BiocNeighbors 1.2.0
The BiocNeighbors package implements a few algorithms for exact nearest neighbor searching:
Both methods involve a component of randomness during index construction, though the k-nearest neighbors result is fully deterministic1 Except in the presence of ties, see ?findKNN
for details..
The most obvious application is to perform a k-nearest neighbors search. We’ll mock up an example here with a hypercube of points, for which we want to identify the 10 nearest neighbors for each point.
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
The findKNN()
method expects a numeric matrix as input with data points as the rows and variables/dimensions as the columns.
We indicate that we want to use the KMKNN algorithm by setting BNPARAM=KmknnParam()
(which is also the default, so this is not strictly necessary here).
We could use a VP tree instead by setting BNPARAM=VptreeParam()
.
fout <- findKNN(data, k=10, BNPARAM=KmknnParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 6709 9627 8683 8907 4811 8728 9935 5093 1868 121
## [2,] 7593 9203 6652 961 2856 8711 4412 8907 4666 2811
## [3,] 8361 2534 7096 1443 8355 5135 730 9233 5057 3333
## [4,] 6116 9935 8994 4613 7533 7671 4938 587 9627 6673
## [5,] 4363 7309 3126 6247 4800 2470 1907 285 7956 3990
## [6,] 8871 5867 7618 1557 1016 7067 473 187 271 1517
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0.9134994 0.9279878 0.9321199 0.9432648 0.9759880 0.9883781 0.9904984
## [2,] 0.8612897 0.9499456 0.9703708 0.9782614 1.0085772 1.0099281 1.0102099
## [3,] 1.0378627 1.0478542 1.0709121 1.0858699 1.0869769 1.0923892 1.0965950
## [4,] 0.9568614 1.0717803 1.0742441 1.0990840 1.1128575 1.1139495 1.1360398
## [5,] 0.8285719 0.8375260 0.8930268 0.9053241 0.9169200 0.9226835 0.9358931
## [6,] 0.7955337 0.9129179 0.9275191 0.9435631 0.9749024 0.9931279 0.9980455
## [,8] [,9] [,10]
## [1,] 0.9966502 1.0032015 1.0052059
## [2,] 1.0129669 1.0177056 1.0362768
## [3,] 1.1051209 1.1088504 1.1158236
## [4,] 1.1429454 1.1429834 1.1538995
## [5,] 0.9490294 0.9546187 0.9621188
## [6,] 0.9994188 1.0027133 1.0101063
Each row of the index
matrix corresponds to a point in data
and contains the row indices in data
that are its nearest neighbors.
For example, the 3rd point in data
has the following nearest neighbors:
fout$index[3,]
## [1] 8361 2534 7096 1443 8355 5135 730 9233 5057 3333
… with the following distances to those neighbors:
fout$distance[3,]
## [1] 1.037863 1.047854 1.070912 1.085870 1.086977 1.092389 1.096595 1.105121
## [9] 1.108850 1.115824
Note that the reported neighbors are sorted by distance.
Another application is to identify the k-nearest neighbors in one dataset based on query points in another dataset. Again, we mock up a small data set:
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
We then use the queryKNN()
function to identify the 5 nearest neighbors in data
for each point in query
.
qout <- queryKNN(data, query, k=5, BNPARAM=KmknnParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4271 6336 1896 66 5255
## [2,] 577 2631 4942 8018 9216
## [3,] 1282 7391 6915 9507 6113
## [4,] 8115 5553 2903 1729 1585
## [5,] 9979 5919 7712 1312 6032
## [6,] 7124 1550 5867 4266 1743
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8255378 0.9534278 0.9662206 0.9895064 0.9973368
## [2,] 0.9082208 0.9134062 0.9218634 0.9518809 0.9672650
## [3,] 0.9416898 0.9466910 0.9773505 0.9956400 0.9989399
## [4,] 1.0114986 1.0219494 1.0297100 1.0405589 1.0559577
## [5,] 0.8845057 0.8972909 0.8973070 0.9025898 0.9055773
## [6,] 1.0793351 1.0811115 1.1228046 1.1345023 1.1360885
Each row of the index
matrix contains the row indices in data
that are the nearest neighbors of a point in query
.
For example, the 3rd point in query
has the following nearest neighbors in data
:
qout$index[3,]
## [1] 1282 7391 6915 9507 6113
… with the following distances to those neighbors:
qout$distance[3,]
## [1] 0.9416898 0.9466910 0.9773505 0.9956400 0.9989399
Again, the reported neighbors are sorted by distance.
Users can perform the search for a subset of query points using the subset=
argument.
This yields the same result as but is more efficient than performing the search for all points and subsetting the output.
findKNN(data, k=5, subset=3:5)
## $index
## [,1] [,2] [,3] [,4] [,5]
## [1,] 8361 2534 7096 1443 8355
## [2,] 6116 9935 8994 4613 7533
## [3,] 4363 7309 3126 6247 4800
##
## $distance
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.0378627 1.047854 1.0709121 1.0858699 1.086977
## [2,] 0.9568614 1.071780 1.0742441 1.0990840 1.112857
## [3,] 0.8285719 0.837526 0.8930268 0.9053241 0.916920
If only the indices are of interest, users can set get.distance=FALSE
to avoid returning the matrix of distances.
This will save some time and memory.
names(findKNN(data, k=2, get.distance=FALSE))
## [1] "index"
It is also simple to speed up functions by parallelizing the calculations with the BiocParallel framework.
library(BiocParallel)
out <- findKNN(data, k=10, BPPARAM=MulticoreParam(3))
For multiple queries to a constant data
, the pre-clustering can be performed in a separate step with buildIndex()
.
The result can then be passed to multiple calls, avoiding the overhead of repeated clustering2 The algorithm type is automatically determined when BNINDEX
is specified, so there is no need to also specify BNPARAM
in the later functions..
pre <- buildIndex(data, BNPARAM=KmknnParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
Advanced users may also be interested in the raw.index=
argument, which returns indices directly to the precomputed object rather than to data
.
This may be useful inside package functions where it may be more convenient to work on a common precomputed object.
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.18.0 BiocNeighbors_1.2.0 knitr_1.22
## [4] BiocStyle_2.12.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 bookdown_0.9 digest_0.6.18
## [4] stats4_3.6.0 magrittr_1.5 evaluate_0.13
## [7] stringi_1.4.3 S4Vectors_0.22.0 rmarkdown_1.12
## [10] tools_3.6.0 stringr_1.4.0 parallel_3.6.0
## [13] xfun_0.6 yaml_2.2.0 compiler_3.6.0
## [16] BiocGenerics_0.30.0 BiocManager_1.30.4 htmltools_0.3.6
Wang, X. 2012. “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.” Proc Int Jt Conf Neural Netw 43 (6):2351–8.
Yianilos, P. N. 1993. “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces.” In SODA, 93:311–21. 194.