systemPipeR 1.18.0
Users want to provide here background information about the design of their VAR-Seq project.
This report describes the analysis of a VAR-Seq project studying the genetic differences among several strains … from organism ….
Typically, users want to specify here all information relevant for the analysis of their NGS study. This includes detailed descriptions of FASTQ files, experimental design, reference genome, gene annotations, etc.
Load workflow environment with sample data into your current working directory. The sample data are described here.
library(systemPipeRdata)
genWorkenvir(workflow = "varseq")
setwd("varseq")
Alternatively, this can be done from the command-line as follows:
Rscript -e "systemPipeRdata::genWorkenvir(workflow='varseq')"
In the workflow environments generated by genWorkenvir
all data inputs are stored in
a data/
directory and all analysis results will be written to a separate
results/
directory, while the systemPipeVARseq.Rmd
script and the targets
file are expected to be located in the parent directory. The R session is expected to run from this parent
directory. Additional parameter files are stored under param/
.
To work with real data, users want to organize their own data similarly
and substitute all test data for their own data. To rerun an established
workflow on new data, the initial targets
file along with the corresponding
FASTQ files are usually the only inputs the user needs to provide.
Now open the R markdown script systemPipeVARseq.Rmd
in your R IDE (e.g. vim-r or RStudio) and
run the workflow as outlined below.
After opening the Rmd
file of this workflow in Vim and attaching a connected
R session via the F2
(or other) key, use the following command sequence to run your R
session on a computer node.
q("no") # closes R session on head node
srun --x11 --partition=short --mem=2gb --cpus-per-task 4 --ntasks 1 --time 2:00:00 --pty bash -l
module load R/3.4.2
R
Now check whether your R session is running on a computer node of the cluster and assess your environment.
system("hostname") # should return name of a compute node starting with i or c
getwd() # checks current working directory of R session
dir() # returns content of current working directory
The systemPipeR
package needs to be loaded to perform the analysis steps shown in
this report (H Backman and Girke 2016).
library(systemPipeR)
If applicable users can load custom functions not provided by systemPipeR
. Skip
this step if this is not the case.
source("systemPipeVARseq_Fct.R")
targets
fileThe targets
file defines all FASTQ files and sample comparisons of the analysis workflow.
targetspath <- system.file("extdata", "targetsPE.txt", package = "systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
targets[1:4, 1:4]
## FileName1 FileName2
## 1 ./data/SRR446027_1.fastq.gz ./data/SRR446027_2.fastq.gz
## 2 ./data/SRR446028_1.fastq.gz ./data/SRR446028_2.fastq.gz
## 3 ./data/SRR446029_1.fastq.gz ./data/SRR446029_2.fastq.gz
## 4 ./data/SRR446030_1.fastq.gz ./data/SRR446030_2.fastq.gz
## SampleName Factor
## 1 M1A M1
## 2 M1B M1
## 3 A1A A1
## 4 A1B A1
The following removes reads with low quality base calls (here Phred scores below 20) from all FASTQ files.
args <- systemArgs(sysma = "param/trimPE.param", mytargets = "targetsPE.txt")[1:4]
# Note: subsetting!
filterFct <- function(fq, cutoff = 20, Nexceptions = 0) {
qcount <- rowSums(as(quality(fq), "matrix") <= cutoff, na.rm = TRUE)
fq[qcount <= Nexceptions]
# Retains reads where Phred scores are >= cutoff with N
# exceptions
}
preprocessReads(args = args, Fct = "filterFct(fq, cutoff=20, Nexceptions=0)",
batchsize = 1e+05)
writeTargetsout(x = args, file = "targets_PEtrim.txt", overwrite = TRUE)
The following seeFastq
and seeFastqPlot
functions generate and plot a series of
useful quality statistics for a set of FASTQ files including per cycle quality box
plots, base proportions, base-level quality trends, relative k-mer
diversity, length and occurrence distribution of reads, number of reads
above quality cutoffs and mean quality distribution. The results are
written to a PDF file named fastqReport.pdf
.
