

FrontPanel

User Manual
Version 2.0

An Electronic Equipment Front Panel Simulation Library

Copyright © 2007-2008
John Kichury

jjk439 at gmail dot com

FrontPanel User’s Manual 1

Table of Contents

INTRODUCTION .. 2
EXAMPLE SCREENSHOTS.. 3
HOW FRONTPANEL WORKS ... 5
SYSTEM REQUIREMENTS.. 5
STEPS FOR ADDING A LIGHT AND SWITCH PANEL TO A SIMULATION. 6
THE FRONTPANEL CONFIGURATION FILE ... 6

REALISM... 10
STEPS FOR CREATING A REALISTIC SYSTEM .. 10
DESCRIBING LIGHTS... 12
DESCRIBING SWITCHES .. 13

3D GEOMETRIC OBJECTS.. 14
3D NAVIGATION.. 15
THE PROGRAMMING INTERFACE.. 15

FRONTPANEL API FUNCTIONS.. 17
Control Functions ... 17
Binding Data... 18
Data Sampling .. 21
Callbacks .. 23

PROGRAMMING INTERFACE FUNCTION LIST SUMMARY... 25

 1

FrontPanel User’s Manual 2

Introduction

Vintage computer simulators such as simh[1] have provided a great service by preserving
computer history. They allow those who have worked with old computers to reminisce,
and those who have arrived later to experience a little of what it was like in those early
days. One thing that is missing however is an accurate visual representation of what the
front panel really looks like in action. Many early systems had lights that monitored the
address and data buses as well as various processor status signals. Some simulators exist
which make a good attempt at providing working lights and switches, but don't capture
the real appearance of what the actual hardware looked like while functioning.

This project attempts to provide a general interface which allows front panels, lights and
switches to be included in simulation projects. When the simulator is run on a modern
computer with a 1.6GHz or faster CPU and a reasonably fast video card, the visual
appearance can be surprisingly realistic.

New with FrontPanel 2.0

FrontPanel 2.0 contains new features that allow 3D representations of the hardware being
simulated for even better realism. It is now possible to view and interact with a 3D model
of a vintage computer system. For an example see the Imsai3D demo that is included
with the FrontPanel 2.0 software. Example screenshots are shown later in this document.

 2

FrontPanel User’s Manual 3

Example Screenshots

Below are screenshots taken of various systems running in simh integrated with
FrontPanel. All of the examples with source code can be found in the FrontPanel
software directory which you can experiment with. In all of the cases below, the
simulator was actually running code when the image was saved. Look closely and you
will notice the varying light intensities as they appeared at that precise moment in time.

IMSAI 8080

Screenshot running in FrontPanel

IMSAI 8080 3D Model
Screenshot running in FrontPanel

 3

FrontPanel User’s Manual 4

Altair 8800

Screenshot running in FrontPanel

Digital Computer Controls DCC-D116

Screenshot running in FrontPanel

Data General Nova 1200

Screenshot running in FrontPanel

Data General Nova 3

Screenshot running in FrontPanel

 4

FrontPanel User’s Manual 5

How FrontPanel works

The lamps or LEDs located on the front panel of actual systems were operated by a driver
circuit attached directly to the signal being monitored (e.g. bits of an address or data bus).
As such, rapid voltage transitions at nanosecond or microsecond durations cause bursts of
light for very short periods of time giving an illumination characteristic that is
challenging to simulate. Modern computer graphics systems aren't fast enough to draw
the lights at intervals such that short transitions are represented. Further, you don’t want
the computations required for drawing a representation of the lights to impede the
performance of the simulation too much.

FrontPanel is a C++ class library with C bindings that can be linked with a simulator. It
can be used with simulators written in either C or C++. A text configuration file is
created that describes the physical appearance of the panel, placement of lights and
switches etc. Function calls for initializing and binding light and switch functions on the
front panel are placed in the simulation source code. Upon calling fp_init and passing the
path to the configuration file as an argument, a graphics window is opened up which
displays the front panel. All graphics operations (drawing, user switch selection etc.) is
carried out in a separate thread while the actual simulation code runs in the main process.
This allows the graphics functions and simulation functions to be decoupled and run at
different rates. The simulator can execute the instructions of the computer it is simulating
and periodically send data sampling requests to FrontPanel. The graphics thread models
light intensities based on computed signal durations or duty cycles.

The front panel appearance can be simple using basic graphics elements such as polygons
and lines, or increased realism may be attained by using digital images of the actual
system being simulated.

