
Package ‘spiky’
October 17, 2024

Type Package

Title Spike-in calibration for cell-free MeDIP

Description
spiky implements methods and model generation for cfMeDIP (cell-free methylated DNA im-
munoprecipitation) with spike-in controls. CfMeDIP is an enrichment protocol which avoids de-
structive conversion of scarce template, making it ideal as a ``liquid biopsy,'' but creating cer-
tain challenges in comparing results across specimens, subjects, and experiments. The use of syn-
thetic spike-in standard oligos allows diagnostics performed with cfMeDIP to quantitatively com-
pare samples across subjects, experiments, and time points in both relative and absolute terms.

Version 1.10.0

Date 2023-04-19

biocViews DifferentialMethylation, DNAMethylation, Normalization,
Preprocessing, QualityControl, Sequencing

URL https://github.com/trichelab/spiky

BugReports https://github.com/trichelab/spiky/issues

License GPL-2

Depends Rsamtools, GenomicRanges, R (>= 3.6.0)

Imports stats, scales, bamlss, methods, tools, IRanges, Biostrings,
GenomicAlignments, BlandAltmanLeh, GenomeInfoDb, BSgenome,
S4Vectors, graphics, ggplot2, utils

Suggests covr, testthat, rmarkdown, markdown, knitr, devtools,
BSgenome.Mmusculus.UCSC.mm10.masked,
BSgenome.Hsapiens.UCSC.hg38.masked, BiocManager

RoxygenNote 7.2.1

Roxygen list(markdown = TRUE)

VignetteBuilder knitr

Encoding UTF-8

LazyData true

git_url https://git.bioconductor.org/packages/spiky

git_branch RELEASE_3_19

1

https://github.com/trichelab/spiky
https://github.com/trichelab/spiky/issues

2 Contents

git_last_commit 76e2d10

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-10-16

Author Samantha Wilson [aut],
Lauren Harmon [aut],
Tim Triche [aut, cre]

Maintainer Tim Triche <trichelab@gmail.com>

Contents
add_frag_info . 3
bam_to_bins . 4
bin_pmol . 5
convertPairedGRtoGR . 5
covg_to_df . 6
dedup . 7
find_spike_contigs . 7
genbank_mito . 8
generate_spike_fasta . 9
genomic_res . 10
get_base_name . 11
get_binned_coverage . 11
get_merged_gr . 12
get_spiked_coverage . 13
get_spike_depth . 14
kmax . 15
kmers . 16
methylation_specificity . 17
model_bam_standards . 17
model_glm_pmol . 18
parse_spike_UMI . 19
phage . 20
predict_pmol . 20
process_spikes . 21
read_bedpe . 22
rename_spikes . 23
rename_spike_seqlevels . 24
scan_genomic_bedpe . 25
scan_genomic_contigs . 26
scan_methylation_specificity . 27
scan_spiked_bam . 28
scan_spike_bedpe . 30
scan_spike_contigs . 30
scan_spike_counts . 31
seqinfo_from_header . 32

add_frag_info 3

spike . 33
spike_bland_altman_plot . 34
spike_counts . 34
spike_cram_counts . 35
spike_read_counts . 36
spike_res . 37
spiky-methods . 37
ssb_res . 38
testGR . 39
tile_bins . 39

Index 41

add_frag_info decode fragment identifiers for spike-in standards

Description

given a vector of fragment identifiers like 160_2_35 or 80b_1C_35G-2, encoded typically as length-
InBp_numberOfCpGs_GCpercent, and optionally a database of spike-in sequences corresponding
to those fragments, add those columns to the source data (along with, if present in the database, other
metadata such as standard concentrations, GC fraction, etc.) and return i an updated DataFrame.

Usage

add_frag_info(x, frag_grp = "frag_grp", spike = NULL)

Arguments

x data.frame with a column of spike information (see above)

frag_grp column name for the spike contig information (frag_grp)

spike optional database of spike-in properties (none)

Value

the data.frame x, augmented with metadata columns

Examples

data(spike_cram_counts)
data(spike, package="spiky")
spike <- subset(spike, methylated == 1)
add_frag_info(spike_cram_counts, spike=spike)

4 bam_to_bins

bam_to_bins create a tiled representation of a genome from the BAM/CRAM file

Description

This function replaces a bedtools call: bedtools intersect -wao -a fragments.bed -b hg38_300bp_windows.bed
> data.bed

Usage

bam_to_bins(x, width = 300, param = NULL, which = IRangesList(), ...)

Arguments

x a BAM or CRAM filename (or a BamFile object)

width the width of the bins to tile (default is 300)

param optional ScanBamParam (whence we attempt to extract which)

which an optional GRanges restricting the bins to certain locations

... additional arguments to pass on to seqinfo_from_header

Details

The idea is to skip the BED creation step for most runs, and just do it once. In order to count reads
in bins, we need bins. In order to have bins, we need to know how long the chromosomes are.
In order to have a BAM or CRAM file, we need to have those same lengths. This function takes
advantage of all of the above to create binned ranges. Note that a very recent branch of Rsamtools
is required for CRAM file bins.

Value

a GRangesList with y-base-pair-wide bins tiled across it

See Also

seqinfo_from_header

Examples

library(Rsamtools)
fl <- system.file("extdata", "ex1.bam", package="Rsamtools", mustWork=TRUE)
bam_to_bins(fl)

bin_pmol 5

bin_pmol Binned estimation of picomoles of DNA present in cfMeDIP assays

Description

Given the results of model_glm_pmol and predict_pmol, adjust the predictions to reflect picomoles
of captured DNA overlapping a given bin in the genome.

