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Scope and Purpose of this Document

This document is a user manual for COSNet , the software implementing the
model developed by Bertoni et al. (2011), Frasca et al. (2013). It provides an
introduction into how to use COSNet. Not all features of the R package are
described in full detail. Such details can be obtained from the documentation
enclosed in the R package.
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1 Introduction

This package implements the algorithm COSNet (Bertoni et al. 2011, Frasca
et al. 2013 ), which has been proposed for predicting node labels in partially
labeled graphs, especially when labelings are highly unbalanced. In this
context, nodes represent the instances of the problem, whose labels can be
positive (+) or negative (-). Unbalanced labeling means that one class (usu-
ally the negative class) considerably outnumbers the other one. Many real
world problems are characterized by few positives and much more negatives,
such as the gene function prediction, where genes having the most specific
biomolecular functions are very few (Ashburner et al. 2000 ), or in medical
diagnosys of cancer, where patients having a certain cancer (positive class)
are the large minority. The instances are only partially labeled, and the aim
is to extend the labeling to all the instances. In this context, imbalance-
unaware algorithms may suffer high decay in performance when classifying
new instances (Ling and Sheng 2007 ). COSNet automaticly learns from the
input data the model parameters able in dealing with the label imbalance,
and efficiently infers binary labels for the unlabeled instances in the graph.

Formally, the input of COSNet is represented by a weighted graph G =
(V,W ), where V is the set of nodes and W = (wij |ni,j=1) is the symmetric
weight matrix with null diagonal: the weight wij ∈ [0, 1] denotes a similarity
index of node i with respect to node j. The labeling of V in positive V+ and
negative V− nodes is known only for a subset S ⊂ V , while is unknown for
U = V \S. The aim is to extend the labeling to nodes in U , that is inferring
a bipartition of U in positive U+ and negative U− instances. The labeling
imbalance can be represented through a coefficient ϵ = |S+|/|S−|, where S+

and S− are the sets of positive and negative examples, respectively. The
labeling is considered highly unbalanced when ϵ << 1.

2 COSNet

COSNet is a binary classifier based on a parametric Hopfield network which
embeds the partial labeling and node similarities W and predict the binary
labels for the unlabeled nodes through an asynchronous dynamics, which
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updates only the unlabeled neurons. In order to deal with label imbalance,
the model introduces two parameters, α ∈ [0, π2 [ and γ ∈ R, determining
respectively the neuron activation values (sinα, − cosα) and the neuron
activation thresholds. The parameters are automatically learned by an effi-
cient supervised procedure on the basis of the input data. The initial state
for neuron v ∈ V is set as follows:

xv(0) =


sinα if v is positive labeled

− cosα if v is negative labeled
0 if v is unlabeled

For each unlabeled node i, the initial state xi = 0 is changed to − cosα or
to sinα according to the following asynchronous dynamics:

xi(t) =


sinα if

i−1∑
j=1

Wijxj(t) +
n∑

k=i+1

Wikxk(t− 1)− γ > 0

− cosα if
i−1∑
j=1

Wijxj(t) +
n∑

k=i+1

Wikxk(t− 1)− γ ≤ 0

where n = |V | and t is the current time. At each time t, the state of the
network is x(t) = (x1(t), x2(t), . . . , xn(t)), and a Lyapunov state function
named energy function is associated to the network:

E(x) = −1

2

n∑
i,j=1
j ̸=i

Wijxixj +
n∑

i=1

xiγ

The dynamics converges to an equilibrium state x̂ corresponding to a mini-
mum of E (Frasca et.al 2013 ), which is used to infer the bipartiton (U+, U−)
of U : U+ = {i ∈ U, x̂i = sinα} and U− = {i ∈ U, x̂i = − cosα}. Further-
more, COSNet can been adopted as ranker by assigning to each neuron a
score related to its internal energy at equilibrium. More precisely, the score
assigned to neuron i ∈ U is the following:

s(i) =
∑
j ̸=i

(Wij x̂j − γ) (1)

3 An Example of the Usage of COSNet for the
Functional Classification of Yeast Genes with the
Functional Catalogue

In this section we apply COSNet to predict the functions of yeast proteins.
We adopt a binary protein-protein interactions data set of 2338 yeast proteins
from the STRING data base (von Mering et al. 2002), contained in the R
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package bionetdata1 and the corresponding Functional Catalogue (FunCat)
annotations.