System Requirements

Currently FrontPanel has been developed on the Linux operating system and has been
tested on OpenSuSe 10.2.

Required Hardware and Software

X86 system running Linux
gcc and g++ compilers and development libraries
X11 and OpenGL development libraries installed
Pthread library (libpthread)
Jpeg Library (libjpeg and libjpeg-devel)

The best performance and most realism will be attained if the system has a CPU running
at 1.6GHz or faster, and have a video card that has a GPU such as from nVidia or ATI.

 5

FrontPanel User’s Manual 6

Steps for adding a light and switch panel to a simulation.

1) Create a text configuration file that describes the physical appearance of the panel,
which includes basic graphics objects and location, size and color of lights and
switches.

2) Modify the source code of your simulator to include a simulation clock. Add

subroutine calls for binding lights and switches to data values, and place data
sampling calls within the simulation loop for providing the necessary timing
information to FrontPanel.

The Frontpanel Configuration File

The FrontPanel configuration file is a text file containing directives for describing the
characteristics of the front panel. Below is a list of recognized statements that may appear
within the configuration file.

Comments may appear in the configuration file and must begin with a pound (#) sign.

color <r> <g>

Defines a color for the current object red, green and blue components of the color
are specified as 3 real numbers in the range of 0 through 1.0 Color must appear
within an object.

comment

 Any line beginning with a pound (#) sign is considered a comment.

envmap

 Specifies that the texture mapping on the current object be done using

environment mapping which produces a reflective property. Instead of the texture
being frozen and rotating with the object, the texture is used as a reflection.This is
useful for representing shiny objects such as chrome, or in the case of an IMSAI
8080, the reflective plexiglass portion of the front panel.

For environment mapping to take affect, the object must have a texture defined
(see the texture directive) and have surface normals applied to the geometry.

 6

FrontPanel User’s Manual 7

instance <object_name>

Allows the current object to “instance” or use geometric data from the object
named in the argument. The instance command must appear within an object
definition.

light <name> <options>

Defines a light or LED that is to appear as an indicator on the equipment being
simulated. See the section below entitled “Describing Lights” for more
information on the options for this statement.

lightcolor <r> <g>

Specifies the default color for subsequent light definitions. Colors may also be
defined on a per light basis (see the Describing Lights section of this manual).

lightsize <x> <y>

Specifies the default size for subsequent light definitions. Sizes may also be
defined on a per light basis (see the Describing Lights section of this manual).

line

Begins the definition of a line that will be drawn as a graphics element, and must
appear within an ‘object’. Lines may be 2D or 3D by the definition of subsequent
‘v’ (vertex) statements.

material

If specified before object definitions, this directive defines a material property
which may be used by graphics objects. The arguments are as follows:

n Ar Ag Ab Aa Dr Dg Db Da Sr Sg Sb Sa shine Er Eg Eb Ea

where:

 n is an integer material number by which this material will be
referenced by objects.
.

Ar Ag Ab Aa are the floating point ambient light red, green, blue and
alpha components in the range of 0.0 – 1.0.

Dr Dg Db Da are the diffuse color components

 Sr Sg Sb Sa are the specular color components

 7

FrontPanel User’s Manual 8

 shine is the shininess
 Er Eg Eb Ea are the emission components.

 If material is specified within an object definition, there must only be
 one argument which specifies the integer identifier of a previously

defined material.

message <text string>

Prints a text message. The text following the command ‘message’ to be printed to
stdout at the time the configuration file is being read in. This is useful for
displaying copyright notices, instructions etc.

n <x> <y> <z> Normal

Defines a surface normal vector for the preceding vertex statement. The normal is
used for lighting calculations when the objects are drawn. The x, y, and z values
are floating point and must define a unit vector (vector of length 1.0) that is
normal (perpendicular) to the surface that the polygon or tristrip is representing.

object [<name>]

Begins the definition of an object with optional name. Objects contain a collection
of graphics elements such as lines, polygons, triangle strips, and optional
parameters.

perspective

The default viewing mode for the graphics scene is orthographic. Perspective
defines the default viewing mode to be in perspective, which will allow
interactive navigation of the scene. Interactive navigation is only permitted while
in perspective mode. Toggling between orthographic and perspective mode can
also be accomplished by pressing the ‘v’ key on the keyboard.

polygon

Begins the definition of a polygon and must appear within an object. Vertices,
vertex normals, and texture coordinate statements follow the polygon directive.

referenced

Specifies that the current object is to be referenced another entity such as a
switch, light, or other object. An object that contains the “referenced” directive
is only displayed when the object referencing or instancing it is drawn.