Usage

bin_pmol(x)

Arguments

x results from predict_pmol (a data.frame or GRanges)

Value

the same object, but with a column `adjusted_pred_con`

See Also

model_glm_pmol

predict_pmol

Examples

data(spike, package="spiky")
data(spike_res, package="spiky")
data(genomic_res,package="spiky")
fit <- model_glm_pmol(covg_to_df(spike_res, spike=spike),spike=spike)
pred <- predict_pmol(fit, genomic_res, ret="df")
bin_pmol(pred)

convertPairedGRtoGR Convert Pairs to GRanges

Description

Convert Pairs to GRanges

Usage

convertPairedGRtoGR(pairs)

6 covg_to_df

Arguments

pairs the Pairs object

Value

a GRanges

covg_to_df reshape scan_spiked_bam results into data.frames for
model_glm_pmol

Description

reshape scan_spiked_bam results into data.frames for model_glm_pmol

Usage

covg_to_df(spike_gr, spike, meth = TRUE, ID = NULL)

Arguments

spike_gr GRanges of spike contigs (e.g. output object from scan_spiked_bam, scan_spike_contigs,
or scan_spike_bedpe)

spike spike database (as from data(spike, package="spiky"))

meth only keep methylated spike reads? (TRUE; if FALSE, sum both)

ID an identifier for this sample, if running several (autogenerate)

Value

a data.frame with columns 'frag_grp', 'id', and 'read_count'

See Also

scan_spiked_bam

Examples

data(spike, package="spiky")
data(spike_res, package="spiky")
subsetted <- covg_to_df(spike_res, spike=spike, meth=TRUE)
summed <- covg_to_df(spike_res, spike=spike, meth=FALSE)
round((summed$read_count - subsetted$read_count) / summed$read_count, 3)

dedup 7

dedup spike-in counts for two samples, as a wide data.frame

Description

A data.frame with spike-in results from control samples in the manuscript. This maps 1:1 onto
spike_read_counts using reshape2::melt.

Usage

data(dedup)

Format

A data.frame object with

frag_grp the encoded spike contig name: basepairs_CpGs_GCpercent

read_count_6547 read coverage for this spike in sample 6547

read_count_6548 read coverage for this spike in sample 6548

Source

This data was created using inst/script/loadDedup.R

find_spike_contigs find spike-in seqlevels in an object x, where !is.null(seqinfo(x))

Description

Find the spike-like contigs in a BAM with both natural and spiked contigs. This started out as glue
in some other functions and got refactored out.

Usage

find_spike_contigs(x, spike)

Arguments

x something with seqlevels

spike a DataFrame with spike-in information

Details

The indices have an attribute "mappings", which is a character vector such that attr(find_spike_contigs(x),
"mappings") == standardized for all contig names in the CRAM/BAM/whatever, and standardized
is the rowname in spike that corresponds to the original contig name.

8 genbank_mito

Value

indices of which contigs in seqlevels(x) are spike-in contigs

See Also

get_base_name

rename_spike_seqlevels

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

si <- seqinfo_from_header(sb)
data(spike, package="spiky")
find_spike_contigs(si, spike=spike)

genbank_mito various mitochondrial genomes sometimes used as endogenous spike-
ins

Description

A DataFrame with species, genome, accession, and sequence for GenBank mitochondrial genome
depositions. No concentration provided; add if needed.

Usage

data(genbank_mito)

Format

A DataFrame object with

species the species whence the record came, as a character string

genome the genome assembly whence the mtDNA, as a character string

accession the genbank accession, as a character string

sequence genome sequence, as a DNAStringSet

Source

www.ncbi.nlm.nih.gov/genbank/

generate_spike_fasta 9

generate_spike_fasta for CRAM files, a FASTA reference is required to decode; this builds
that

Description

A FASTA reference is not always needed, so long as .crai indices are available for all contigs in the
CRAM. See spike_counts for a fast and convenient alternative that extracts spike coverage from
index stats. However, spike_counts has its own issues, and it’s better to use fragments.

Usage

generate_spike_fasta(bam, spike, assembly = NULL, fa = "spike_contigs.fa")

Arguments

bam a BAM or CRAM file, hopefully with an index

spike the spike contig database (mandatory as of 0.9.99)

assembly optional BSgenome or seqinfo with reference contigs (NULL)

fa the filename for the resulting FASTA ("spikes.fa")

Details

If the contigs in a CRAM have even slightly different names from those in the reference, decoding
will fail. In some cases there are multiple names for a given contig (which raises the question of
whether to condense them), and thus the same reference sequence decodes multiple contig names.

This function generates an appropriate spike reference for a BAM or CRAM, using BAM/CRAM
headers to figure out which references are used for which.

At the moment, CRAM support in Rsamtools only exists in the GitHub branch:

BiocManager::install("Bioconductor/Rsamtools@cram")

Using other versions of Rsamtools will yield an error on CRAM files.

Note that for merged genomic + spike reference BAMs/CRAMs, this function will only attempt to
generate a FASTA for the spike contigs, not reference. If your reference contigs are screwed up,
talk to your sequencing people, and keep better track of the FASTA reference against which you
compress!

Value

invisibly, a DNAStringSet as exported to `fa`

See Also

rename_contigs

10 genomic_res

Examples

library(GenomicRanges)
data(spike, package="spiky")
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE)
outFasta <- paste(system.file("extdata", package="spiky", mustWork=TRUE),"/spike_contigs.fa",sep="")
show(generate_spike_fasta(sb, spike=spike,fa=outFasta))

genomic_res A Granges object with genomic coverage from chr21q22, binned ev-
ery 300bp for the genomic contigs then averaged across the bin.
(In other words, the default output of scan_genomic_contigs or
scan_genomic_bedpe, restricted to a small enough set of genomic re-
gions to be practical for examples.) This represents what most users
will want to generate from their own genomic BAMs or BEDPEs, and
is used repeatedly in downstream examples throughout the package.

Description

A Granges object with genomic coverage from chr21q22, binned every 300bp for the genomic
contigs then averaged across the bin. (In other words, the default output of scan_genomic_contigs
or scan_genomic_bedpe, restricted to a small enough set of genomic regions to be practical for
examples.) This represents what most users will want to generate from their own genomic BAMs
or BEDPEs, and is used repeatedly in downstream examples throughout the package.

