

ResultList wrappers 61

Value

mergeResults will return a DataFrame containing regions, the GRanges generated by clustering
windows into regions; combined, the DataFrame containing combined statistics for each clustered
region; and best, the DataFrame containing statistics for the best window in each clustered region.
The metadata contains ids, an integer vector of cluster IDs for ranges from mergeWindows.

overlapResults will return a DataFrame containing regions, the same as the input GRanges of
the same name; combined, the DataFrame containing combined statistics for each reference region;
and best, the DataFrame containing statistics for the best window in each reference region. The
metadata contains overlaps, a Hits object specifying the overlaps from findOverlaps.

Author(s)

Aaron Lun

See Also

mergeWindows, combineTests and getBestTest, for the functions that actually do the work in
mergeResults.

findOverlaps, combineOverlaps and getBestOverlaps, for the functions that actually do the
work in overlapResults.

Examples

Making up some data.
tab <- data.frame(logFC=rnorm(20), logCPM=rnorm(20), PValue=rbeta(20, 1, 2))
gr <- GRanges("chrA", IRanges(sample(1000, 20), width=40))

Merging windows.
(merge.out <- mergeResults(gr, tab, tol=1))
merge.out$merged
merge.out$combined

Overlapping windows with a reference region.
regions <- GRanges("chrA", IRanges(c(10, 500, 900), width=20))
(olap.out <- overlapResults(gr, tab, regions=regions))
olap.out$regions
olap.out$combined

ResultList wrappers Wrappers to combine multiple analyses

Description

Convenience wrappers around lower-level functions to easily obtain region-level results from mul-
tiple sets of windows, each with their own statistics.

62 ResultList wrappers

Usage

mergeResultsList(ranges.list, tab.list=NULL, tol, equiweight=TRUE,
get.best=TRUE, merge.args=list(), combine.args=list(),
best.args=list())

overlapResultsList(ranges.list, tab.list=NULL, regions, equiweight=TRUE,
get.best=TRUE, overlap.args=list(), combine.args=list(),
best.args=list())

Arguments

ranges.list A list of GRanges or RangedSummarizedExperiment objects, usually containing
windows of varying sizes from separate calls to windowCounts.

tab.list A list of data.frames of differential binding results, usually from separate anal-
yses at differing window sizes. Each should contain one row per interval for the
corresponding entry of ranges.list. If NULL, defaults to a list containing the
mcols of each entry of ranges.list.

tol A numeric scalar to be passed to mergeWindows.

equiweight A logical scalar indicating whether windows should be weighted so that each
analysis contributes equally to the combined p-values.

get.best A logical scalar indicating whether getBestTest or getBestOverlaps should
be run.

regions A GRanges class containing reference regions to overlap with the windows.

merge.args Further arguments to pass to mergeWindows.

overlap.args Further arguments to pass to findOverlaps.

combine.args Further arguments to pass to combineTests or combineOverlaps.

best.args Further arguments to pass to getBestTest or getBestOverlaps.

Details

mergeResultsList calls mergeWindowsList to identify clusters of windows corresponding to re-
gions. These clusters are used in combineTests and (optionally) getBestTest to obtain per-region
statistics.

overlapResultsList calls findOverlapsList to identify all windows overlapping each reference
region. These overlaps are used in combineOverlaps and (optionally) getBestOverlaps, where
each set of overlapping windows for a reference region are used to define the latter’s statistics.

Weighting is performed as described in mergeWindowsList and findOverlapsList. If equiweight=FALSE,
weights are reported but are not used in the p-value calculations.

Value

Both functions will return a DataFrame containing regions, a GRanges containing intervals of
clustered windows (for mergeResultsList) or the input regions (for overlapResultsList);
combined, the DataFrame containing combined statistics for each region; and best, the DataFrame
containing statistics for the best window in each region.

scaledAverage 63

The metadata of the DataFrame will contain ranges, a GRanges object containing the concatenated
intervals from all elements of ranges.list; tab, a data.frame containing the combined results from
all tab.list; and weights, a numeric vector of weights per window (for mergeResultsList) or
per overlap (for overlapsResultList).

