
Marble Developers Guide

Dennis Nienhüser

August 16th, 2014

Contents

1 Building Marble 3

1.1 Obtaining the Source Code . 4

1.2 Source Code Organization . 5

1.3 CMake Build System . 5

1.3.1 General Options . 6

1.3.2 Controlling Dependencies 6

1.3.3 Troubleshooting . 7

1.3.4 Classic Makefiles (Linux) 9

1.3.5 Ninja Makefiles (Linux) 9

1.3.6 Visual Studio Solution (MS Windows) 9

1.3.7 MinGW (MS Windows) 9

1.3.8 Bundles (MacOSX) . 9

1.4 Development Environment . 9

1.4.1 QtCreator . 9

1.4.2 Visual Studio . 9

1.5 Installation and Packaging . 9

1.5.1 System-wide Installation (Linux) 9

1.5.2 Local Installation (Linux) 9

1.5.3 NSIS Installer (MS Windows) 9

1

2 Architecture and Concepts 9

2.1 MarbleWidget . 9

2.1.1 Minimalistic Code Example 9

2.1.2 Most Common Properties and Methods 10

2.1.3 Qt Designer Integration 11

2.2 MarbleModel . 11

2.3 Planets and Map Themes . 11

2.4 Rendering in Map Layers . 13

2.5 Viewport and Projections . 13

2.6 The Tree Model . 14

2.7 Geographic Scene . 14

2.8 Runners . 14

2.9 Search . 14

2.10 Routing . 14

2.11 Location . 14

2.12 Plugins . 14

2.13 Float Items . 14

2.14 DGML . 14

2.15 KML . 14

2.16 GeoData . 14

2.17 Python Bindings . 14

3 Extending Marble 14

3.1 Writing Map Themes . 14

3.2 Writing Plugins . 14

3.3 Integrating Marble into Applications 14

3.4 Using Qt Designer Plugins . 14

3.5 Contributing Back . 15

3.5.1 Generating Patches . 15

3.5.2 Reviewboard . 15

Welcome! This guide assists in setting up Marble in development environments
and provides a detailed overview of the Marble library. It is directed mostly at

2

• developers who want to use the Marble library in their project
• packagers who want to generate binary packages for installing Marble and
• contributors who want to help making Marble yet more versatile and

polished.

End users might find some useful information also, but are often better served
just installing Marble and, if needed, reading the end-user documentation or
requesting support.

The Marble project consists of software (LGPL 2.1 license) and data (some free
license). The vast majority of its features are contained in the library portions
(libmarblewidget, libastro and plugins sum up to 140k SLOC) and hence
available to 3rd party applications. The Marble application end-users typically
interact with (Marble KDE or Marble Qt) are each just thin wrappers that
expose the library features, each less than 3k SLOC. A high-level overview of
the existing modules looks like follows:

Figure 1: Marble Modules

The remaining parts of the developers guide are organized into three chapters.
Building Marble describes how to retrieve the Marble sources, build them, set
up a development environment, install Marble and create packages/installers.
The Architecture and Concepts looks into the code contained within the library
portions: What are the most important classes, how do they interact? Finally
we consider how to extend Marble by new plugins, map themes and how to
embed it into 3rd party applications in the Extending Marble chapter.

1 Building Marble

Retrieving the source code, compiling and installing it and executing Marble can
be accomplished with just a few commands:

git clone git://anongit.kde.org/marble ~/marble/sources
mkdir -p ~/marble/build

3

http://marble.kde.org/install.php
http://marble.kde.org/documentation.php
http://marble.kde.org/support.php

cd ~/marble/build
cmake ~/marble/sources
make
sudo make install

For day-to-day development, packaging and other scenarios you need more
control though. The following sections look into various build aspects.

1.1 Obtaining the Source Code

The Marble source code is maintained in a git repository. The clone URL is

• git://anongit.kde.org/marble (read-only/anonymous access)
• git@git.kde.org:marble (write access for KDE developers)

There are also web interfaces for quickly browsing the sources at quickgit.kde.org
and projects.kde.org. The latter provides alternative access methods (http
and tarballs) also. Note that despite the different URLs all point to the same
repository.

Retrieving the Marble sources by anonymous access and storing them at
~/marble/sources then becomes

git clone git://anongit.kde.org/marble ~/marble/sources

Development happens in feature branches or (most often) directly in the master
branch. Although the master branch contains the latest and greatest features,
using it in production environments is not recommended. Stable (release)
branches are those starting with KDE/4., e.g. KDE/4.14. They are created and
maintained according to the KDE Release Schedules. The most recent stable
branch can be determined using

git branch -r | grep KDE | sort -V

which reports said branch on the last line, e.g. origin/KDE/4.14. It can then
be checked out using the command

git checkout -b KDE/4.14 origin/KDE/4.14

4

http://quickgit.kde.org/?p=marble.git
https://projects.kde.org/projects/kde/kdeedu/marble/repository
https://techbase.kde.org/Schedules