 8

FrontPanel User’s Manual 9

rotate <h> <p> <r>

If specified before an object, this directive defines the heading and pitch rotation
values of the entire scene being visualized when viewing mode is set to
perspective. If specified within an object, this directive defines the heading, pitch
and roll values (in degrees) that the object will be rotated by when displayed.

switch <name> <options>

Defines a switch. See the section entitled “Describing Switches” for more
information.

texture <path_to_jpeg_file>

Defines a jpeg image file to be applied to the polygons and triangle strips. This
directive must appear within an object.

texture_scale <x> <y>

 Scales the texture applied the object

texture_translate <x> <y>

Translates or shifts the texture that is applied to the object.

t <s> < t> Texture coordinates

Defines texture coordinates for the current polygon vertex

tristrip

Defines the beginning of a triangle strip. The very next text lines must be vertex,
optional normal, and optional texture coordinates (v, n and t statements
respectively), that describes the geometry of a strip of connected triangles.

v <x> <y> [z] Vertex

Defines a vertex for a polygon trimesh or line. Coordinates may be 2-D or
optionally 3-D

 9

FrontPanel User’s Manual 10

Graphics Object

An ‘object’ is a graphics entity that contains one or more lines and/or polygons (triangles,
rectangles etc.) It can optionally have a name and may be referenced by other entities
such as switches to define their appearance. Objects are drawn in the order they are
defined.

The following object could be used to create the background for a dark gray 19-inch by
5.25-inch panel.

 object front_panel - begins an object called “front_panel”
 color 0.3 0.3 0.3 - defines a color
 polygon - begins the definition of a polygon
 v 0. 0. - vertex at x=0 y=0
 v 19 0 - vertex at x=19.0 y=5.25
 v 19 5.25 - vertex at x=19.0 y=5.25
 v 0 5.25 - vertex at x=0 y=5.25

Realism

Realistic appearances of computer systems may be achieved by using images or digital
photographs taken of parts of an actual system. Images of vintage computer systems are
available on the internet, and the rights to use them are in many cases granted for non-
commercial purposes. One must be sure not to violate any copyright or usage rules before
using acquired images of course.

Graphics objects comprised of polygons may have images mapped to them by using the
texture directive. A polygon representing the front panel may have an image of an actual
front panel mapped to it. An image processing utility such as Gimp or Photoshop may be
used to process the image so it suits your needs. Aspects such as image size, aspect ratio,
brightness and contrast may be manipulated.

Steps for creating a realistic system

The following describes the steps one can take for creating a realistic front panel.

1) Obtain an Image. Obtain a digital image in jpeg format of the front for the system
you wish to simulate. The higher the resolution the better the results will be. If you can’t
find a picture that is taken straight on and the system is angled, you can use an image
processing program such as Gimp or Photoshop to crop and warp the image so it appears
to be as orthogonal as possible. If the image is not already in jpeg format, convert it to

 10

FrontPanel User’s Manual 11

jpeg with one of the image programs. This image will be used as the background for the
panel and will be discussed later.

2) Obtain Dimensions. Obtain the width and height dimensions of the physical front
panel making sure the aspect ratio closely matches the digital image you are to use. We
will use these dimensions to describe a polygon that will serve as the background for the
panel we are simulating.
.

3) Create Panel Configuration File. Using a text editor, create a configuration file and
enter the object definition for the panel as the first object in the file. Shown below is the
definition for a panel 19 inches wide and 5.25 inches high (using the polygon directive).
Define the color to be white using the color directive (color 1 1 1). The image we
acquired in step 1 will be “textured” or mapped onto the polygon and blended with the
object’s color. The texture directive has the image name that you wish to map onto the
polygon. Save the configuration file and you can view it with the fpviewer program
located in the FrontPanel directory if you obtained and compiled the software.

object panel
 color 1 1 1
 texture some_image.jpg
 polygon
 v 0. 0.
 v 19 0
 v 19 5.25
 v 0 5.25

You may specify as many polygons as you wish. Usually one will suffice, however if you
require “holes”, you may place several polygons strategically such that they create the
surface that will be the panel. The texture will be automatically aligned to fit across all of
the defined polygons. If the alignment of the image is not correct when you view the
panel, corrections can be made by using the other texture directives. The texture_translate
directive allows the image to be shifted in the x and y direction. It slides the image
left/right up/down. The example below will slide the image 0.5 units to the right and 0.25
units down.