For mergeResultsList, the metadata will also contain ids, an integer vector specifying the cluster
ID in the output regions for each interval in ranges.

For overlapResultsList, the metadata will also contain overlaps, a Hits object specifying the
overlaps between the input regions (query) and ranges.

Author(s)

Aaron Lun

See Also

mergeWindowsList, combineTests and getBestTest, for the functions that actually do the work
in mergeResultsList.

findOverlapsList, combineOverlaps and getBestOverlaps, for the functions that actually do
the work in overlapResultsList.

Examples

Making up some data.
tab1 <- data.frame(logFC=rnorm(20), logCPM=rnorm(20), PValue=rbeta(20, 1, 2))
gr1 <- GRanges("chrA", IRanges(sample(1000, 20), width=40))

tab2 <- data.frame(logFC=rnorm(20), logCPM=rnorm(20), PValue=rbeta(20, 1, 2))
gr2 <- GRanges("chrA", IRanges(sample(1000, 20), width=40))

Merging windows.
(merge.out <- mergeResultsList(list(gr1, gr2), list(tab1, tab2), tol=1))
merge.out$regions
merge.out$combined

Overlapping windows with a reference.
ref <- GRanges("chrA", IRanges(c(10, 500, 900), width=20))
(olap.out <- overlapResultsList(list(gr1, gr2), list(tab1, tab2), regions=ref))
olap.out$regions
olap.out$combined

scaledAverage Scaled average abundance

Description

Compute the scaled average abundance for each feature.

64 scaledAverage

Usage

scaledAverage(y, scale=1, prior.count=NULL, dispersion=NULL, assay.id="counts")

Arguments

y A SummarizedExperiment object containing a count matrix.

scale a numeric scalar vector indicating the magnitude with which each abundance is
to be downscaled

prior.count a numeric scalar specifying the prior count to add

dispersion a numeric scalar or vector specifying the dispersion for GLM fitting.

assay.id A string or integer scalar indicating which assay of y contains the counts.

Details

This function computes the average abundance of each feature in y, and downscales it according
to scale. For example, if scale=2, the average count is halved, i.e., the returned abundances are
decreased by 1 (as they are log2-transformed values). The aim is to set scale based on the relative
width of regions, to allow abundances to be compared between regions of different size. Widths can
be obtained using the getWidths function.

This function mimics the behaviour of aveLogCPM but handles the prior.count with some subtlety.
Specifically, it scales up the prior count by scale before adding it to the counts. This ensures that
the “effective” prior is the same after the abundance is scaled down. Otherwise, the use of the
same prior would incorrectly result in a smaller abundance for larger regions, regardless of the read
density.

An additional difference from aveLogCPM is that the prior count is not scaled up before being added
to the library sizes/offsets. (See addPriorCount for more details.) This ensures that the modified
offsets do not depend on scale, which allows abundances to be compared between regions of
differing size. Otherwise, larger regions with greater scale would always have (slightly) larger
modified offsets and lower abundances than appropriate.

Note that the adjustment for width assumes that reads are uniformly distributed throughout each
region. This is reasonable for most background regions, but may not be for enriched regions. When
the distribution is highly heterogeneous, the downscaled abundance of a large region will not be an
accurate representation of the abundance of the smaller regions nested within.

For consistency, the prior.count is set to the default value of aveLogCPM.DGEList, if it is not
otherwise specified. If a non-default value is used, make sure that it is the same for all calls to
scaledAverage. This ensures that comparisons between the returned values are valid.

Value

A numeric vector of scaled abundances, with one entry for each row of y.