3.1 Data Loading

First, let us load the library and check the data:

> library(COSNet);

COSNet: Cost-Sensitive algorithm for binary classification in graphs.

> library(bionetdata)
> data(Yeast.STRING.data)
> dim(Yeast.STRING.data)

[1] 2338 2338

> rownames(Yeast.STRING.data)[1:10]

[1] "YJR121W" "YAL009W" "YGR165W" "YLR298C" "YOL052C" "YOL051W" "YPR083W"
[8] "YOR110W" "YGR032W" "YML015C"

The named squared matrix Yeast.STRING.data contains 1 in position (i, j)
if the corresponding proteins interact, 0 otherwise. In the same package, in
order to define the binary labels, we load the annotations of 176 FunCat
classes for the proteins included in Yeast.STRING.data. Annotations refer
the funcat-2.1 scheme, and funcat-2.1 data 20070316 data, available from
the MIPS web site2.

> data(Yeast.STRING.FunCat)
> dim(Yeast.STRING.FunCat)

[1] 2338 177

> rownames(Yeast.STRING.FunCat)[1:10]

[1] "YJR121W" "YAL009W" "YGR165W" "YLR298C" "YOL052C" "YOL051W" "YPR083W"
[8] "YOR110W" "YGR032W" "YML015C"

> colnames(Yeast.STRING.FunCat)[1:10]

[1] "00" "01" "01.01" "01.01.03" "01.01.06"
[6] "01.01.06.05" "01.01.09" "01.02" "01.03" "01.03.01"

1The package can be downloaded at http://cran.r-
project.org/web/packages/bionetdata/index.html.

2http://mips.gsf.de/projects/funcat
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The number of columns is 177 because the authors added a dummy class
"00". Even in this case, Yeast.STRING.FunCat is a binary matrix whose
i, j−th component is 1 if protein i is annotated with class j, 0 otherwise. Note
that the row names of both Yeast.STRING.FunCat and Yeast.STRING.data
are identical. We first exclude the dummy class, that is useful only when
hierarchical computations are performed, and then we select some classes
and, since COSNet needs {1,−1}-labels, we change each 0-component of
Yeast.STRING.FunCat to -1.

> ## excluding the dummy "00" root
> to.be.excl <- which(colnames(Yeast.STRING.FunCat) == "00")
> Yeast.STRING.FunCat <- Yeast.STRING.FunCat[, -to.be.excl]
> ## choosing the first 35 classes
> labeling <- Yeast.STRING.FunCat[, 1:35]
> ## number of positive labels
> colSums(labeling)

01 01.01 01.01.03 01.01.06 01.01.06.05 01.01.09
859 170 32 45 27 56

01.02 01.03 01.03.01 01.03.01.03 01.03.04 01.03.16
49 161 50 26 38 57

01.03.16.01 01.04 01.05 01.05.02 01.05.02.04 01.05.02.07
36 239 277 56 26 54

01.05.03 01.05.25 01.06 01.06.02 01.06.02.01 01.06.06
35 78 122 33 25 21

01.07 01.07.01 01.20 02 02.01 02.07
119 87 39 196 27 23

02.10 02.11 02.13 02.13.03 02.19
24 24 65 34 35

> Yeast.STRING.FunCat[Yeast.STRING.FunCat == 0] <- -1

3.2 Predicting Labels for Unlabeled Nodes with COSNet

Now we predict the node labels through a 5-fold cross validation procedure
implemented by the function cosnet.cross.validation provided by the
COSNet package. This procedure at each time hides the labels in a fold and
predicts them with COSNet .