 texture_translate 0.5 -0.25

The image can also be magnified or shrunk by using the texture_scale directive. The
following example will magnify the image by 1.2 units horizontally, and leave the
vertical size alone at 1.0.

 texture_scale 1.2 1.0

4) Define Light Placements. Once you are satisfied with the appearance of the front
panel using the fpviewer utility, it is time to define the light placement. This entails

 11

FrontPanel User’s Manual 12

knowing the coordinates of the lights. Coordinates are easily obtained by using the
fpviewer. When the graphics window of a simulation or the fpviewer is in focus (usually
by clicking on the window), typing the letter ‘c’ will toggle a cursor and display its x and
y coordinates.. The arrow keys can be used for positioning the cursor. Holding the shift
key will cause coarse steps for quick positioning. Position the cursor where a light is to
be and note the coordinates. Then enter them into the “pos” (position) option in the light
definition within the configuration file. See the section entitled “Describing Lights” for
more details. Below is an example of a light named LED_DATA_00 having coordinates
4.97, 3.70.

light LED_DATA_00 pos=4.97,3.70

5) Define Switch Placements. If you desire functional switches, use the cursor as
described for the light placement in step 4 above for identifying the coordinates of the
switches. Refer to the section entitled “Defining Switches” for more details.

Describing Lights

Lights are items that may have their state changed by actions in your simulator. Their
name, position, size and color are defined in the configuration file. The programming
interface is used to bind a light to a specific bit within a variable in your program. Each
time the fp_sampleData() function is called, the brightness of the light will be affected by
the state of the bit it is bound to. More on this is described in the programming interface
section of this manual. The light statement must appear all on one line in the
configuration file.

Lights are defined with the ‘light’ directive which has the following syntax:

light <name> [options]

A light must have a name by which it will later be referenced from the
programming interface.

options include:

 color=<r>,<g>, - overrides the default light color.
 r,g,b components are comma-separated.

group=<group_number> - optional integer which may be used for
 finer control over data sampling.

object=<object_name> - specifies the usage of a graphics
 object instead of an internal light

 representation.

pos=<x>,<y> - x and y coordinates describing the
 position

size=<x>,<y> - x and y size

 12

FrontPanel User’s Manual 13

Examples:

light LED_DATA_00 pos=4.97,3.70
light LED_DATA_01 pos=5.87,3.70
light LED_FETCH pos=16.35,3.7 group=0

Describing Switches

Switches are items that may have their state changed by clicking on them with the mouse.
They come in two forms; a simple toggle or on-off type typically used for address and
data switches, or a center positioned momentary commonly used for deposit/deposit-next
type switches. The switch location and type are defined in the configuration file. The
programming interface allows the binding of a switch to a specific bit within a variable in
your program. Further, a callback may be added to any switch to define a function or
subroutine to be called when the switch is clicked on. More on this is described in the
programming interface section of this manual.

Switches are described with the ‘switch’ directive which has the following syntax:

Switch <name> type=<type> operate=<operation> objects=<object>,<object>,<object>
pos=x,y,z size=x,y,z

Parameters for a switch are as follows:

type=<type>

Switch type specifies the graphics representation of the switch. For now only ‘object’ is
permitted. Other values may be used in future versions of the FrontPanel.

type=object

Type object means this switch is drawn by using a graphics object defined within the
configuration file. See the ‘object’ directive above. You would have an object to
represent each state of the switch (up, down, and center if it is a momentary switch). The
“objects” parameter (described below) is used for controlling which object is drawn for
the various switch states.

operate=<operation>

The operation defines the behavior of the switch when it is clicked on with a mouse.
Available operations are ‘toggle’, and ‘mom_off_mom’ as described below.

 13

FrontPanel User’s Manual 14

operate=toggle

Toggle defines a common on/off style switch which has two positions – up and down.

operate=mom_off_mom

Mom_off_mom defines a switch where it is normally centered and the user may click the
switch up or down. The switch will return to the center position upon releasing the mouse
button.

objects=object_down,object_up,object_center

The ‘objects’ parameter defines which graphics object to be drawn depending on the
current state of the switch. If the switch operation is ‘operate=toggle’, it will have two
possible states. When the switch is down, the graphics object whose name appears in the
first argument (‘object_down’ in the above example) will be drawn to represent the
switch. If the switch is up, the graphics object whose name appears in the second
argument (‘object_up’ in the above example) is used. If the switch operation is
‘operate=mom_off_mom’, the object whose name appears in the third argument will be
used. The switch statement must appear all on one line in the configuration file.

