This package is designed for reactome pathway-based analysis. Reactome is an open-source, open access, manually curated and peer-reviewed pathway database.
If you use ReactomePA1 in published research, please cite:
G Yu, QY He*. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems 2016, 12(2):477-479. doi:[10.1039/C5MB00663E](http://dx.doi.org/10.1039/C5MB00663E)
Currently ReactomePA supports several model organisms, including ‘celegans’, ‘fly’, ‘human’, ‘mouse’, ‘rat’, ‘yeast’ and ‘zebrafish’. The input gene ID should be Entrez gene ID. We recommend using clusterProfiler::bitr
to convert biological IDs. For more detail, please refer to bitr: Biological Id TranslatoR.
Enrichment analysis is a widely used approach to identify biological themes. Here, we implement hypergeometric model to assess whether the number of selected genes associated with reactome pathway is larger than expected. The p values were calculated based the hypergeometric model2.
library(ReactomePA)
data(geneList)
de <- names(geneList)[abs(geneList) > 1.5]
head(de)
## [1] "4312" "8318" "10874" "55143" "55388" "991"
x <- enrichPathway(gene=de,pvalueCutoff=0.05, readable=T)
head(as.data.frame(x))
## ID Description
## R-HSA-68877 R-HSA-68877 Mitotic Prometaphase
## R-HSA-2500257 R-HSA-2500257 Resolution of Sister Chromatid Cohesion
## R-HSA-5663220 R-HSA-5663220 RHO GTPases Activate Formins
## R-HSA-68882 R-HSA-68882 Mitotic Anaphase
## R-HSA-2555396 R-HSA-2555396 Mitotic Metaphase and Anaphase
## R-HSA-2467813 R-HSA-2467813 Separation of Sister Chromatids
## GeneRatio BgRatio pvalue p.adjust qvalue
## R-HSA-68877 25/307 128/10281 4.488951e-14 3.070443e-11 2.665020e-11
## R-HSA-2500257 23/307 120/10281 7.339950e-13 2.510263e-10 2.178806e-10
## R-HSA-5663220 21/307 133/10281 3.440692e-10 7.844777e-08 6.808948e-08
## R-HSA-68882 24/307 196/10281 3.839792e-09 5.822015e-07 5.053273e-07
## R-HSA-2555396 24/307 197/10281 4.255859e-09 5.822015e-07 5.053273e-07
## R-HSA-2467813 23/307 185/10281 6.108439e-09 6.963620e-07 6.044139e-07
## geneID
## R-HSA-68877 CDCA8/CDC20/CENPE/CCNB2/NDC80/NCAPH/SKA1/CENPM/CENPN/CDK1/ERCC6L/MAD2L1/KIF18A/BIRC5/NCAPG/AURKB/CCNB1/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/TAOK1
## R-HSA-2500257 CDCA8/CDC20/CENPE/CCNB2/NDC80/SKA1/CENPM/CENPN/CDK1/ERCC6L/MAD2L1/KIF18A/BIRC5/AURKB/CCNB1/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/TAOK1
## R-HSA-5663220 CDCA8/CDC20/CENPE/NDC80/SKA1/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/BIRC5/AURKB/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/TAOK1/EVL
## R-HSA-68882 CDCA8/CDC20/CENPE/NDC80/UBE2C/SKA1/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/BIRC5/AURKB/PTTG1/LMNB1/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/ESPL1/TAOK1
## R-HSA-2555396 CDCA8/CDC20/CENPE/NDC80/UBE2C/SKA1/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/BIRC5/AURKB/PTTG1/LMNB1/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/ESPL1/TAOK1
## R-HSA-2467813 CDCA8/CDC20/CENPE/NDC80/UBE2C/SKA1/CENPM/CENPN/ERCC6L/MAD2L1/KIF18A/BIRC5/AURKB/PTTG1/KIF2C/PLK1/BUB1B/ZWINT/CENPU/SPC25/CENPI/ESPL1/TAOK1
## Count
## R-HSA-68877 25
## R-HSA-2500257 23
## R-HSA-5663220 21
## R-HSA-68882 24
## R-HSA-2555396 24
## R-HSA-2467813 23
For calculation/parameter details, please refer to the vignette of DOSE3..
Pathway analysis using NGS data (eg, RNA-Seq and ChIP-Seq) can be performed by linking coding and non-coding regions to coding genes via ChIPseeker package, which can annotates genomic regions to their nearest genes, host genes, and flanking genes respectivly. In addtion, it provides a function, seq2gene, that simultaneously considering host genes, promoter region and flanking gene from intergenic region that may under control via cis-regulation. This function maps genomic regions to genes in a many-to-many manner and facilitate functional analysis. For more details, please refer to ChIPseeker4.