Usage

data(genomic_res)

Format

A GRanges of coverage results with one metadata column, coverage

Source

Generated using scan_genomic_bedpe or scan_genomic_contigs on an example bedpe or bam con-
taining chr21q22 contigs.

get_base_name 11

get_base_name refactored out of rename_spikes and rename_spike_seqlevels

Description

A common task between generate_spike_fasta, rename_spikes, and rename_spike_seqlevels is to
determine what the largest common subset of characters between existing contig names and stored
standardized contigs might be. This function eases that task.

Usage

get_base_name(contig_names, sep = "_")

Arguments

contig_names the names of contigs

sep separator character in contig names ("_")

Value

a vector of elements 1:3 from each contig name

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

bh <- scanBamHeader(BamFile(sb))
orig_contigs <- names(bh$targets)
get_base_name(orig_contigs)

get_binned_coverage tabulate read coverage in predefined bins

Description

refactored out of scan_spiked_bam

Usage

get_binned_coverage(bins, covg)

Arguments

bins the GRanges with bins

covg the coverage result (an RleList)

12 get_merged_gr

Value

a GRanges of summarized coverage

See Also

get_spiked_coverage

scan_spiked_bam

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

data(spike,package="spiky")
si <- seqinfo_from_header(sb)
genome(si) <- "spike"
mgr <- get_merged_gr(si,spike=spike)
fl <- scanBamFlag(isDuplicate=FALSE, isPaired=TRUE, isProperPair=TRUE)
bp <- ScanBamParam(flag=fl)
bamMapqFilter(bp) <- 20

covg <- get_spiked_coverage(sb, bp=bp, gr=mgr)
get_binned_coverage(bins=GRanges(), covg=covg)

get_merged_gr get a GRanges of (by default, standard) chromosomes from seqinfo

Description

refactored from scan_spiked_bam to clarify information flow

Usage

get_merged_gr(si, spike, standard = TRUE)

Arguments

si seqinfo, usually from a BAM/CRAM file with spike contigs
spike database of spike-in standard sequence features (spike)
standard trim to standard chromosomes? (TRUE)

Details

By default, get_merged_gr will return a GRanges with "standardized" genomic and spike con-
tig names (i.e. genomic chr1-22, X, Y, M, and the canonical spike names in data(spike, pack-
age="spiky")).

The constraint to "standard" chromosomes on genomic contigs can be removed by setting standard
to FALSE in the function arguments.

get_spiked_coverage 13

Value

GRanges with two genomes: the organism assembly and "spike"

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

si <- seqinfo_from_header(sb)
genome(si) <- "spike" # no genomic contigs
data(spike, package="spiky")
get_merged_gr(si, spike=spike) # note canonicalized spikes

get_spiked_coverage tabulate coverage across assembly and spike contig subset in natural
order

Description

FIXME: this is wicked slow, ask Herve if a faster version exists

Usage

get_spiked_coverage(bf, bp, gr)

Arguments

bf the BamFile object

bp the ScanBamParam object

gr the GRanges with sorted seqlevels

Details

Refactored from scan_spiked_bam, this is a very simple wrapper

Value

a list of Rles

See Also

scan_spiked_bam

coverage

14 get_spike_depth

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

si <- seqinfo_from_header(sb)
genome(si) <- "spike"
data(spike, package="spiky")
mgr <- get_merged_gr(si, spike=spike) # note canonicalized spikes

fl <- scanBamFlag(isDuplicate=FALSE, isPaired=TRUE, isProperPair=TRUE)
bp <- ScanBamParam(flag=fl)
bamMapqFilter(bp) <- 20
get_spiked_coverage(sb, bp=bp, gr=mgr)

get_spike_depth get the (max, median, or mean) coverage for spike-in contigs from a
BAM/CRAM

Description

get the (max, median, or mean) coverage for spike-in contigs from a BAM/CRAM

Usage

get_spike_depth(covg, spike_gr = NULL, spike = NULL, how = c("max", "mean"))

Arguments

covg the coverage RleList

spike_gr the spike-in GRanges (default: figure out from seqinfo)

spike information about the spikes (default: load spike)

how how to summarize the per-spike coverage (max)

Value

a GRanges with summarized coverage and features for each

Examples

sb <- system.file("extdata", "example.spike.bam", package="spiky",
mustWork=TRUE)

data(spike, package="spiky")
si <- seqinfo_from_header(sb)
genome(si) <- "spike"
mgr <- get_merged_gr(si,spike=spike)

fl <- scanBamFlag(isDuplicate=FALSE, isPaired=TRUE, isProperPair=TRUE)
bp <- ScanBamParam(flag=fl)

kmax 15

bamMapqFilter(bp) <- 20

covg <- get_spiked_coverage(sb, bp=bp, gr=mgr)
get_spike_depth(covg, spike_gr=mgr, spike=spike)

kmax simple contig kmer comparisons

Description

simple contig kmer comparisons

Usage

kmax(km, normalize = TRUE)

Arguments

km kmer summary

normalize normalize (divide by row sums)? (TRUE)

Value

the most common kmers for each contig, across all contigs

Examples

data(genbank_mito, package="spiky")
mtk6 <- kmers(genbank_mito, k=6)
rownames(mtk6) <- paste0(rownames(mtk6), "_MT")
kmax(mtk6)

data(phage, package="spiky")
phk6 <- kmers(phage, k=6)
kmax(phk6, normalize=FALSE)

stopifnot(identical(colnames(phk6), colnames(mtk6)))
k6 <- rbind(mtk6, phk6)
kmax(k6)

16 kmers

kmers oligonucleotideFrequency, but less letters and more convenient.

Description

oligonucleotideFrequency, but less letters and more convenient.