> out <- cosnet.cross.validation(labeling, Yeast.STRING.data, 5, cost=0)

Note that the cost parameter of COSNet is set to 0: this means that the
unregularized version is adopted. Now we test the regularized version of
COSNet on the same data:

> out.r <- cosnet.cross.validation(labeling, Yeast.STRING.data, 5, cost=0.0001)
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3.3 Processing the Results

The output of the cosnet.cross.validation function is a list whose fields
are: "labels", named matrix containing the input labels; "predictions",
named matrix containing the binary predictions; "scores", named matrix
containing the predicted scores according to Eq. (1).

> predictions <- out$predictions
> scores <- out$scores;
> labels <- out$labels;
> predictions.r <- out.r$predictions
> scores.r <- out.r$scores;
> labels.r <- out.r$labels;

3.4 Assessing COSNet Performance

We now evaluate the performance of COSNet in terms of F-score, Area under
the ROC Curve (AUC) and in terms of Precision at x Recall level (PxR).
We use the R package PerfMeas, which provides functions to compute the
performance measures we need:

> library(PerfMeas);
> ## computing F-score
> Fs <- F.measure.single.over.classes(labels, predictions);
> ## Average F-score
> Fs$average[4]

F
0.3466633

> Fs.r <- F.measure.single.over.classes(labels.r, predictions.r);
> # Average F-score for the regularized version of COSNet
> Fs.r$average[4]

F
0.3730588

> ## Computing AUC
> labels[labels <= 0] <- 0;
> labels.r[labels.r <= 0] <- 0;
> auc <- AUC.single.over.classes(labels, scores);
> ## AUC averaged across classes
> auc$average

[1] 0.7194839
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> auc.r <- AUC.single.over.classes(labels.r, scores.r);
> ## AUC averaged across classes for the regularized version of COSNet
> auc.r$average

[1] 0.7238873

> ## Computing precision at different recall levels
> PXR <- precision.at.multiple.recall.level.over.classes(labels,
+ scores, seq(from=0.1, to=1, by=0.1));
> ## average PxR
> PXR$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.60183905 0.50588289 0.44262558 0.28633597 0.17849027 0.12234766 0.07694232

0.8 0.9 1
0.05976083 0.05244384 0.04199703

> PXR.r <- precision.at.multiple.recall.level.over.classes(labels.r,
+ scores.r, seq(from=0.1, to=1, by=0.1));
> ## average PxR for the regularized version of COSNet
> PXR.r$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.61074734 0.52660301 0.43232053 0.33313806 0.18800896 0.12047075 0.07009886

0.8 0.9 1
0.05994311 0.05273410 0.04178305

4 An Example of the Usage of COSNet for Inferring
Gene Ontology Labels for Fly Genes

In this section we show an application of COSNet in predicting the Gene On-
tology (GO)(Ashburner et al. 2000 ) labels for 9361 Drosophila melanogaster
genes. The input similarity matrix is obtained by integrating several types
of data, including co-expression, genetic interactions, protein ontologies and
physical interactions. The Gene Ontology annotations (release 15-5-13) with
3-300 annotated genes have been considered. Both data and annotations can
be downloaded at http://frasca.di.unimi.it/cosnetdata/.