We implement barplot, dotplot enrichment map and category-gene-network for visualization. It is very common to visualize the enrichment result in bar or pie chart. We believe the pie chart is misleading and only provide bar chart.
barplot(x, showCategory=8)
dotplot(x, showCategory=15)
Enrichment map can be viusalized by enrichMap:
enrichMap(x, layout=igraph::layout.kamada.kawai, vertex.label.cex = 1)
In order to consider the potentially biological complexities in which a gene may belong to multiple annotation categories, we developed cnetplot function to extract the complex association between genes and diseases.
cnetplot(x, categorySize="pvalue", foldChange=geneList)
We have developed an R
package clusterProfiler5 for comparing biological themes among gene clusters. ReactomePA works fine with clusterProfiler and can compare biological themes at reactome pathway perspective.
require(clusterProfiler)
data(gcSample)
res <- compareCluster(gcSample, fun="enrichPathway")
plot(res)
A common approach in analyzing gene expression profiles was identifying differential expressed genes that are deemed interesting. The enrichPathway function we demonstrated previously were based on these differential expressed genes. This approach will find genes where the difference is large, but it will not detect a situation where the difference is small, but evidenced in coordinated way in a set of related genes. Gene Set Enrichment Analysis (GSEA)6 directly addressed this limitation. All genes can be used in GSEA; GSEA aggregates the per gene statistics across genes within a gene set, therefore making it possible to detect situations where all genes in a predefined set change in a small but coordinated way. For algorithm details, please refer to the vignette of DOSE3.
y <- gsePathway(geneList, nPerm=1000,
minGSSize=120, pvalueCutoff=0.2,
pAdjustMethod="BH", verbose=FALSE)
res <- as.data.frame(y)
head(res)
## ID
## R-HSA-1474244 R-HSA-1474244
## R-HSA-69481 R-HSA-69481
## R-HSA-162909 R-HSA-162909
## R-HSA-5693532 R-HSA-5693532
## R-HSA-1428517 R-HSA-1428517
## R-HSA-69242 R-HSA-69242
## Description
## R-HSA-1474244 Extracellular matrix organization
## R-HSA-69481 G2/M Checkpoints
## R-HSA-162909 Host Interactions of HIV factors
## R-HSA-5693532 DNA Double-Strand Break Repair
## R-HSA-1428517 The citric acid (TCA) cycle and respiratory electron transport
## R-HSA-69242 S Phase
## setSize enrichmentScore NES pvalue p.adjust
## R-HSA-1474244 258 -0.4577630 -1.943204 0.001338688 0.01601891
## R-HSA-69481 135 0.6871874 2.886236 0.003058104 0.01601891
## R-HSA-162909 121 0.5840669 2.403613 0.003095975 0.01601891
## R-HSA-5693532 129 0.4963430 2.065806 0.003105590 0.01601891
## R-HSA-1428517 132 0.3771694 1.577651 0.003105590 0.01601891
## R-HSA-69242 120 0.6701216 2.745101 0.003125000 0.01601891
## qvalues rank leading_edge
## R-HSA-1474244 0.01036599 1943 tags=33%, list=16%, signal=29%
## R-HSA-69481 0.01036599 1905 tags=48%, list=15%, signal=41%
## R-HSA-162909 0.01036599 3321 tags=57%, list=27%, signal=42%
## R-HSA-5693532 0.01036599 1990 tags=34%, list=16%, signal=29%
## R-HSA-1428517 0.01036599 3805 tags=48%, list=30%, signal=34%
## R-HSA-69242 0.01036599 1905 tags=50%, list=15%, signal=43%
## core_enrichment
## R-HSA-1474244 11132/4017/1288/4811/3910/3371/1291/3791/831/1301/4238/7450/3685/80781/1280/1306/4314/3675/8425/977/4054/7042/3912/4322/1278/1511/4060/30008/1277/164656/22795/10516/81578/1293/2247/1295/58494/8076/5118/2192/1281/83700/50509/4319/1290/1513/11096/2202/4313/2199/3693/10536/1294/3339/1462/1289/1292/3908/4016/3909/4053/6678/1296/633/5654/2331/63923/7043/3913/1300/2200/1634/7177/1287/3679/4680/2006/7373/1307/1311/1308/652/4148/54829/4239
## R-HSA-69481 