Author(s)

Aaron Lun

SEmethods 65

See Also

getWidths, aveLogCPM, addPriorCount

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
size1 <- 50
data1 <- windowCounts(bamFiles, width=size1, filter=1)
size2 <- 500
data2 <- windowCounts(bamFiles, width=size2, filter=1)

Adjusting by `scale`, based on median sizes.
head(scaledAverage(data1))
relative <- median(getWidths(data2))/median(getWidths(data1))
head(scaledAverage(data2, scale=relative))

Need to make sure the same prior is used, if non-default.
pc <- 5
head(scaledAverage(data1, prior.count=pc))
head(scaledAverage(data2, scale=relative, prior.count=pc))

Different way to compute sizes, for 1-to-1 relations.
data3 <- regionCounts(bamFiles, regions=resize(rowRanges(data1),

fix="center", width=size2))
head(scaledAverage(data1))
relative.2 <- getWidths(data1)/getWidths(data2)
head(scaledAverage(data3), scale=relative.2)

SEmethods SummarizedExperiment to DGEList

Description

Converting a SummarizedExperiment object to a DGEList object for analysis with edgeR.

Usage

S4 method for signature 'SummarizedExperiment'
asDGEList(object, lib.sizes, norm.factors, assay.id="counts", ...)

Arguments

object A SummarizedExperiment object or its derived classes, like that produced by
windowCounts.

lib.sizes An (optional) integer vector of library sizes.
norm.factors An (optional) numeric vector of normalization factors.
assay.id A string or integer scalar indicating which assay in object contains the count

matrix.
... Other arguments to be passed to DGEList.

66 strandedCounts

Details

Counts are extracted from specified assay matrix in the SummarizedExperiment object and used
to construct a DGEList object via DGEList. If not specified in lib.sizes, library sizes are taken
from the totals field in the column data of object. Warnings will be generated if this field is not
present.

If norm.factors is not specified, asDGEList will attempt to extract normalization factors from
object$norm.factors. If this is not available, factors will be set to the default (all unity). If
assays(object)$offset is present, this will be assigned to the offset field of the output DGEList
object.

Value

A DGEList object is returned containing counts and normalization information.

Author(s)

Aaron Lun

See Also

DGEList

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=100, filter=1)

asDGEList(data)
asDGEList(data, lib.sizes=c(10, 100))
asDGEList(data, norm.factors=c(1.11, 2.23), group=c("a", "b"))

strandedCounts Get strand-specific counts

Description

Obtain strand-specific counts for each genomic window or region.

Usage

strandedCounts(bam.files, param=readParam(forward=NULL), regions=NULL, ...)

strandedCounts 67

Arguments

bam.files a character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

param a readParam object containing read extraction parameters, where the forward
slot must be set to NULL

regions a GRanges object specifying the regions over which reads are to be counted

... other arguments to be passed to windowCounts or regionCounts

Details

Some applications require strand-specific counts for each genomic region. This function calls
windowCounts after setting param$forward to TRUE and FALSE. Any existing value of param$forward
is ignored. If regions is specified, regionCounts is used instead of windowCounts.

The function then concatenates the two RangedSummarizedExperiment objects (one from each
strand). The total numbers of reads are added together to form the new totals. However, the total
numbers of reads for each strand are also stored for future reference. Count loading parameters are
also stored in the metadata.

Each row in the concatenated object corresponds to a stranded genomic region, where the strand of
the region indicates the strand of the reads that were counted in that row. Note that there may not
be two rows for each genomic region. This is because any empty rows, or those with counts below
filter, will be removed within each call to windowCounts.

Value

A RangedSummarizedExperiment object containing strand-specific counts for genomic regions.

Warnings

Users should be aware that many of the downstream range-processing functions are not strand-
aware by default, e.g., mergeWindows. Any strandedness of the ranges will be ignored in these
functions. If strand-specific processing is desired, users must manually set ignore.strand=FALSE.

The input param$forward should be set to NULL, as a safety measure. This is because the returned
object is a composite of two separate calls to the relevant counting function. If the same param
object is supplied to other functions, an error will be thrown if param$forward is NULL. This serves
to remind users that such functions should instead be called twice, i.e., separately for each strand
after setting param$forward to TRUE or FALSE.