Example:

switch S1 type=object operate=toggle objects=sw_down,sw_up
pos=15.2,2.45,0. size=.40,0.68,1

3D Geometric Objects

Beginning with version 2.0, FrontPanel supports 3D geometric objects defined within the
configuration file. A 3D replica of an entire system including 3D functioning switches
may be created. The FrontPanel software distribution contains an example of a 3D
IMSAI system simulation.

The vertices associated with polygons, lines and triangle strips may have a Z component
allowing those elements to be positioned anywhere in the 3-dimensional space. When
describing a 3D polygon, make certain that the coordinates are ordered according to the
right-hand rule. That is, vertices are ordered in a counter-clockwise direction when the
polygon is viewed from the front. If material properties are used, polygons must include
vertex normals for the lighting to work. Vertex normals are unit (length = 1.0) vectors
that are perpendicular to the point on the surface of the object the vertex is representing.
Many 3D modeling software packages will export the models in a human-readable format.
The Wavefront obj format is one of them. It is then possible to extract the necessary data
and reformat it into the form that the frontpanel configuration file requires.

 14

FrontPanel User’s Manual 15

3D Navigation

The default viewing mode is Orthographic projection. Perspective mode can be entered
via the ‘perspective’ directive in the configuration file, or by typing the ‘v’ key on the
keyboard while the graphics window is in focus. The ‘v’ key will toggle between
orthographic and perspective modes. While in perspective mode, 3D navigation is
enabled. The following is a list of keyboard and mouse functions that may be used.

Keyboard Functions

 V - toggle between orthographic and perspective viewing modes.
 Z, z - Zoom in/out respectively

Mouse Functions

 Left Mouse-button - If the cursor is over a switch when the mouse button is

 pressed, the switch will change state. If the cursor is not
 over a selectable item such as a switch when the button is
 pressed, the system enters rotation mode. Holding the
 button down while moving the mouse will cause the
 scene to rotate.

 Shift + Leftmouse - Pan the view left/right up/down.

The Programming Interface

The programming interface for FrontPanel is the mechanism for defining which bits
within variables in your program activate lights, when data is sampled, and how it
responds to switch selections. The configuration file described above defines the
positions of the lights and switches and their names. The programming interface is a
collection of functions that allow you to link or bind the lights and switches (using their
names) to data bits in your program.

The basic framework for a simulator program source file might be as follows:

Add #include “frontpanel.h” to the top of source files requiring access to the FrontPanel
interface. The “frontpanel.h” file is located in the include directory within the FrontPanel
directory if you downloaded and built the software.

Below are the basic steps for integrating FrontPanel into your simulation program. The
section entitled “Frontpanel API Functions” contains details on all of the functions
available to you for interfacing your simulator.

 15

FrontPanel User’s Manual 16

1. Initialize the FrontPanel which reads your configuration file.

 if(!fp_init("my_panel.conf")) error();

2. Bind a simulation clock to the FrontPanel.

fp_bindSimclock(&simclock);

3. Bind a runflag to the FrontPanel.

fp_bindRunFlag(&running);

4. Bind lights to specific bits within variables in your program.

if(!fp_bindLight16("LED_ADDR_{15-00}",&address, 1))
 printf("error binding data lights\n");

5. Bind switches to specific bits within variables in your program.

fp_bindSwitch32("SW_{00-15}",&switches32,&switches32,1);

6. Add callbacks to switches to define functions to be called upon a button click.

fp_addSwitchCallback("SW_{00-15}",switch_callback,1);

7. Simulation Loop

 while(!done)
 {
 Increment your simulation clock.
 simclock += somevalue;

 Set values to your variables such as address=PC, data=mem[PC]
 Call fp_sampleData();
 Perform the instruction simulation
 …
 …
 } /* end simulation loop */

 16

FrontPanel User’s Manual 17

Frontpanel API Functions

Control Functions

fp_framerate - framerate control

fp_framerate(float fps)

Argument:

fps floating point value representing the rendering rate in
 frames per second.