args <- systemArgs(sysma = "param/tophat.param", mytargets = "targets.txt")
fqlist <- seeFastq(fastq = infile1(args), batchsize = 1e+05,
klength = 8)
pdf("./results/fastqReport.pdf", height = 18, width = 4 * length(fqlist))
seeFastqPlot(fqlist)
dev.off()
BWA-MEM
The NGS reads of this project are aligned against the reference genome
sequence using the highly variant tolerant short read aligner BWA-MEM
(Li 2013; Li and Durbin 2009). The parameter settings of the aligner are
defined in the bwa.param
file.
args <- systemArgs(sysma = "param/bwa.param", mytargets = "targets.txt")
sysargs(args)[1] # Command-line parameters for first FASTQ file
Runs the alignments sequentially (e.g. on a single machine)
moduleload(modules(args))
system("bwa index -a bwtsw ./data/tair10.fasta")
bampaths <- runCommandline(args = args)
writeTargetsout(x = args, file = "targets_bam.txt", overwrite = TRUE)
Alternatively, the alignment jobs can be submitted to a compute cluster,
here using 72 CPU cores (18 qsub
processes each with 4 CPU cores).
moduleload(modules(args))
system("bwa index -a bwtsw ./data/tair10.fasta")
resources <- list(walltime = 120, ntasks = 1, ncpus = cores(args),
memory = 1024)
reg <- clusterRun(args, conffile = ".batchtools.conf.R", Njobs = 18,
template = "batchtools.slurm.tmpl", runid = "01", resourceList = resources)
getStatus(reg = reg)
waitForJobs(reg = reg)
writeTargetsout(x = args, file = "targets_bam.txt", overwrite = TRUE)
Check whether all BAM files have been created
file.exists(outpaths(args))
gsnap
An alternative variant tolerant aligner is gsnap
from the gmapR
package
(Wu and Nacu 2010). The following code shows how to run this aligner on
multiple nodes of a computer cluster that uses Torque as scheduler.
library(gmapR)
library(BiocParallel)
library(batchtools)
args <- systemArgs(sysma = "param/gsnap.param", mytargets = "targetsPE.txt")
gmapGenome <- GmapGenome(systemPipeR::reference(args), directory = "data",
name = "gmap_tair10chr", create = TRUE)
f <- function(x) {
library(gmapR)
library(systemPipeR)
args <- systemArgs(sysma = "param/gsnap.param", mytargets = "targetsPE.txt")
gmapGenome <- GmapGenome(reference(args), directory = "data",
name = "gmap_tair10chr", create = FALSE)
p <- GsnapParam(genome = gmapGenome, unique_only = TRUE,
molecule = "DNA", max_mismatches = 3)
o <- gsnap(input_a = infile1(args)[x], input_b = infile2(args)[x],
params = p, output = outfile1(args)[x])
}
resources <- list(walltime = 120, ntasks = 1, ncpus = cores(args),
memory = 1024)
param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl",
resources = resources)
d <- bplapply(seq(along = args), f, BPPARAM = param)
writeTargetsout(x = args, file = "targets_gsnap_bam.txt", overwrite = TRUE)
The following generates a summary table of the number of reads in each sample and how many of them aligned to the reference.
read_statsDF <- alignStats(args = args)
write.table(read_statsDF, "results/alignStats.xls", row.names = FALSE,
quote = FALSE, sep = "\t")
The symLink2bam
function creates symbolic links to view the BAM alignment files in a
genome browser such as IGV. The corresponding URLs are written to a file
with a path specified under urlfile
, here IGVurl.txt
.
symLink2bam(sysargs = args, htmldir = c("~/.html/", "projects/gen242/"),
urlbase = "http://biocluster.ucr.edu/~tgirke/", urlfile = "./results/IGVurl.txt")
The following performs variant calling with GATK
, BCFtools
and VariantTools
in parallel mode on a compute cluster (McKenna et al. 2010; Li 2011). If a cluster is not
available, the runCommandline
function can be used to run the variant calling with GATK
and BCFtools
for each sample sequentially on a single machine, or callVariants
in case
of VariantTools
. Typically, the user would choose here only one variant caller rather
than running several ones.