Author(s)

Aaron Lun

See Also

windowCounts, regionCounts

68 upweightSummit

Examples

bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
xparam <- readParam(forward=NULL)
out <- strandedCounts(bamFiles, filter=1, param=xparam)
out

strandedCounts(bamFiles, filter=1, width=100, param=xparam)
strandedCounts(bamFiles, filter=1, param=reform(xparam, minq=20))

incoming <- GRanges(c('chrA', 'chrA', 'chrB', 'chrC'),
IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))

strandedCounts(bamFiles, regions=incoming, param=xparam)
strandedCounts(bamFiles, regions=incoming, param=reform(xparam, dedup=TRUE))

Throws an error, as the same reads are not involved.
try(windowCounts(bamFiles, filter=1, width=100, param=xparam))

Library sizes should be the same as that without strand-specificity.
colData(out)
out.ref <- windowCounts(bamFiles, param=reform(xparam, forward=NA))
stopifnot(identical(out.ref$totals, out$totals))

Running assorted functions on strandedCounts output.
mergeWindows(rowRanges(out), tol=100)
mergeWindows(rowRanges(out), tol=100, ignore.strand=FALSE)

rwsms <- rowSums(assay(out))
summary(findMaxima(rowRanges(out), range=100, metric=rwsms))
summary(findMaxima(rowRanges(out), range=100, metric=rwsms, ignore.strand=FALSE))

upweightSummit Upweight summits

Description

Upweight the highest-abudance window(s) in a cluster.

Usage

upweightSummit(ids, summits)

Arguments

ids an integer vector or factor of cluster IDs

summits a logical vector indicating whether each window is a summit, or an integer vector
containing the indices of summit windows

upweightSummit 69

Details

This function computes weights for each window in a cluster, where the highest-abundance win-
dows are upweighted. These weights are intended for use in combineTests, such that the summits
of a cluster have a greater influence on the combined p-value. This is more graduated than simply
using the summits alone, as potential DB between summits can still be detected. Summits can be
obtained through findMaxima or by running getBestTest with by.pval=FALSE.

The exact value of the weight is arbitrary. Greater weight represents a stronger belief that DB occurs
at the most abundant window. Here, the weighting scheme is designed such that the maximum
Simes correction is not more than twice that without weighting. It will also be no more than twice
that from applying Simes’ method on the summits alone. This (restrained) conservativeness is an
acceptable cost for considering DB events elsewhere in the cluster, while still focusing on the most
abundant site.

Value

A numeric vector of weights, where the highest-abundance window in each cluster is assigned a
greater weight. Any windows with NA values for ids or summits will have a weight of zero.

Author(s)

Aaron Lun

References

Benjamini Y and Hochberg Y (1997). Multiple hypotheses testing with weights. Scand. J. Stat. 24,
407-418.

See Also

combineTests, findMaxima, getBestTest

Examples

nwin <- 20
set.seed(20)
ids <- sample(5, nwin, replace=TRUE)
summits <- sample(5, nwin, replace=TRUE)==1L
weights <- upweightSummit(ids, summits)

Checking that the summit is upweighted in each cluster.
split(data.frame(summits, weights), ids)

70 windowCounts

windowCounts Count reads overlapping each window

Description

Count the number of extended reads overlapping a sliding window at spaced positions across the
genome.

Usage

windowCounts(bam.files, spacing=50, width=spacing, ext=100, shift=0,
filter=10, bin=FALSE, param=readParam(), BPPARAM=SerialParam())

Arguments

bam.files A character vector containing paths to sorted and indexed BAM files. Alterna-
tively, a list of BamFile objects.

spacing An integer scalar specifying the distance between consecutive windows.

width An integer scalar specifying the width of the window.

ext An integer scalar or a list of two integer scalars/vectors, containing the average
length(s) of the sequenced fragments in each library.

shift An integer scalar specifying how much the start of each window should be
shifted to the left.

filter An integer scalar for the minimum count sum across libraries for each window.

bin A logical scalar indicating whether binning should be performed.

param A readParam object containing read extraction parameters.

BPPARAM A BiocParallelParam specifying how parallelization is to be performed across
files.

Value

A RangedSummarizedExperiment object is returned containing one integer matrix. Each entry of
the matrix contains the count for each library (column) at each window (row). The coordinates of
each window are stored as the rowRanges. The total number of reads in each library are stored as
totals in the colData, along with the read (rlen) and extension lengths (ext) for each library.
Other window counting parameters (e.g., spacing, width, param) are stored in the metadata.