Usage

kmers(x, k = 6)

Arguments

x BSgenome, DFrame with sequence column, or DNAStringSet

k the length of the kmers (default is 6)

Details

The companion kmax function finds the maximum frequency kmer for each contig and plots all of
them together for comparison purposes.

Value

a matrix of contigs (rows) by kmer frequencies (columns)

See Also

kmax

Examples

data(genbank_mito, package="spiky")
mtk6 <- kmers(genbank_mito, k=6)
kmax(mtk6)

data(phage, package="spiky")
phk6 <- kmers(phage, k=6)
kmax(phk6)

methylation_specificity 17

methylation_specificity

compute methylation specificity for spike-in standards

Description

In a cfMeDIP experiment, the yield of methylated fragments should be >95% (ideally 98-99%) due
to the nature of the assay.

Usage

methylation_specificity(spike_gr, spike)

Arguments

spike_gr GRanges of spike contigs (e.g. output object from scan_spiked_bam, scan_spike_contigs,
or scan_spike_bedpe)

spike spike contig database, if needed (e.g. data(spike))

Value

list with median and mean coverage across spike contigs

Examples

data(genomic_res)
data(spike_res)
data(spike, package="spiky")
methylation_specificity(spike_res, spike=spike)

model_bam_standards Build a Bayesian additive model from spike-ins to correct bias in *-seq

Description

Build a Bayesian additive model from spike-ins to correct bias in *-seq

Usage

model_bam_standards(x, conc = NULL, fm = NULL, ...)

18 model_glm_pmol

Arguments

x data with assorted feature information (GCfrac, CpGs, etc)

conc concentration for each spike (must be provided!)

fm model formula (conc ~ read_count + fraglen + GCfrac + CpGs_3)

... other arguments to pass to bamlss

Value

the model fit for the data

Examples

library(bamlss)
data(spike_cram_counts,package="spiky")
data(spike,package="spiky")
scc <- add_frag_info(spike_cram_counts, spike=spike)
scc$conc <- scc$conc * 0.9 # adjust for dilution
scc$CpGs_3 <- scc$CpGs ^ (1/3)
fit0 <- model_bam_standards(scc,

fm=conc ~ read_count + fraglen)
fit1 <- model_bam_standards(scc,

fm=conc ~ read_count + fraglen + GCfrac + CpGs_3)
DIC(fit0, fit1)

model_glm_pmol Build a generalized linear model from spike-ins to correct bias in
cfMeDIP

Description

formerly ’2020_model_glm_fmol’. Note that everything in x can be had from a BAM/CRAM with
spike contigs named as frag_grp (len_CpGs_GC) in the index and in fact that is what scan_spiked_bam
now does.

Usage

model_glm_pmol(x, spike, conc = NULL, ...)

Arguments

x data w/frag_grp, id, and read_count; or scan_spiked_bam result

spike spike database, e.g. data(spike, package='spiky')

conc concentration for each spike (will be referenced if NULL)

... other arguments to pass to glm (e.g. family)

parse_spike_UMI 19

Value

the model fit for the data

Examples

data(spike, package="spiky")

data(spike_read_counts, package="spiky")
fit1 <- model_glm_pmol(spike_read_counts, spike=spike)

data(spike_res) # scan_spiked_bam result
fit2 <- model_glm_pmol(spike_res, spike=spike)

parse_spike_UMI parse out the forward and reverse UMIs and contig for a BED/BAM

Description

parse out the forward and reverse UMIs and contig for a BED/BAM

Usage

parse_spike_UMI(UMI, pos = NULL, seqs = NULL)

Arguments

UMI a vector of UMIs

pos optional vector of positions (else all are set to 1)

seqs optional vector of read sequences (else widths default to 96)

Value

a GRanges

20 predict_pmol

phage lambda and phiX phage sequences, sometimes used as spike-ins

Description

A DataFrame with sequence, methylated, CpGs, GCfrac, and OECpG for phages

Usage

data(phage)

Format

A DataFrame object with

sequence genome sequence, as a DNAStringSet

methylated whether CpGs are methylated, as an integer

CpGs the number of CpGs in the phage genome, as an integer

GCfrac the GC fraction of the phage genome, as a numeric

OECpG the observed / expected CpG fraction, as a numeric

Source

www.ncbi.nlm.nih.gov/genbank/

predict_pmol predict picomoles of DNA from a fit and read counts (coverage)

Description

FIXME: this could be made MUCH faster by precomputing CpG/GC stats per bin

Usage

predict_pmol(
fit,
genomic_gr,
bsgenome = NULL,
ret = c("gr", "df"),
slide = FALSE

)

process_spikes 21

Arguments

fit result of model_glm_pmol

genomic_gr the genomic data / new data

bsgenome BSgenome name (if null, will guess from genomic_gr)

ret return a data.frame ("df") or GRanges ("gr")? ("gr")

slide compute a sliding window estimate for GCfrac (1/3 width)?

Details

Using GRanges as the return value is (perhaps counterintuitively) much faster than the data.frame,
since the sequence of the bins gets converted from a BSgenome representation to characters in the
latter (it is implied by the bin start, stop, and genome when left as a GRanges).

Value

object with read count, fraglen, GC%, CpG**(1/3), and concentration

Examples

data(spike_res)
data(genomic_res)
data(spike, package="spiky")
fit <- model_glm_pmol(covg_to_df(spike_res, spike=spike),spike=spike)
preddf <- predict_pmol(fit, genomic_res, ret="df")
pred <- predict_pmol(fit, genomic_res, ret="gr")
bin_pmol(pred)

process_spikes QC, QA, and processing for a new spike database

Description

Sequence feature verification: never trust anyone, least of all yourself.

Usage

process_spikes(fasta, methylated = 0, ...)