Description:

Controls the rate at which the graphics window is refreshed during
simulation. An fps value of 30.0, will result in a frame rate not to
exceed 30 frames per second. Note that if the simulator is running on a
slow system the frame rate may drop below the specified rate.

fp_ignoreBindErrors - Ignore Binding Errors

void fp_ignoreBindErrors(int val);

Argument:

val 1 = ignore, 0 = report errors

Description:

By default, if a bindLight or bindSwitch function fails due to the
specified name not being found, an error message is printed to stdout.
The fp_ignoreBindErrors function can be used to suppress the error
messages.
This is useful when the same simulation binary is used with multiple
configuration files. An example is the DG Nova systems. The Nova 1200
has both address and data lights whereas the Nova 3 only has one set of
lights.

fp_init - initialize frontpanel

int fp_init(char *config_filename);

Argument: cfg_fname - path to config file.
Return Value: 1 = success, 0 = failure.

Description:

Specifies the configuration file and initializes the FrontPanel system.
If syntax errors are found while reading the configuration file they

 17

FrontPanel User’s Manual 18

will be reported on stderr. The configuration file is read and parsed
which defines graphics objects, lights and switches that represent the
physical appearance of the computer front panel. Upon successful
completion of the configuration file, FrontPanel will open up a
graphics window containing the visual representation of the panel being
emulated.

fp_quit - Quit

 void fp_quit(void);

Description:

Shuts down FrontPanel. The graphics window is closed and the rendering
thread is terminated.

Binding Data

The simulation clock, runflag and data values in the application user
space need to be ‘bound’ to the FrontPanel. The following programming
interface functions accomplish the task of binding data values to the
portions of the FrontPanel as required.

fp_bindSimclock - Bind simulation clock

void fp_bindSimclock(uint64 *addr);

Argument: addr – pointer to an unsigned 64-bit integer
Return Value: none

Description:

In order for the lights to appear realistic during simulation, a
simulation clock is referred to which is used to compute on/off
durations for the signals being minitored. This function is used to
provide a memory address pointer to an unsigned 64-bit value that is to
be the simulation clock. Each time fp_sampleData() is called, the
simclock is sampled along with the bit the light is bound to. These
values are used to compute the light intensities while the simulation
is running.

fp_bindLight - Bind Light to Data

int fp_bindLight32(char *name, uint32 *bits, int bitnum);
int fp_bindLight16(char *name, uint16 *bits, int bitnum);
int fp_bindLight8(char *name, uint8 *bits, int bitnum);

Arguments:
 Name - text string describing the name of the light.
 There is a short-hand naming convention described below.

 18

FrontPanel User’s Manual 19

 Bits - address of the variable which this light will be
 bound to. The data type must reflect 8, 16, or 32 bit
 precision depending on the function being called.

 Bitnum – a signed integer specifying which bit within the data
 item being pointed to by ‘bits’. The least significant
 Bit starts at one (1).

Return Value: 1 = success, 0 = failure

Description:

The fp_bindLightxx functions bind a light to bits within data values in
your simulator. There are versions of bindLight for 8, 16 and 32 bit
unsigned integers and you choose the proper one for the type of data
the bit being monitored is a part of. The ‘name’ is a character string
that must match the name of a light defined in the configuration file.
For cases where multiple bits in a variable are bound to a set of
lights (e.g. 16 lights each representing one bit of a 16 bit variable),
there is a short-hand method of naming. A numerical range may be
supplied between braces (“{“ and “}”) in the name. For example, if the
configuration file had 16 address lights named LED_ADDRESS_00 through
LED_ADDRESS_15, and those are to monitor 16 bits in a variable named
‘address’, the following naming can be used:

 fp_bindLight16(“LED_ADDRESS_{00-15}”, &address, 1);

The above light names will expand to:

LED_ADDRESS_00
LED_ADDRESS_01
 …
LED_ADDRESS_15

The third argument (bitnum) defines which bit to start at, with the
least significant bit being 1. In the above example, LED_ADDRESS_00
will be bound to the least significant bit within the variable
‘address’ points to. LED_ADDRESS_01 would be bound to the second least
significant bit and so on. If the bitnum was -16, LED_ADDRESS_00 would
be bound to bit 16, LED_ADDRESS_01 to bit 15 and so on.

Examples:

fp_bindLight16(“LED_ADDRESS_{15-00}”, &address, 1);

fp_bindLight invert - Bind Light to Data

int
fp_bindLight32invert(char *name,uint32 *bits,int bitnum,uint32 mask);

int
fp_bindLight16invert(char *name,uint16 *bits,int bitnum,uint16 mask);

int
fp_bindLight8invert(char *name, uint8 *bits, int bitnum, uint8 mask);

 19

FrontPanel User’s Manual 20

Arguments:
 Name - text string describing the name of the light.
 There is a short-hand naming convention described below.