Defining the sliding windows

A window is defined as a genomic interval of size equal to width. The value of width can be
interpreted as the width of the contact area between the DNA and protein. In practical terms, it
determines the spatial resolution of the analysis. Larger windows count reads over a larger region
which results in larger counts. This results in greater detection power at the cost of resolution.

By default, the first window on a chromosome starts at base position 1. This can be shifted to the
left by specifying an appropriate value for shift. New windows are defined by sliding the current

windowCounts 71

window to the right by the specified spacing. Increasing spacing will reduce the frequency at
which counts are extracted from the genome. This results in some loss of resolution but it may be
necessary when machine memory is limited.

If bin is set, settings are internally adjusted so that all reads are counted into non-overlapping adja-
cent bins of size width. Specifically, spacing is set to width and filter is capped at a maximum
value of 1 (empty bins can be retained with filter=0). Only the 5’ end of each read or the midpoint
of each fragment (for paired-end data) is used in counting.

Read extraction and counting

Read extraction from the BAM files is governed by the param argument. This specifies whether
reads are to be read in single- or paired-end mode, whether to apply a threshold to the mapping
quality, and so on – see ?readParam for details. The strandedness of the output rowRanges is set
based on the strand(s) from which the reads are extracted and counted. This is determined by the
value of the forward slot in the input param object.

Fragments are inferred from reads by directional extension in single-end data (see below) or by
identifying proper pairs in paired-end data (see readParam and getPESizes for more details). The
number of fragments overlapping the window for each library is then counted for each window
position. Windows will be removed if the count sum across all libraries is below filter. This
reduces the memory footprint of the output by not returning empty or near-empty windows, which
are usually uninteresting anyway.

Elaborating on directional extension

For single-end reads, directional extension is performed whereby each read is extended from its
3’ end to the average fragment length, i.e., ext. This obtains a rough estimate of the interval
of the fragment from which the read was derived. It is particularly useful for TF data, where
extension specifically increases the coverage of peaks that exhibit strand bimodality. No extension
is performed if ext is set to NA, such that the read length is used as the fragment length in that
library.

If libraries have different fragment lengths, this can be accommodated by supplying a list of 2
elements to ext. The first element (named init.ext here, for convenience) should be an integer
vector specifying the extension length for each library. The second element (final.ext) should
be an integer scalar specifying the final fragment length. All reads are directionally extended by
init.ext, and the resulting fragment is resized to final.ext by shrinking or expanding from the
fragment midpoint. For a bimodal peak, scaling effectively aligns the subpeaks on a given strand
across all libraries to a common location. This removes the most obvious differences in widths.

If any element of init.ext is NA, no extension is performed for the corresponding library. If
final.ext is set to NA, no rescaling is performed from the library-specific fragment lengths. Values
of init.ext are stored as the ext field in the colData of the output object, while final.ext is
stored in the metadata.

Comments on ext for paired-end data

Directional extension is not performed for paired-end data, so the values in ext are not used di-
rectly. Hwoever, rescaling can still be performed to standardize fragment lengths across libraries by
resizing each fragment from its midpoint. This will use the second element of ext as final.ext,
if ext is specified as a list of length 2.

72 wwhm

On a similar note, some downstream functions will use the extension length in the output colData
as the average fragment length. Thus, to maintain compatibility, the ext field in colData is set to
the average of the inferred fragment lengths for valid read pairs. These values will not be used in
windowCounts, but instead, in functions like getWidths.

Author(s)

Aaron Lun

See Also

correlateReads, readParam, getPESizes

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("exdata", c("rep1.bam", "rep2.bam"), package="csaw")
windowCounts(bamFiles, filter=1)
windowCounts(bamFiles, width=100, filter=1)

Multiple extension lengths.
windowCounts(bamFiles, ext=list(c(50, 100), NA), filter=1)
windowCounts(bamFiles, ext=list(c(50, 100), 80), filter=1)

Loading PE data.
bamFile <- system.file("exdata", "pet.bam", package="csaw")
windowCounts(bamFile, param=readParam(pe="both"), filter=1)
windowCounts(bamFile, param=readParam(pe="first"), filter=1)
windowCounts(bamFile, param=readParam(max.frag=100, pe="both"), filter=1)
windowCounts(bamFile, param=readParam(max.frag=100, pe="both", restrict="chrA"), filter=1)

wwhm Window width at half maximum

Description

Get the width of the window from the half-maximum of the coverage profile.