8318/55388/9133/983/1111/891/4174/4171/993/990/51512/9156/23594/4998/4175/4173/10926/5984/85236/5688/5709/641/5698/1763/8970/5693/8317/4176/5713/5982/5721/2810/5691/9088/995/5685/7468/4172/7336/5690/5684/83990/5686/5695/11200/10213/8345/7534/80010/23198/5983/7979/4683/63967/3018/5699/5714/5702/3014/5708/5692/8290/5704/580/6119
## R-HSA-162909 3159/3932/5688/9688/3055/5709/5698/919/5693/5902/5713/5721/5691/292/1104/5685/1794/9631/5690/5684/5686/5695/11168/10213/940/23198/7979/23165/5699/5714/6921/55706/8815/5702/23636/9978/5905/5708/1174/5692/5704/5901/164/60489/4927/79902/5683/10762/1175/5694/8480/11097/5718/5682/5716/9972/904/81929/162/5707/57122/4869/926/5696/7514/79023/3837/920/9818
## R-HSA-5693532 10635/890/1111/9156/5888/2237/54962/5984/3838/85236/5111/641/1763/8970/5427/5982/2070/7468/5424/7336/2140/83990/11200/2072/8345/80010/5983/2138/8914/4683/63967/3018/142/3014/5531/5425/54107/7517/8290/5536/580/6119/10721/672
## R-HSA-1428517 5163/29078/3945/3948/1537/3418/9377/54205/9997/9123/4726/4704/50/1737/29796/7386/3419/6566/5467/5160/5165/4725/518/4723/9551/506/2108/1349/4708/2271/4700/509/3421/10131/54539/25874/1351/3939/1329/8050/4719/51204/4697/4702/516/4694/1340/1431/6389/4712/4722/4191/4711/522/1337/7381/4710/7384/10476/7351/55066/514/682
## R-HSA-69242 8318/890/9837/81620/51659/4174/4171/993/990/898/23594/4998/1163/9134/4175/4173/2237/6502/5984/994/84296/4609/5111/5688/64785/5709/5698/1763/5693/5427/23649/4176/5713/5982/5557/5721/5691/5685/1019/5558/4172/5424/5690/5684/5885/5686/5695/10213/23198/5983/7979/5699/5714/5702/5425/5708/5692/54107/5704/6119
enrichMap(y)
gseaplot(y, geneSetID = "R-HSA-69242")
In ReactomePA, we also implemented viewPathway to visualized the pathway.
viewPathway("E2F mediated regulation of DNA replication", readable=TRUE, foldChange=geneList)
More documents can be found on the project website, https://guangchuangyu.github.io/ReactomePA.
Here is the output of sessionInfo()
on the system on which this document was compiled:
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ReactomePA_1.20.2 DOSE_3.2.0 org.Hs.eg.db_3.4.1
## [4] AnnotationDbi_1.38.0 IRanges_2.10.1 S4Vectors_0.14.1
## [7] Biobase_2.36.2 BiocGenerics_0.22.0 BiocStyle_2.4.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.10 compiler_3.4.0 plyr_1.8.4
## [4] tools_3.4.0 digest_0.6.12 RSQLite_1.1-2
## [7] evaluate_0.10 memoise_1.1.0 tibble_1.3.1
## [10] gtable_0.2.0 rlang_0.1 graph_1.54.0
## [13] igraph_1.0.1 fastmatch_1.1-0 DBI_0.6-1
## [16] yaml_2.1.14 gridExtra_2.2.1 fgsea_1.2.1
## [19] stringr_1.2.0 knitr_1.15.1 rappdirs_0.3.1
## [22] rprojroot_1.2 grid_3.4.0 qvalue_2.8.0
## [25] data.table_1.10.4 BiocParallel_1.10.1 GOSemSim_2.2.0
## [28] rmarkdown_1.5 reactome.db_1.59.1 reshape2_1.4.2
## [31] GO.db_3.4.1 DO.db_2.9 ggplot2_2.2.1
## [34] magrittr_1.5 splines_3.4.0 backports_1.0.5
## [37] scales_0.4.1 htmltools_0.3.6 graphite_1.22.0
## [40] colorspace_1.3-2 labeling_0.3 stringi_1.1.5
## [43] lazyeval_0.2.0 munsell_0.4.3
1. Yu, G. & He, Q.-Y. ReactomePA: An r/bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 12, 477–479 (2016).
2. Boyle, E. I. et al. GO::TermFinder–open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics (Oxford, England) 20, 3710–3715 (2004).
3. Yu, G., Wang, L.-G., Yan, G.-R. & He, Q.-Y. DOSE: An r/bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31, 608–609 (2015).
4. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: An r/bioconductor package for chip peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).
5. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an r package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 16, 284–287 (2012).
6. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102, 15545–15550 (2005).