GATK
The following creates in the inital step a new targets
file
(targets_bam.txt
). The first column of this file gives the paths to
the BAM files created in the alignment step. The new targets file and the
parameter file gatk.param
are used to create a new SYSargs
instance for running GATK. Since GATK involves many processing steps, it is
executed by a bash script gatk_run.sh
where the user can specify the
detailed run parameters. All three files are expected to be located in the
current working directory. Samples files for gatk.param
and
gatk_run.sh
are available in the param
subdirectory
provided by systemPipeRdata
.
moduleload("picard/1.130")
moduleload("samtools/1.3")
system("picard CreateSequenceDictionary R=./data/tair10.fasta O=./data/tair10.dict")
system("samtools faidx data/tair10.fasta")
args <- systemArgs(sysma = "param/gatk.param", mytargets = "targets_bam.txt")
resources <- list(walltime = 120, ntasks = 1, ncpus = 4, memory = 1024)
reg <- clusterRun(args, conffile = ".batchtools.conf.R", Njobs = 18,
template = "batchtools.slurm.tmpl", runid = "01", resourceList = resources)
getStatus(reg = reg)
waitForJobs(reg = reg)
# unlink(outfile1(args), recursive = TRUE, force = TRUE)
writeTargetsout(x = args, file = "targets_gatk.txt", overwrite = TRUE)
BCFtools
The following runs the variant calling with BCFtools
. This step requires
in the current working directory the parameter file sambcf.param
and the bash script
sambcf_run.sh
.
args <- systemArgs(sysma = "param/sambcf.param", mytargets = "targets_bam.txt")
resources <- list(walltime = 120, ntasks = 1, ncpus = 4, memory = 1024)
reg <- clusterRun(args, conffile = ".batchtools.conf.R", Njobs = 18,
template = "batchtools.slurm.tmpl", runid = "01", resourceList = resources)
getStatus(reg = reg)
waitForJobs(reg = reg)
# unlink(outfile1(args), recursive = TRUE, force = TRUE)
writeTargetsout(x = args, file = "targets_sambcf.txt", overwrite = TRUE)
VariantTools
library(gmapR)
library(BiocParallel)
library(batchtools)
args <- systemArgs(sysma = "param/vartools.param", mytargets = "targets_gsnap_bam.txt")
f <- function(x) {
library(VariantTools)
library(gmapR)
library(systemPipeR)
args <- systemArgs(sysma = "param/vartools.param", mytargets = "targets_gsnap_bam.txt")
gmapGenome <- GmapGenome(systemPipeR::reference(args), directory = "data",
name = "gmap_tair10chr", create = FALSE)
tally.param <- TallyVariantsParam(gmapGenome, high_base_quality = 23L,
indels = TRUE)
bfl <- BamFileList(infile1(args)[x], index = character())
var <- callVariants(bfl[[1]], tally.param)
sampleNames(var) <- names(bfl)
writeVcf(asVCF(var), outfile1(args)[x], index = TRUE)
}
resources <- list(walltime = 120, ntasks = 1, ncpus = cores(args),
memory = 1024)
param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl",
resources = resources)
d <- bplapply(seq(along = args), f, BPPARAM = param)
writeTargetsout(x = args, file = "targets_vartools.txt", overwrite = TRUE)
VCF files can be imported into R with the readVcf
function. Both VCF
and VRanges
objects provide
convenient data structure for working with variant data (e.g. SNP quality filtering).
library(VariantAnnotation)
args <- systemArgs(sysma = "param/filter_gatk.param", mytargets = "targets_gatk.txt")
vcf <- readVcf(infile1(args)[1], "A. thaliana")
vcf
vr <- as(vcf, "VRanges")
vr
The function filterVars
filters VCF files based on user definable
quality parameters. It sequentially imports each VCF file into R, applies the
filtering on an internally generated VRanges
object and then writes
the results to a new subsetted VCF file. The filter parameters are passed on to
the corresponding argument as a character string. The function applies this
filter to the internally generated VRanges
object using the standard
subsetting syntax for two dimensional objects such as: vr[filter, ]
.
The parameter files (filter_gatk.param
, filter_sambcf.param
and
filter_vartools.param
), used in the filtering steps, define the paths to
the input and output VCF files which are stored in new SYSargs
instances.