Usage

wwhm(profile, regions, ext=100, proportion=0.5, rlen=NULL)

Arguments

profile a numeric vector containing a coverage profile, as produced by profileSites

regions the GRanges object with which the profile was constructed

ext an integer scalar specifying the average fragment length for single-end data

wwhm 73

proportion a numeric scalar specifying the proportion of the maximum coverage at which
to compute the window width

rlen a numeric scalar or vector containing read lengths, if any ext=NA, i.e., fragments
are unextended reads

Details

This function computes the ideal window size, based on the width of the peak in the coverage profile
at the specified proportion of the maximum. Obviously, the values of regions and ext should
be the same as those used in profileSites (set ext to the median fragment length for paired-end
data). The regions should contain windows of a constant size.

Some subtleties are involved in obtaining the window width. First, twice the average fragment
length must be subtracted from the peak width, as the profile is constructed from (inferred) frag-
ments. The size of the viewpoints in regions must also be subtracted, to account for the inflated
peak width when spatial resolution is lost after aggregation across many windows.

Value

An integer scalar is returned, specifying the ideal window width.

Author(s)

Aaron Lun

See Also

profileSites, getWidths

Examples

x <- dnorm(-200:200/100) # Mocking up a profile.
windows <- GRanges("chrA", IRanges(1, 50)) # Making up some windows.

wwhm(x, windows)
wwhm(x, windows, ext=50)
wwhm(x, windows, proportion=0.2)

Need to set 'rlen' if ext=NA.
wwhm(x, windows, ext=NA, rlen=10)

Index

∗ annotation
detailRanges, 21

∗ clustering
clusterWindows, 10
clusterWindowsList, 12
mergeWindows, 39
mergeWindowsList, 41

∗ counting
readParam, 56
regionCounts, 58
strandedCounts, 66
windowCounts, 70

∗ diagnostics
checkBimodality, 4
correlateReads, 17
getPESizes, 35
maximizeCcf, 37
profileSites, 53
wwhm, 72

∗ documentation
csawUsersGuide, 19

∗ filtering
filterWindows, 27
findMaxima, 31
getWidths, 36
scaledAverage, 63

∗ normalization
normFactors, 47
normOffsets, 49
SEmethods, 65

∗ testing
clusterFDR, 8
combineTests, 14
getBestTest, 32
overlapStats, 50
upweightSummit, 68

∗ visualization
extractReads, 25

$,readParam-method (readParam), 56

addPriorCount, 3, 4, 64, 65
asDGEList (SEmethods), 65
asDGEList,SummarizedExperiment-method

(SEmethods), 65
aveLogCPM, 30, 32, 64, 65
aveLogCPM.DGEList, 64

BamFile, 4, 17, 25, 53, 58, 67, 70
BiocParallelParam, 4, 17, 53, 58, 59, 70
browseURL, 19

calcNormFactors, 47, 48
calculateCPM, 3
ccf, 18
checkBimodality, 4
cluster-direction, 6
clusterFDR, 8
clusterWindows, 9, 10, 10, 13
clusterWindowsList, 12
colData, 47, 49
combineOverlaps, 41, 60–63
combineOverlaps (overlapStats), 50
combineTests, 6–11, 14, 23–25, 33, 34, 40,

41, 44–47, 51, 52, 60–63, 69
consolidateOverlaps (defunct), 20
consolidateTests (defunct), 20
consolidateWindows (defunct), 20
controlClusterFDR, 11, 12
controlClusterFDR (clusterFDR), 8
correlateReads, 17, 38, 58, 72
countOverlaps, 59
cpm, 3, 4
csaw (csawUsersGuide), 19
csawUsersGuide, 19