 Bits - address of the variable which this light will be
 bound to. The data type must reflect 8, 16, or 32 bit
 precision depending on the function being called.

 Bitnum – a signed integer specifying which bit within the data
 item being pointed to by ‘bits’. The least significant
 Bit starts at one (1).

 Mask - A bit mask. Any bit of a logic one causes the function
of the bound light to be inverted. I.e. bits bound to a light which
have a logic zero will cause the light to illuminate, and those having
a value of one will cause the light to be off.

fp_bindRunFlag - Bind run flag

void fp_bindRunFlag(uint8 *addr);

Description:

The intensity of a light is only calculated if the value of a variable
defined by the runflag is non zero. When the runflag is zero, lights
will be drawn at full intensity if the bit it is monitoring is a logic
one, and at minimum intensity if the bit is a zero.

fp_bindSwitch - Bind Switch to data

int fp_bindSwitch32(char *name, uint32 *down, uint32 *up, int bitnum);
int fp_bindSwitch16(char *name, uint16 *down, uint16 *up, int bitnum);
Int fp_bindSwitch8(char *name, uint8 *down, uint8 *up, int bitnum);

Arguments:

 name - text string describing the name of the switch.
 There is a short-hand naming convention described below.

 down - address of the variable which this switch will be

bound to, whose bit value will be affected when the
switch is clicked to the down position. The data type
must reflect 8, 16, or 32 bit precision depending on the
function being called.

up - address of the variable which this switch will be
bound to, whose bit value will be affected when the
switch is clicked to the up position. The data type must
reflect 8, 16, or 32 bit precision depending on the
function being called.

 bitnum – a signed integer specifying which bit within the data

item being pointed to by ‘down’ and ‘up’ pointers. The
least significant bit starts at one (1).

Return Value: 1 = success, 0 = failure

 20

FrontPanel User’s Manual 21

Description:

The fp_bindSwitchxx functions bind a switch to bits within data values
in your simulator. There are versions of bindSwitch for 8, 16 and 32
bit unsigned integers and you choose the proper one for the type of
data the bit being controlled is a part of. The ‘name’ is a character
string that must match the name of a switch defined in the
configuration file. For cases where multiple bits in a variable are
bound to a set of switches (e.g. 16 switches each representing one bit
of a 16 bit variable), there is a short-hand method for naming. A
numerical range may be supplied between braces ({ and }) in the name.
For example, if the configuration file had 16 address switches named
SW_ADDRESS_00 through SW_ADDRESS_15, and those are to control 16 bits
in a variable named ‘address’, the following naming can be used:

fp_BindSwitch16("SW_ADDRESS_{00-15}",&address,&address,1);

The above switch names will expand to:

SW_ADDRESS_00
SW_ADDRESS_01
 …
SW_ADDRESS_15

The up and down arguments are address pointers to the data to be
affected by switch state changes. For toggle switches where there is
only two positions (up and down), the same address should be specified
for both the up and down arguments. For momentary switches, the up and
down addresses should be different and point to the variables within
the simulator that are to be controlled by the switch.

The bitnum argument specifies which bit to start with within the
variable being pointed to by the up and down arguments. The least
significant bit specified with a value of 1. In the above example,
SW_ADDRESS_00 will be bound to the least significant bit within the
variable that address points to. SW_ADDRESS_01 would be bound to the
second least significant bit and so on. If the bitnum was -16,
SW_ADDRESS_00 would be bound to bit 16, SW_ADDRESS_01 to bit 15 and so
on.

Data Sampling

The data sampling functions provide a means for a simulation program to
tell FrontPanel when data values are to be read and used for light
intensity calculations, or when switch positions shall be updated to
reflect the current values of a variable within the simulator.

fp_sampleData - Sample Data

 21

FrontPanel User’s Manual 22

void fp_sampleData(void);

Description:

This function causes the simulation clock value, and all data values
which are bound to lights to be read.

fp_sampleDataWarp - Sample Data with Clock Warp

void fp_sampleDataWarp(int clockwarp);

Argument:

clockwarp Signed integer which is added to the current
simulation clock.