GATK
The below example filters for variants that are supported by >=x
reads and >=80% of them support the called variants. In addition, all
variants need to pass >=x
of the soft filters recorded in the VCF
files generated by GATK. Since the toy data used for this workflow is
very small, the chosen settings are unreasonabley relaxed. A more
reasonable filter setting is given in the line below (here commented
out).
library(VariantAnnotation)
library(BBmisc) # Defines suppressAll()
args <- systemArgs(sysma = "param/filter_gatk.param", mytargets = "targets_gatk.txt")[1:4]
filter <- "totalDepth(vr) >= 2 & (altDepth(vr) / totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))>=1"
# filter <- 'totalDepth(vr) >= 20 & (altDepth(vr) /
# totalDepth(vr) >= 0.8) & rowSums(softFilterMatrix(vr))==6'
suppressAll(filterVars(args, filter, varcaller = "gatk", organism = "A. thaliana"))
writeTargetsout(x = args, file = "targets_gatk_filtered.txt",
overwrite = TRUE)
BCFtools
The following shows how to filter the VCF files generated by BCFtools
using
similar parameter settings as in the previous filtering of the GATK
results.
args <- systemArgs(sysma = "param/filter_sambcf.param", mytargets = "targets_sambcf.txt")[1:4]
filter <- "rowSums(vr) >= 2 & (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)"
# filter <- 'rowSums(vr) >= 20 &
# (rowSums(vr[,3:4])/rowSums(vr[,1:4]) >= 0.8)'
suppressAll(filterVars(args, filter, varcaller = "bcftools",
organism = "A. thaliana"))
writeTargetsout(x = args, file = "targets_sambcf_filtered.txt",
overwrite = TRUE)
VariantTools
The following shows how to filter the VCF files generated by VariantTools
using
similar parameter settings as in the previous filtering of the GATK
results.
library(VariantAnnotation)
library(BBmisc) # Defines suppressAll()
args <- systemArgs(sysma = "param/filter_vartools.param", mytargets = "targets_vartools.txt")[1:4]
filter <- "(values(vr)$n.read.pos.ref + values(vr)$n.read.pos) >= 2 & (values(vr)$n.read.pos / (values(vr)$n.read.pos.ref + values(vr)$n.read.pos) >= 0.8)"
# filter <- '(values(vr)$n.read.pos.ref +
# values(vr)$n.read.pos) >= 20 & (values(vr)$n.read.pos /
# (values(vr)$n.read.pos.ref + values(vr)$n.read.pos) >=
# 0.8)'
filterVars(args, filter, varcaller = "vartools", organism = "A. thaliana")
writeTargetsout(x = args, file = "targets_vartools_filtered.txt",
overwrite = TRUE)
Check filtering outcome for one sample
length(as(readVcf(infile1(args)[1], genome = "Ath"), "VRanges")[,
1])
length(as(readVcf(outpaths(args)[1], genome = "Ath"), "VRanges")[,
1])
The function variantReport
generates a variant report using
utilities provided by the VariantAnnotation
package. The report for
each sample is written to a tabular file containing genomic context annotations
(e.g. coding or non-coding SNPs, amino acid changes, IDs of affected
genes, etc.) along with confidence statistics for each variant. The parameter
file annotate_vars.param
defines the paths to the input and output
files which are stored in a new SYSargs
instance.
Variants overlapping with common annotation features can be identified with locateVariants
.
library("GenomicFeatures")
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_gatk_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
vcf <- readVcf(infile1(args)[1], "A. thaliana")
locateVariants(vcf, txdb, CodingVariants())
Synonymous/non-synonymous variants of coding sequences are computed by the predictCoding function for variants overlapping with coding regions.
fa <- FaFile(systemPipeR::reference(args))
predictCoding(vcf, txdb, seqSource = fa)
GATK
library("GenomicFeatures")
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_gatk_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
suppressAll(variantReport(args = args, txdb = txdb, fa = fa,
organism = "A. thaliana"))
BCFtools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_sambcf_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
suppressAll(variantReport(args = args, txdb = txdb, fa = fa,
organism = "A. thaliana"))
VariantTools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_vartools_filtered.txt")
txdb <- loadDb("./data/tair10.sqlite")
fa <- FaFile(systemPipeR::reference(args))
suppressAll(variantReport(args = args, txdb = txdb, fa = fa,
organism = "A. thaliana"))
View annotation result for single sample
read.delim(outpaths(args)[1])[38:40, ]
To simplify comparisons among samples, the combineVarReports
function combines all variant annotation reports referenced in a
SYSargs
instance (here args
). At the same time the function
allows to consider only certain feature types of interest. For instance, the
below setting filtercol=c(Consequence="nonsynonymous")
will include
only nonsysynonymous variances listed in the Consequence
column of
the annotation reports. To omit filtering, one can use the setting
filtercol="All"
.