Arguments

fasta fasta file (or GRanges or DataFrame) w/spike sequences

methylated whether CpGs in each are methylated (0 or 1, default 0)

... additional arguments, e.g. kernels (currently unused)

22 read_bedpe

Details

GCfrac is the GC content of spikes as a proportion instead of a percent. OECpG is (observed/expected)
CpGs (expectation is 25% of GC dinucleotides).

Value

a DataFrame suitable for downstream processing

See Also

kmers

Examples

data(spike)
spikes <- system.file("extdata", "spikes.fa", package="spiky", mustWork=TRUE)
spikemeth <- spike$methylated
process_spikes(spikes, spikemeth)

data(phage)
phages <- system.file("extdata", "phages.fa", package="spiky", mustWork=TRUE)
identical(process_spikes(phage), phage)
identical(phage, process_spikes(phage))

data(genbank_mito)
(mt <- process_spikes(genbank_mito)) # see also genbank_mito.R
gb_mito <- system.file("extdata", "genbank_mito.R", package="spiky")

read_bedpe read a BEDPE file into Pairs of GRanges (as if a GAlignmentPairs or
similar)

Description

read a BEDPE file into Pairs of GRanges (as if a GAlignmentPairs or similar)

Usage

read_bedpe(
x,
...,
stranded = FALSE,
fraglen = TRUE,
optional = FALSE,
keep = FALSE

)

rename_spikes 23

Arguments

x a Tabixed BEDPE file, or a TabixFile of one

... additional arguments to pass to scanTabix internally

stranded Is the data stranded? (FALSE)

fraglen compute the fragment length? (TRUE)

optional scan the optional columns (name, score, strand1)? (FALSE)

keep keep additional columns? (FALSE)

Details

BEDPE import in R is a shambles. This is a bandaid on a GSW.
See the \href{https://bedtools.readthedocs.io/en/latest/content/general-usage.html#bedpe-format}{BEDPE format definition} for full details.

In short, for a pair of ranges 1 and 2, we have fields
chrom1, start1, end1, chrom2, start2, end2, and (optionally)
name, score, strand1, strand2, plus any other user defined
fields that may be included (these are not yet supported
by read_bedpe). For example, two valid BEDPE lines are:

chr1 100 200 chr5 5000 5100 bedpe_example1 30
chr9 900 5000 chr9 3000 3800 bedpe_example2 99 + -

Value

a Pairs of GRanges, perhaps with $score or $fraglen

See Also

bedpe_covg

Examples

Not run:
bedpe <- "GSM5067076_2020_A64_bedpe.bed.gz"
WT1_hg38 <- GRanges("chr11", IRanges(32387775, 32435564), "-")
read_bedpe(bedpe, param=WT1_hg38)

End(Not run)

rename_spikes for BAM/CRAM files with renamed contigs, we need to rename spike
rows

Description

This function does that.

24 rename_spike_seqlevels

Usage

rename_spikes(x, spike)

Arguments

x a BAM/CRAM file, hopefully with an index

spike a DataFrame where spike$sequence is a DNAStringSet

Value

a DataFrame with renamed contigs (rows)

See Also

generate_spike_fasta

rename_spike_seqlevels

for spike-in contigs in GRanges, match to standardized spike seqlevels

Description

This function is essentially the opposite of rename_spikes, except that it works well on GRanges/GAlignments
from or for merged genome+spike BAMs. If spike contigs are found, it will assign genome=’spike’
to those, while changing the seqlevels to standardized names that match rownames(spike).

Usage

rename_spike_seqlevels(x, spike = NULL)

Arguments

x something with seqlevels (GRanges, GAlignments, Seqinfo...)

spike a DataFrame where spike$sequence is a DNAStringSet (or NULL)

Value

x, but with standardized spike seqlevels and genomes

See Also

rename_spikes

scan_genomic_bedpe 25

scan_genomic_bedpe Scan genomic BEDPE

Description

Scan genomic BEDPE

Usage

scan_genomic_bedpe(
bedpe,
bin = TRUE,
binwidth = 300L,
bins = NULL,
standard = TRUE,
genome = "hg38"

)

Arguments

bedpe the BEDPE file path, or output from read_bedpe()

bin Bin reads? (TRUE)

binwidth width of the bins for chromosomal tiling (300)

bins a pre-tiled GRanges for binning coverage (NULL)

standard restrict non-spike contigs to "standard" chromosomes? (TRUE)

genome Name of genome (default hg38)

Value

a GRanges with coverage

Examples

fl <- system.file("extdata", "example_chr21_bedpe.bed.gz", package="spiky",mustWork=TRUE)
scan_genomic_bedpe(fl) # will warn user about spike contigs

26 scan_genomic_contigs

scan_genomic_contigs scan genomic contigs in a BAM/CRAM file

Description

The default workflow for spiky is roughly as follows:

Usage

scan_genomic_contigs(
bam,
spike,
param = NULL,
bin = TRUE,
binwidth = 300L,
bins = NULL,
standard = TRUE,
genome = "hg38",
...

)

Arguments

bam the BAM or CRAM filename, or a vector of them

spike the spike-in reference database (e.g. data(spike))

param a ScanBamParam object specifying which reads to count (NULL)

bin Bin reads? (TRUE)

binwidth width of the bins for chromosomal tiling (300)

bins a pre-tiled GRanges for binning coverage (NULL)

standard restrict non-spike contigs to "standard" chromosomes? (TRUE)

genome Name of genome (default hg38)

... additional arguments to pass to scanBamFlag()

Details

1. Identify and quantify the spike-in contigs in an experiment.

2. Fit a model for sequence-based abundance artifacts using the spike-ins.

3. Quantify raw fragment abundance on genomic contigs, and adjust per step 2.

scan_genomic_contigs addresses the first half of step 3. The assumption is that anything which
isn’t a spike contig, is a genomic contig. This isn’t necessarily true, so the user can also supply a
ScanBamParam object for the param argument and restrict scanning to whatever contigs they wish,
which also allows for non-default MAPQ, pairing, and quality filters.