4.1 Data Loading

> ## reading similarity network W
> W <-
+ as.matrix(read.table(file=paste(sep="", "http://frasca.di.unimi.it/",
+ "cosnetdata/u.sum.fly.txt"), sep=" "))
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> ## reading GO annotations
> GO.ann.sel <-
+ as.matrix(read.table(file=paste(sep="", "http://frasca.di.unimi.it/",
+ "cosnetdata/GO.ann.fly.15.5.13.3_300.txt"), sep = " ",))
> GO.classes <- colnames(GO.ann.sel)
> ## changing "." to ":"
> GO.classes <- unlist(lapply(GO.classes, function(x){
+ substr(x, 3, 3) <- ":"; return(x)}))
> colnames(GO.ann.sel) <- GO.classes;

4.2 Predicting GO Labels with COSNet

Now we determine a random partition in 3 folds of the input data, hide the
labels of the genes in one of these folds (test set), and use the labels in the
other 2 folds as training set for COSNet .

> n<-nrow(W);
> ## selecting some classes to be predicted
> classes <- c("GO:0009605", "GO:0022414", "GO:0032504",
+ "GO:0002376", "GO:0009888", "GO:0065003");
> labels <- GO.ann.sel[, classes]
> ## for COSNet negative labels must be -1
> labels[labels <= 0] <- -1;
> ## Determining a random partition for the class GO:0009605 in 3 folds
> ## ensuring that each fold has a similar proportion of positives
> folds <- find.division.strat(labels[, 1], 1:n, 3)
> ## hiding the labels of the test set (the fold of index 1)
> labels[folds[[1]], ] <- 0;
> ## predicting the hidden labels for each class with COSNet
> res <- apply(labels, 2, function(x, W, cost){
+ return(COSNet(W, x, cost))},
+ W = W, cost = 0.0001);

4.3 Result Evaluation

The function COSNet returns a list with five members, including binary pre-
dictions, ranking scores, and learned parameters. We now show how to
compute, for instance, the AUC and the P10R achieved for the first GO
term. Moreover, we show the value learned for the model parameters.

> library(PerfMeas);
> ## last predicted term
> term.ind <- 6;
> scores <- res[[term.ind]]$scores;
> test.genes <- names(scores);
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> test.labels <- as.vector(GO.ann.sel[test.genes, term.ind]);
> pos.labels <- sum(test.labels > 0)
> pos.labels

[1] 101

> alpha <- res[[term.ind]]$alpha
> gamma <- res[[term.ind]]$c
> alpha

[1] 1.491138

> gamma

[1] 0.02244554

> AUC <- AUC.single(scores, test.labels)
> AUC

[1] 0.7454012

> P10R <- precision.at.recall.level(scores, test.labels,
+ rec.level = 0.1)
> P10R

[1] 0.4074074

5 Usage of COSNet for Predicting Therapeutical
Categories of Drugs

This section shows an application of COSNet in predicting drugs categories
from DrugBank for 1253 DrugBank drugs. The drug similarity matrix and
the corresponding labels are available in the R package bionetdata, and con-
tain respectively the Tanimoto chemical structure similarity scores among
the considered drugs and the 0/1 labels for 45 drug categories, where in pos-
tition i, j-th we have the value 1 whether the drug i is associated with the
drug category j, 0 otherwise.

5.1 Loading the data

> library(bionetdata);
> ## similarity matrix DD.chem.data
> data(DD.chem.data);
> ## label matrix DrugBank.Cat
> data(DrugBank.Cat);
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5.2 Learning the Model Parameters

We show now how to learn the COSNet parameters using the package func-
tion optimizep. Fixed one drug category, first of all, we determine a random
stratified partition of the data using the function find.division.strat pro-
vided by the COSNet package, and then hide the labels of one fold and use
the other folds as training set.

> n <- nrow(DD.chem.data);
> drugs <- rownames(DD.chem.data);
> drug.category <- c("Cephalosporins");
> labels <- as.vector(DrugBank.Cat[, drug.category]);
> names(labels) <- rownames(DrugBank.Cat);
> ## Determining a random partition in 5 folds ensuring that each
> ## fold has a similar proportion of positives
> folds <- find.division.strat(labels, 1:n, 5)
> labels[labels <= 0] <- -1;
> ## hiding the test labels (the fold of index 1)
> test.drugs <- folds[[1]];
> training.drugs <- setdiff(1:n, test.drugs);
> labels[test.drugs] <- 0;

Now we need to project the training nodes into a bidimensional space, step
necessary for the learning procedure (Frasca et al. 2013 ), and we can do
it using the package function generate_points, which returns a list with
two fields: pos_vect, the named vector of abscissae of projected points and
neg_vect, the named vector of ordinates of projected points. Then we can
call the function optimizep to learn the parameters of the model.