GATK
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_gatk_filtered.txt")
combineDF <- combineVarReports(args, filtercol = c(Consequence = "nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_gatk.xls",
quote = FALSE, row.names = FALSE, sep = "\t")
BCFtools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_sambcf_filtered.txt")
combineDF <- combineVarReports(args, filtercol = c(Consequence = "nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_sambcf.xls",
quote = FALSE, row.names = FALSE, sep = "\t")
VariantTools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_vartools_filtered.txt")
combineDF <- combineVarReports(args, filtercol = c(Consequence = "nonsynonymous"))
write.table(combineDF, "./results/combineDF_nonsyn_vartools.xls",
quote = FALSE, row.names = FALSE, sep = "\t")
combineDF[2:4, ]
The varSummary
function counts the number of variants for each feature type
included in the anntation reports.
GATK
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_gatk_filtered.txt")
varSummary(args)
write.table(varSummary(args), "./results/variantStats_gatk.xls",
quote = FALSE, col.names = NA, sep = "\t")
BCFtools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_sambcf_filtered.txt")
varSummary(args)
write.table(varSummary(args), "./results/variantStats_sambcf.xls",
quote = FALSE, col.names = NA, sep = "\t")
VariantTools
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_vartools_filtered.txt")
varSummary(args)
write.table(varSummary(args), "./results/variantStats_vartools.xls",
quote = FALSE, col.names = NA, sep = "\t")
The venn diagram utilities defined by the systemPipeR
package can be used to
identify common and unique variants reported for different samples
and/or variant callers. The below generates a 4-way venn diagram
comparing four sampes for each of the two variant callers.
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_gatk_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_gatk <- overLapper(varlist, type = "vennsets")
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_sambcf_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_bcf <- overLapper(varlist, type = "vennsets")
args <- systemArgs(sysma = "param/annotate_vars.param", mytargets = "targets_vartools_filtered.txt")
varlist <- sapply(names(outpaths(args))[1:4], function(x) as.character(read.delim(outpaths(args)[x])$VARID))
vennset_vartools <- overLapper(varlist, type = "vennsets")
pdf("./results/vennplot_var.pdf")
vennPlot(list(vennset_gatk, vennset_bcf, vennset_vartools), mymain = "",
mysub = "GATK: red; BCFtools: blue; VariantTools: green",
colmode = 2, ccol = c("red", "blue", "green"))
dev.off()
The following plots a selected variant with ggbio
.
library(ggbio)
mychr <- "ChrC"
mystart <- 11000
myend <- 13000
args <- systemArgs(sysma = "param/bwa.param", mytargets = "targets.txt")
ga <- readGAlignments(outpaths(args)[1], use.names = TRUE, param = ScanBamParam(which = GRanges(mychr,
IRanges(mystart, myend))))
p1 <- autoplot(ga, geom = "rect")
p2 <- autoplot(ga, geom = "line", stat = "coverage")
p3 <- autoplot(vcf[seqnames(vcf) == mychr], type = "fixed") +
xlim(mystart, myend) + theme(legend.position = "none", axis.text.y = element_blank(),
axis.ticks.y = element_blank())
p4 <- autoplot(txdb, which = GRanges(mychr, IRanges(mystart,
myend)), names.expr = "gene_id")
png("./results/plot_variant.png")
tracks(Reads = p1, Coverage = p2, Variant = p3, Transcripts = p4,
heights = c(0.3, 0.2, 0.1, 0.35)) + ylab("")
dev.off()