If multiple BAM or CRAM filenames are provided, all indices will be checked before attempting to
run through any of the files.

scan_methylation_specificity 27

Value

a CompressedGRangesList with bin- and spike-level coverage

See Also

Rsamtools::ScanBamParam

Examples

library(Rsamtools)
data(spike, package="spiky")

fl <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

scan_genomic_contigs(fl, spike=spike,standard=FALSE) # will warn user about spike contigs

sb <- system.file("extdata", "example_chr21.bam", package="spiky",
mustWork=TRUE)

scan_genomic_contigs(sb, spike=spike) # will warn user about genomic contigs

scan_methylation_specificity

tabulate methylation specificity for multiple spike-in BAM/CRAM files

Description

Methylation specificity is here defined as methylated_spike_covg/spike_covg

Usage

scan_methylation_specificity(files, spike, sep = "_")

Arguments

files a vector of BAM/CRAM file names

spike a spike-in database

sep the separator for spike-in contig names ("_")

Value

a matrix with columns "mean" and "median"

28 scan_spiked_bam

Examples

data(spike)
library(GenomicRanges)
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE)
scan_methylation_specificity(sb, spike=spike)

scan_spiked_bam pretty much what it says: scan standard chroms + spike contigs from
a BAM

Description

Note: behind the scenes, this is being refactored into scan_spike_contigs and scan_genomic_contigs.
Once that is done, perhaps before release, the default workflow will switch to

Usage

scan_spiked_bam(
bam,
spike,
mapq = 20,
binwidth = 300L,
bins = NULL,
how = c("max", "mean"),
dupe = FALSE,
paired = TRUE,
standard = TRUE,
...

)

Arguments

bam the BAM file

spike the spike-in reference database (e.g. data(spike))

mapq minimum mapq value to count a pair (20)

binwidth width of the bins for chromosomal tiling (300)

bins a pre-tiled GRanges for binning coverage (NULL)

how how to record spike read coverage (max or mean)? (max)

dupe unique (FALSE), duplicte (TRUE), or all (NA) reads? (FALSE)

paired restrict coverage to that from properly paired reads? (TRUE)

standard restrict non-spike contigs to "standard" chromosomes? (TRUE)

... additional arguments to pass to scanBamFlag()

scan_spiked_bam 29

Details

1. scan spike contigs and count fragments per contig or per bin.

2. fit the appropriate model for adjusting genomic contigs based on spikes.

3. scan and adjust binned fragment tallies along genomic contigs per above.

This approach decouples binning schemes from model generation (using spikes) and model-based
adjustment (using genomic fragment counts), decreasing code complexity while increasing the op-
portunities for caching & parallelization.

For a more realistic example (not run), one might do something like:

data(spike, package="spiky"); bam <- "2021_ctl.hg38_withSpikes.bam"; ssb_res <- scan_spiked_bam(bam,
mapq=20, spike=spike);

An extract from the resulting ssb_res object is available via

data(ssb_res, package="spiky");

The full ssb_res is a GRangesList object with 300bp-binned coverage on the standard (chr1-22,
chrX, chrY, chrM) chromosomes (as determined by the GenomeInfoDb::standardChromosomes()
function against the assembly defined in the BAM or CRAM file, by default; if desired, a user
can scan all genomic contigs by setting standard=FALSE when calling the function). By default,
the mean base-level coverage of genomic bins is reported, and the maximum spike-level coverage
is reported, though this can also be adjusted as needed. The results then inform the reliability of
measurements from replicate samples in multiple labs, as well as the adjusted quantitative cover-
age in each bin once the absolute quantity of captured cell-free methylated DNA has been fit by
model_glm_pmol and predict_pmol. In some sense, this function converts BAMs/CRAMs into
usable data structures for high-throughput standardized cfMeDIP experiments.

The data extract used in other examples is the same as the full version, with the sole difference
being that genomic bins are limited to chr22.

Value

a CompressedGRangesList with bin- and spike-level coverage

See Also

GenomeInfoDb::keepStandardChromosomes

Rsamtools::ScanBamParam

Examples

library(GenomicRanges)
data(spike, package="spiky")
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE)
res <- scan_spiked_bam(sb, spike=spike, bins=GRanges())
summary(res$spikes$coverage)

30 scan_spike_contigs

scan_spike_bedpe Scan spikes BEDPE

Description

Scan spikes BEDPE

Usage

scan_spike_bedpe(bedpe, spike, how = "max")

Arguments

bedpe the BEDPE file path, or output from read_bedpe()
spike information about the spikes (default: load spike)
how how to summarize the per-spike coverage (max)

Value

a GRanges with coverage

Examples

data(spike, package="spiky")
fl <- system.file("extdata", "example_spike_bedpe.bed.gz", package="spiky",mustWork=TRUE)
scan_spike_bedpe(fl,spike=spike) # will warn user about spike contigs

scan_spike_contigs pretty much what it says: scan spike contigs from a BAM or CRAM file

Description

default workflow is

Usage

scan_spike_contigs(bam, spike, how = "max", param = NULL, mc.cores = 16, ...)

Arguments

bam the BAM or CRAM filename, or a vector of such filenames
spike the spike-in reference database (e.g. data(spike))
how how to summarize the per-spike coverage (max)
param a ScanBamParam object, or NULL (will default to MAPQ=20 etc)
mc.cores Number of cores to run on (default 16)
... additional arguments to pass to scanBamFlag()

scan_spike_counts 31

Details

1. scan spike contigs and count fragments per contig or per bin.

2. fit the appropriate model for adjusting genomic contigs based on spikes.

3. scan and adjust binned fragment tallies along genomic contigs per above.

scan_spike_contigs implements step 1.

If multiple BAM or CRAM filenames are provided, all indices will be checked before attempting to
run through any of the files.