Description:

This function is used for retarding or advancing the simulation clock
before any data are sampled. The value of the simulation clock within
the simulator is not affected.

fp_sampleLightGroup - Sample Light Group

void fp_sampleLightGroup(int groupnum, int clocwarp);

Arguments:

groupnum integer specifying the group number of the lights to
be sampled.

clockwarp a signed integer whose value is added to the current

value of the simulation clock.

Description:

Certain lights such as those for the purpose of displaying CPU status
signals may need to have their data sampled more frequently than others.
When lights are defined in the configuration file, they can optionally
be given a group number. The sampleLightGroup function allows for more
efficient operation by only processing the data of a desired subset of
the lights.

fp_sampleSwitches – Sample Switches

void fp_sampleSwitches(void);

Description:

Switches are typically used to affect data values within the simulator
program when the user clicks on them. The fp_sampleSwitches function
causes the state of all switches that are bound to data values to have
their states reflect those values.

 22

FrontPanel User’s Manual 23

Callbacks

Front panel switches are used to affect the bits of variables to which
they are bound. A callback may be added to a switch which will result
in a function of your choosing to be called when the switch is clicked.
The callback is initiated after the data value the switch is bound to
has been updated to reflect the current switch state.

Note: The FrontPanel switch mechanism runs in a thread independent from
your simulation program, and thus the callback function will also be
running in the FrontPanel simulation thread. Your callback function
should be used as a notification mechanism only and not for main
simulation processing such as executing simulated instructions.

fp_addSwitchCallback - Add Switch Callback

int fp_addSwitchCallback(char *name, void (*cbfunc)(int state, int
val), int userval);

Arguments:

name Character string containing the name of the switch
that is to have the callback be added to. The name
must match a switch that was defined in the
configuration file.

cbfunc The function in your program which will be called

when the switch is activated by a mouse click.

userval An integer value that will be passed as an argument

to the callback function.

The function in your simulation program to be called shall have the
following calling sequence:

 void myCallbackFunc (int state, int userval)
 {
 /* your code */
 }

When a switch is clicked on and a callback function is invoked, it will
be passed the following arguments:

state An integer containing the current state of the switch
and will be one of FP_SW_DOWN, FP_SW_UP, or
FP_SW_CENTER as defined in frontpanel.h.

Example:

fp_addSwitchCallback(“Deposit_SW”, deposit_clicked, 1);

 23

FrontPanel User’s Manual 24

User function to be called when the switch named “Depost SW” is
activated.

void deposit_clicked(int state, int val)
{
 switch(state)

{ case FP_SWITCH_UP:
 …

 break;
 case FP_SWITCH_DOWN:
 …
 break;
 default:
 break;
 }
}

fp_addQuitCallback - Add Quit Callback

void fp_addQuitCallback(void (*cbfunc)(void));

Description:

This function provides a method of having a function within your
simulator be called when the user closes the graphics window. When a
quit callback is defined, a window closure event will not result in the
window being closed. The defined callback will be called and it is then
up to the application to call fp_quit() to terminate the graphics
window.

 24

FrontPanel User’s Manual 25

Programming Interface Function List Summary

fp_addSwitchCallback - Add Switch Callback
fp_addQuitCallback - Add quit Callback

fp_bindLight8 - Bind Light to Data
fp_bindLight16
fp_bindLight32

fp_bindLight8invert - Bind Light to Data, option to invert logic
fp_bindLight16invert
fp_bindLight32invert

fp_bindRunFlag - Bind run flag

fp_bindSimclock - Bind simulation clock

fp_bindSwitch8 - Bind Switch to data
fp_bindSwitch16
fp_bindSwitch32

fp_framerate - framerate control

fp_ignoreBindErrors - Ignore Binding Errors

fp_init - initialize frontpanel

fp_quit - Quit

fp_sampleData - Sample Data
fp_sampleDataWarp - Sample Data with Clock Warp
fp_sampleLightGroup - Sample Light Group
fp_sampleSwitches – Sample Switches

References

[1] simh – The Computer History Simulation Project (http://simh.trailing-edge.com/)

 25

http://simh.trailing-edge.com/

	 Introduction
	 Example Screenshots
	How FrontPanel works
	System Requirements
	Steps for adding a light and switch panel to a simulation.
	The Frontpanel Configuration File
	Realism
	Steps for creating a realistic system
	Describing Lights
	Describing Switches

	3D Geometric Objects
	3D Navigation
	The Programming Interface
	Frontpanel API Functions
	Control Functions
	Binding Data
	Data Sampling
	Callbacks

	Programming Interface Function List Summary