DataFrame, 12, 15, 24, 34, 44, 46, 52, 61, 62
defunct, 20
detailRanges, 21
DGEList, 47, 49, 65, 66

empiricalFDR, 6–8, 23, 51, 52

74

INDEX 75

empiricalOverlaps (overlapStats), 50
extractReads, 25

filterWindows, 27
filterWindows (defunct), 20
filterWindowsControl (filterWindows), 27
filterWindowsGlobal, 20
filterWindowsGlobal (filterWindows), 27
filterWindowsLocal (filterWindows), 27
filterWindowsProportion

(filterWindows), 27
findMaxima, 31, 52, 54, 55, 69
findOverlaps, 41, 42, 51, 52, 60–62
findOverlapsList, 20, 62, 63
findOverlapsList (mergeWindowsList), 41

GenomicRanges, 4, 53, 58
getBestOverlaps, 60–63
getBestOverlaps (overlapStats), 50
getBestTest, 6–8, 15, 16, 32, 45, 51, 52,

60–63, 69
getPESizes, 35, 36, 57, 58, 71, 72
getWidths, 30, 36, 64, 65, 72, 73
glmQLFTest, 16, 34, 45
glmTreat, 46
GRanges, 11–13, 21, 22, 25, 26, 39, 41, 42, 56,

60–63
GRangesList, 26
groupedHolmMin, 45
groupedSimes, 16

Hits, 42, 50–52, 61, 63

loessFit, 49, 50

maximizeCcf, 37
mcols, 62
mergeResults (Result wrappers), 60
mergeResultsList, 13, 20
mergeResultsList (ResultList wrappers),

61
mergeWindows, 10–13, 15, 16, 33, 34, 39, 41,

42, 44, 45, 60–62, 67
mergeWindowsList, 20, 41, 62, 63
minimalTests, 6–8, 15, 16, 34, 43
mixedClusters, 51
mixedClusters (mixedTests), 45
mixedOverlaps (overlapStats), 50
mixedTests, 6–8, 45, 45

normalizeCyclicLoess, 49, 50
normFactors, 47
normOffsets, 48, 49

overlapResults (Result wrappers), 60
overlapResultsList, 20
overlapResultsList (ResultList

wrappers), 61
overlapStats, 50

profileSites, 53, 72, 73

RangedSummarizedExperiment, 11, 13, 27,
30, 39, 41, 51, 59, 60, 62, 70

readParam, 4, 17, 18, 25, 26, 35, 36, 48, 49,
53, 56, 58, 59, 70–72

readParam-class (readParam), 56
reform, 26
reform (readParam), 56
reform,readParam-method (readParam), 56
regionCounts, 29, 36, 37, 54, 58, 58, 67
resize, 29
Result wrappers, 60
ResultList wrappers, 61
rowRanges, 29

scaleControlFilter (filterWindows), 27
scaledAverage, 27, 30, 63
scaleOffset, 3, 4
SEmethods, 65
show,readParam-method (readParam), 56
strandedCounts, 57, 66
SummarizedExperiment, 47, 49, 64
summitOverlaps (overlapStats), 50

upweightSummit, 51, 52, 68

windowCounts, 3, 5, 13, 26, 28, 30–32, 36, 37,
40, 41, 48, 49, 54, 55, 58, 59, 62, 65,
67, 70

wwhm, 55, 72

	calculateCPM
	checkBimodality
	cluster-direction
	clusterFDR
	clusterWindows
	clusterWindowsList
	combineTests
	correlateReads
	csawUsersGuide
	defunct
	detailRanges
	empiricalFDR
	extractReads
	filterWindows
	findMaxima
	getBestTest
	getPESizes
	getWidths
	maximizeCcf
	mergeWindows
	mergeWindowsList
	minimalTests
	mixedTests
	normFactors
	normOffsets
	overlapStats
	profileSites
	readParam
	regionCounts
	Result wrappers
	ResultList wrappers
	scaledAverage
	SEmethods
	strandedCounts
	upweightSummit
	windowCounts
	wwhm
	Index