Value

a CompressedGRangesList with bin- and spike-level coverage

See Also

Rsamtools::ScanBamParam

Examples

library(GenomicRanges)
data(spike, package="spiky")
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE) # switch to a CRAM
res <- scan_spike_contigs(sb, spike=spike) # use default ScanBamParam
summary(res)

scan_spike_counts run spike_counts on BAM/CRAM files and shape the results for
model_glm_pmol

Description

Typically one will want to fit a correction model to multiple samples. This function eases this task
by merging the output of spike_counts into a data.frame that model_glm_pmol can directly fit.

Usage

scan_spike_counts(files, spike, methylated = 1, sep = "_")

Arguments

files a vector of BAM/CRAM file names

spike a spike-in database

methylated a logical (0/1) to include only methylated fragments

sep the separator for spike-in contig names ("_")

32 seqinfo_from_header

Value

a data.frame with columns "frag_grp", "id", and "read_count"

Examples

data(spike)
library(GenomicRanges)
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE)
scan_spike_counts(sb, spike=spike)
fit <- model_glm_pmol(scan_spike_counts(sb, spike=spike),spike=spike)

seqinfo_from_header create seqinfo (and thus a standard chromosome filter) from a BAM
header

Description

create seqinfo (and thus a standard chromosome filter) from a BAM header

Usage

seqinfo_from_header(x, gen = NA, std = FALSE, ret = c("si", "gr"))

Arguments

x the BAM file or its header

gen genome of the BAM file, if known (NULL; autodetect)

std standard chromosomes only? (FALSE; will be empty if spikes)

ret return Seqinfo ("si", the default) or GRanges ("gr")? ("si")

Details

Setting std=TRUE on a spike-in BAM will produce an empty result.

Value

Seqinfo object or GRanges (or `as(seqinfo, "GRanges")`)

spike 33

Examples

library(Rsamtools)
fl <- system.file("extdata", "ex1.bam", package="Rsamtools", mustWork=TRUE)

hdr <- scanBamHeader(BamFile(fl))
si <- seqinfo_from_header(hdr)
gr <- seqinfo_from_header(fl, ret="gr")
stopifnot(identical(gr, as(si, "GRanges")))

std_si <- seqinfo_from_header(fl, std=TRUE)
seqlevels(std_si)

for comparison with below
data(spike, package="spiky")
spike

sp <- system.file("extdata", "example.spike.bam", package="spiky")
sp_gr <- seqinfo_from_header(sp, ret="gr")
sp_gr

spike spike-in contig properties for Sam’s cfMeDIP spikes

Description

A DataFrame with sequence, concentration, and other properties of Sam’s synthetic cfMeDIP spike-
in controls. The row names redudantly encode some of these properties, such as the number of CpGs
in the spike-in sequence.

Usage

data(spike)

Format

A DataFrame object with

sequence contig sequence, as a DNAStringSet

methylated are the CpGs in this spike-in methylated? 0 or 1

CpGs number of CpG dinucleotides in the spike, from 1 to 16

fmol femtomolar concentration of the spike-in for standard mix

molmass molar mass of spike-in sequence

Source

https://doi.org/10.1101/2021.02.12.430289

34 spike_counts

spike_bland_altman_plot

Bland-Altman plot for cfMeDIP spike standards

Description

Bland-Altman plot for cfMeDIP spike standards

Usage

spike_bland_altman_plot(fit)

Arguments

fit a model fit, from predict_pmol (?)

Value

a ggplot2 object

Examples

data(spike_res)
data(spike, package="spiky")
fit <- model_glm_pmol(covg_to_df(spike_res, spike=spike),spike=spike)
ba_plot <- spike_bland_altman_plot(fit)

spike_counts use the index of a spiked BAM/CRAM file for spike contig coverage

Description

It dawned on me one day that we don’t even have to bother reading the file if we have an index
for a spiked BAM/CRAM result, since any fragments that map properly to the spike contigs are
generated from synthetic templates. This function takes an index and a spike database (usually a
DataFrame) as inputs and provides a rough coverage estimate over "rehabilitated" contig names
(i.e., canonicalized contigs mapping to the database) as its output.

spike_cram_counts 35

Usage

spike_counts(
bam,
spike,
sep = "_",
ref = "spike",
verbose = FALSE,
dump_idx = FALSE

)

Arguments

bam the BAM or CRAM file (MUST HAVE AN INDEX)

spike a data.frame, DataFrame, or similar with spikes

sep separator character in contig names ("_")

ref reference name for spike genome ("spike")

verbose be verbose? (FALSE)

dump_idx dump the renamed idxstats to aggregate? (FALSE)

Details

The argument spike has no default since we are attempting to refactor the spike-in databases into
their own data packages and allow more general use.

Value

a GRanges of spike-in contig read counts

Examples

data(spike, package="spiky")
sb <- system.file("extdata", "example.spike.bam", package="spiky",

mustWork=TRUE)
spike_counts(sb, spike=spike)

spike_cram_counts spike-in counts, as a long data.frame

Description

A data.frame with spike-in results from CRAM files (generated from scan_spike_counts(CRAMs,
spike=spike))

Usage

data(spike_cram_counts)

36 spike_read_counts

Format

A data.frame object with

frag_grp the encoded spike contig name: basepairs_CpGs_GCpercent

id subject from whom cfMeDIP spike reads (column 3) were counted

read_count read coverage for this spike in this subject (column 2)

Source

Generated from scan_spike_counts(CRAMs, spike=spike) using example CRAMs containing spike
contigs

spike_read_counts spike-in counts, as a long data.frame

Description

A data.frame with spike-in results from control samples in the manuscript. This maps 1:1 onto
dedup using reshape2::melt.