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices
## [6] utils datasets methods base
##
## other attached packages:
## [1] systemPipeRdata_1.12.0 systemPipeR_1.18.0
## [3] ShortRead_1.42.0 GenomicAlignments_1.20.0
## [5] SummarizedExperiment_1.14.0 DelayedArray_0.10.0
## [7] matrixStats_0.54.0 Biobase_2.44.0
## [9] BiocParallel_1.18.0 Rsamtools_2.0.0
## [11] Biostrings_2.52.0 XVector_0.24.0
## [13] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0
## [15] IRanges_2.18.0 S4Vectors_0.22.0
## [17] BiocGenerics_0.30.0 BiocStyle_2.12.0
##
## loaded via a namespace (and not attached):
## [1] Category_2.50.0 bitops_1.0-6
## [3] bit64_0.9-7 RColorBrewer_1.1-2
## [5] progress_1.2.0 httr_1.4.0
## [7] Rgraphviz_2.28.0 backports_1.1.4
## [9] tools_3.6.0 R6_2.4.0
## [11] DBI_1.0.0 lazyeval_0.2.2
## [13] colorspace_1.4-1 withr_2.1.2
## [15] tidyselect_0.2.5 prettyunits_1.0.2
## [17] bit_1.1-14 compiler_3.6.0
## [19] graph_1.62.0 formatR_1.6
## [21] rtracklayer_1.44.0 bookdown_0.9
## [23] scales_1.0.0 checkmate_1.9.3
## [25] genefilter_1.66.0 RBGL_1.60.0
## [27] rappdirs_0.3.1 stringr_1.4.0
## [29] digest_0.6.18 rmarkdown_1.12
## [31] AnnotationForge_1.26.0 pkgconfig_2.0.2
## [33] htmltools_0.3.6 BSgenome_1.52.0
## [35] limma_3.40.0 rlang_0.3.4
## [37] RSQLite_2.1.1 GOstats_2.50.0
## [39] hwriter_1.3.2 dplyr_0.8.0.1
## [41] VariantAnnotation_1.30.0 RCurl_1.95-4.12
## [43] magrittr_1.5 GO.db_3.8.2
## [45] GenomeInfoDbData_1.2.1 Matrix_1.2-17
## [47] Rcpp_1.0.1 munsell_0.5.0
## [49] stringi_1.4.3 yaml_2.2.0
## [51] edgeR_3.26.0 zlibbioc_1.30.0
## [53] plyr_1.8.4 grid_3.6.0
## [55] blob_1.1.1 crayon_1.3.4
## [57] lattice_0.20-38 splines_3.6.0
## [59] GenomicFeatures_1.36.0 annotate_1.62.0
## [61] hms_0.4.2 batchtools_0.9.11
## [63] locfit_1.5-9.1 knitr_1.22
## [65] pillar_1.3.1 rjson_0.2.20
## [67] base64url_1.4 codetools_0.2-16
## [69] biomaRt_2.40.0 XML_3.98-1.19
## [71] glue_1.3.1 evaluate_0.13
## [73] latticeExtra_0.6-28 data.table_1.12.2
## [75] BiocManager_1.30.4 gtable_0.3.0
## [77] purrr_0.3.2 assertthat_0.2.1
## [79] ggplot2_3.1.1 xfun_0.6
## [81] xtable_1.8-4 survival_2.44-1.1
## [83] tibble_2.1.1 pheatmap_1.0.12
## [85] AnnotationDbi_1.46.0 memoise_1.1.0
## [87] brew_1.0-6 GSEABase_1.46.0
This project was supported by funds from the National Institutes of Health (NIH) and the National Science Foundation (NSF).
H Backman, Tyler W, and Thomas Girke. 2016. “systemPipeR: NGS workflow and report generation environment.” BMC Bioinformatics 17 (1):388. https://doi.org/10.1186/s12859-016-1241-0.
Li, H, and R Durbin. 2009. “Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.” Bioinformatics 25 (14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Li, Heng. 2011. “A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population Genetical Parameter Estimation from Sequencing Data.” Bioinformatics 27 (21):2987–93. https://doi.org/10.1093/bioinformatics/btr509.
———. 2013. “Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM.” arXiv [Q-bio.GN], March. http://arxiv.org/abs/1303.3997.
McKenna, Aaron, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, Andrew Kernytsky, Kiran Garimella, et al. 2010. “The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data.” Genome Res. 20 (9):1297–1303. https://doi.org/10.1101/gr.107524.110.
Wu, T D, and S Nacu. 2010. “Fast and SNP-tolerant Detection of Complex Variants and Splicing in Short Reads.” Bioinformatics 26 (7):873–81. https://doi.org/10.1093/bioinformatics/btq057.