> points <- generate_points(DD.chem.data, test.drugs, labels);
> str(points)

List of 2
$ pos_vect: num [1:1253, 1] 7.13 7.74 4.46 6.42 2.06 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:1253] "DB00115" "DB00116" "DB00117" "DB00118" ...
.. ..$ : NULL

$ neg_vect: num [1:1253, 1] 210 246 190 188 105 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:1253] "DB00115" "DB00116" "DB00117" "DB00118" ...
.. ..$ : NULL

> opt_parameters <- optimizep(points$pos_vect[training.drugs],
+ points$neg_vect[training.drugs], labels[training.drugs]);
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5.3 Running the Sub-network of Unlabeled Nodes to Infer
Labels

We now extend the learned parameters to the sub-network of unlabeled nodes
and run it with the package function runSubnet.

> ## alpha parameter
> alpha <- opt_parameters$alpha;
> ## gamma parameter
> gamma <- opt_parameters$c;
> ## optimal F-score achieved during learning phase
> ## procedure (see Frasca et al. 2013)
> Fscore <- opt_parameters$Fscore;
> res <- runSubnet(DD.chem.data, labels, alpha, gamma, cost=0.035);

5.4 Extracting Predictions

The output of the runSubnet function is a list with three fields: “state"
which is a named vector containing the binary predictions; “scores", named
vector containing the scores described in Eq. (1); “iter", integer representing
the network iterations needed to reach the fixed state. By means of this
vectors, we can now compute the prediction performance.

> library(PerfMeas)
> str(res)

List of 3
$ state : Named num [1:251] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
..- attr(*, "names")= chr [1:251] "DB00130" "DB00134" "DB00138" "DB00145" ...

$ scores: Named num [1:251] -9.03 -6.94 -5.67 -5.94 -7.98 ...
..- attr(*, "names")= chr [1:251] "DB00130" "DB00134" "DB00138" "DB00145" ...

$ iter : num 3

> res$iter

[1] 3

> labels <- as.vector(DrugBank.Cat[, drug.category]);
> names(labels) <- rownames(DrugBank.Cat);
> test.names <- names(res$scores);
> AUC <- AUC.single(res$scores, labels[test.names]);
> AUC;

[1] 1

> P10R <- precision.at.recall.level(res$scores,
+ labels[test.names], rec.level=0.1);
> P10R;
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[1] 1

> Fs <- F.measure.single(res$state, labels[test.names]);
> Fs

P R S F A Pos.
1 1 1 1 1 6

5.5 Cross Validating COSNet in Predicting Drug Therapeu-
tical Categories

> library(bionetdata);
> data(DD.chem.data);
> data(DrugBank.Cat);
> labels <- DrugBank.Cat;
> labels[labels <= 0] <- -1;
> out <- cosnet.cross.validation(labels, DD.chem.data,
+ 5, cost=0.035);
> Fs <- F.measure.single.over.classes(labels, out$predictions);
> Fs$average[4];

F
0.3612979

> labels[labels <= 0] <- 0;
> auc <- AUC.single.over.classes(labels, out$scores);
> auc$average

[1] 0.8102065

> PXR <- precision.at.multiple.recall.level.over.classes(labels,
+ out$scores, seq(from=0.1, to=1, by=0.1));
> PXR$avgPXR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5675857 0.5373942 0.4758364 0.4038890 0.3363022 0.2270787 0.1885276 0.1478038

0.9 1
0.1142575 0.0558420
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