Usage

data(spike_read_counts)

Format

A data.frame object with

frag_grp the encoded spike contig name: basepairs_CpGs_GCpercent

id subject from whom cfMeDIP spike reads (column 3) were counted

read_count read coverage for this spike in this subject (column 2)

Source

This data was created using inst/script/loadDedup.R

spike_res 37

spike_res A Granges object with spike-in sequence coverage, and summarized
for each spike contig as (the default) max coverage. (In other words,
the default output of scan_spike_contigs or scan_spike_bedpe) This
represents what most users will want to generate from their own spike-
in BAMs or BEDPEs, and is used repeatedly in downstream examples
throughout the package.

Description

A Granges object with spike-in sequence coverage, and summarized for each spike contig as (the de-
fault) max coverage. (In other words, the default output of scan_spike_contigs or scan_spike_bedpe)
This represents what most users will want to generate from their own spike-in BAMs or BEDPEs,
and is used repeatedly in downstream examples throughout the package.

Usage

data(spike_res)

Format

A GRanges of coverage results with one metadata column, coverage

Source

Generated using scan_spike_bedpe or scan_spike_contigs on an example bedpe or bam containing
spike contigs.

spiky-methods A handful of methods that I’ve always felt were missing

Description

Particularly, simple methods to plot coverage results.

Usage

S4 method for signature 'Rle,ANY'
plot(x, y, ...)

S4 method for signature 'SimpleRleList,ANY'
plot(x, y, ...)

38 ssb_res

Arguments

x an Rle or RleList, usually

y not usedan Rle or RleList, usually

... other params such as ylim passed to barplot

Details

selectMethod("plot", "Rle") and also selectMethod("plot", "RleList") too.

Value

invisibly, the plot details

ssb_res scan_spiked_bam results from a merged cfMeDIP CRAM file (chr22
and spikes)

Description

A CompressedGRangesList object with genomic (chr22) and spikes coverage, binned every 300bp
for the genomic contigs then averaged across the bin, and summarized for each spike contig as (the
default) max coverage. (In other words, the default output of scan_spiked_bam, restricted to a small
enough set of genomic regions to be practical for examples.) This represents what most users will
want to generate from their own merged BAMs or CRAMs, and is used repeatedly in downstream
examples throughout the package.

Usage

data(ssb_res)

Format

A CompressedGRangesList of coverage results, containing

genomic a GRanges with one metadata column, coverage

spikes a GRanges with one metadata column, coverage

Source

Generated using scan_spiked_bam on an example bam containing chr22 and spike contigs.

testGR 39

testGR a test GRanges with UMI’ed genomic sequences used as controls

Description

Sources and overlap widths of various read sequences in a test CRAM.

Usage

data(testGR)

Format

A GRanges object with an mcols() DataFrame containing

UMI1 the unique molecular identifier on the forward read

UMI2 the unique molecular identifier on the reverse read

seq the sequence of the fragment

name the name of the fragment

score whether the fragment passes filters (always 1)

Source

Generated using inst/script/loadTest.R

tile_bins Tile the assembly-based contigs of a merged assembly/spike GRanges.

Description

refactored out of scan_spiked_bam for more explicit information flow

Usage

tile_bins(gr, binwidth = 300L)

Arguments

gr the GRanges

binwidth bin width to tile (default is 300)

Value

a GRanges of bins

40 tile_bins

Examples

bam <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

gr <- as(seqinfo_from_header(bam), "GRanges")
genome(gr) <- "notspike"
tile_bins(gr)

Index

∗ datasets
dedup, 7
genbank_mito, 8
genomic_res, 10
phage, 20
spike, 33
spike_cram_counts, 35
spike_read_counts, 36
spike_res, 37
ssb_res, 38
testGR, 39

add_frag_info, 3

bam_to_bins, 4
bin_pmol, 5

convertPairedGRtoGR, 5
covg_to_df, 6

dedup, 7

find_spike_contigs, 7

genbank_mito, 8
generate_spike_fasta, 9
genomic_res, 10
get_base_name, 11
get_binned_coverage, 11
get_merged_gr, 12
get_spike_depth, 14
get_spiked_coverage, 13

kmax, 15
kmers, 16

methylation_specificity, 17
model_bam_standards, 17
model_glm_pmol, 18

parse_spike_UMI, 19

phage, 20
plot,Rle,ANY-method (spiky-methods), 37
plot,SimpleRleList,ANY-method

(spiky-methods), 37
predict_pmol, 20
process_spikes, 21

read_bedpe, 22
rename_spike_seqlevels, 24
rename_spikes, 23

scan_genomic_bedpe, 25
scan_genomic_contigs, 26
scan_methylation_specificity, 27
scan_spike_bedpe, 30
scan_spike_contigs, 30
scan_spike_counts, 31
scan_spiked_bam, 28
seqinfo_from_header, 32
spike, 33
spike_bland_altman_plot, 34
spike_counts, 34
spike_cram_counts, 35
spike_read_counts, 36
spike_res, 37
spiky-methods, 37
ssb_res, 38

testGR, 39
tile_bins, 39

41

	add_frag_info
	bam_to_bins
	bin_pmol
	convertPairedGRtoGR
	covg_to_df
	dedup
	find_spike_contigs
	genbank_mito
	generate_spike_fasta
	genomic_res
	get_base_name
	get_binned_coverage
	get_merged_gr
	get_spiked_coverage
	get_spike_depth
	kmax
	kmers
	methylation_specificity
	model_bam_standards
	model_glm_pmol
	parse_spike_UMI
	phage
	predict_pmol
	process_spikes
	read_bedpe
	rename_spikes
	rename_spike_seqlevels
	scan_genomic_bedpe
	scan_genomic_contigs
	scan_methylation_specificity
	scan_spiked_bam
	scan_spike_bedpe
	scan_spike_contigs
	scan_spike_counts
	seqinfo_from_header
	spike
	spike_bland_altman_plot
	spike_counts
	spike_cram_counts
	spike_read_counts
	spike_res
	spiky-methods
	ssb_res
	testGR
	tile_bins
	Index