1.2 Source Code Organization

Let’s have a quick look at the directory tree of the Marble sources, shortened to
the most important directories:

src/
apps/

marble-ui/ Code shared between Marble KDE and Marble Qt
marble-qt/ Marble application (Qt variant)
marble-kde Marble application (KDE variant)
marble-mobile/ Marble application (Maemo variant)
marble-touch/ Marble application (MeeGo variant)

lib/
marble/ The heart of Marble
astro/ Astronomical calculations

plugins/
designer/ Qt Designer integration
declarative/ Qt Declarative support
positionprovider/ Location providers (e.g. GPS)
render/ Float items and other display related
runner/ Parsing, searching, routing, reverse geocoding

bindings/
python/ Python bindings (only compile in release branches)

tests/ Unit tests
tools/ Tools for e.g. data conversion
examples/ Programming and data examples

cpp/ Using libmarblewidget from C++
qml/ Using libmarblewidget from QML
python/ Using libmarblewidget from Python

data/
maps/ Map themes

Remember the high-level overview of the Marble modules? src/lib/marble,
src/lib/astro and src/plugins correspond to the libraries, while src/apps,
tests, tools and examples reflect the applications.

1.3 CMake Build System

Marble uses CMake, a cross-platform open source build system. Building Marble
is quite straightforward in the most simple case and comes down to

cmake /path/to/marble/sources
make
make install

5

However there are a lot of options to tweak things as needed. This section
attempts to list them.

1.3.1 General Options

A couple of CMake generic and Marble specific options are commonly used to
control the build process. The most important ones are

Flag Default Description

CMAKE_BUILD_TYPE Debug, Release or RelWithDebInfo

CMAKE_INSTALL_PREFIX /usr/local /usr, /home/$user/marble/export, . . .
TILES_AT_COMPILETIME ON Create the data for the Atlas map at compile time?
BUILD_MARBLE_APPS ON Build Marble applications?
BUILD_MARBLE_TESTS OFF Build unit tests?
BUILD_MARBLE_TOOLS OFF Build tools for data conversion etc.?
BUILD_MARBLE_EXAMPLES OFF Build Marble C++ example applications?
WITH_DESIGNER_PLUGIN ON Build the Qt Designer plugins?
BUILD_HARMATTAN_ZOOMINTERCEPTOR OFF Use volume keys for zooming on Maemo?
BUILD_INHIBIT_SCREENSAVER_PLUGIN OFF Inhibit screensaver during navigation on Maemo?

You can change the default values of the options using CMake specific tools like
cmake-gui. Alternatively just pass them on the command line along the lines
of cmake -DBUILD_MARBLE_TESTS=ON /path/to/marble/sources.

1.3.2 Controlling Dependencies

The only required dependency is Qt. In order for CMake to find Qt, make sure
that qmake can be executed from $PATH. If you have multiple versions of Qt
installed, check the output of qmake -v to determine which version will be used.
Note that qmake alone does not mean Qt is fully installed on your system. You
need an installation of Qt that includes development files (headers and optional
modules like webkit).

Other libraries can optionally be installed and will be automatically detected by
CMake and used. Most prominently kdelibs is among them. For historic reasons
Marble treats kdelibs as a required dependency unless you tell it to do otherwise:
If you do not want to use the Marble KDE application, pass the QTONLY=ON
parameter to CMake and Marble will happily compile without KDE.

6

Dependency Type Description Deactivation

Qt Required the famous cross-platform application framework N/A
KDE development platform Optional an integrated set of technologies to build applications quickly and efficiently QTONLY=ON

quazip Optional reading and displaying .kmz files WITH_quazip=OFF

libshp Optional reading and displaying .shp files WITH_libshp=OFF

libgps Optional position information via gpsd WITH_libgps=OFF

libwlocate Optional Position information based on neighboring WLAN networks WITH_libwlocate=OFF

QtLocation Optional position information via QtMobility QtLocation WITH_QtLocation=OFF

liblocation Optional (Maemo) position information via liblocation. WITH_liblocation=OFF

If you encounter problems during the cmake run, check its output carefully.
CMake reports which dependencies were found or not, and prints an extensive
summary of its configuration.

For packaging Marble a system-wide install prefix makes most sense. During
development a local installation is usually better though: It does not need root
privileges to run make install.

• Make sure there is no system-wide installation of Marble e.g. from
distribution packages. A system-wide installation can typically be
detected by checking whether /usr/lib/libmarblewidget.so or
/usr/local/lib/libmarblewidget.so exists, though other installation
paths are in use also.

• You must run make install; a simple make is not enough to execute
Marble later on. The reason for this is the installation of required data
files.

• For a local installation, set WITH_DESIGNER_PLUGIN=OFF
• For a local installation, the environment variables LD_LIBRARY_PATH and

PATH need to be adjusted to include the lib/ and bin/ directory of the
installation directory, respectively.

1.3.3 Troubleshooting

• Marble starts, but shows a black map only. You did not run make install,
or moved the installation directory afterwards.

• Marble does not start, the shell reports marble: command not found.
Call marble or marble-qt with an absolute path, or adjust the $PATH
environment variable to include the bin/ directory of your installation.

• Marble does not start, the shell reports error while loading
shared libraries: libmarblewidget.so.19: cannot open

7

shared object file: No such file or directory. Setup the
LD_LIBRARY_PATH environment variable to include the lib/ directory of
your installation.

• Marble crashes during startup with an assertion talking about a hash
containing some name. Different versions of libmarblewidget are loaded at
the same time. This can happen when an older installation of Marble is
still around and old plugins linking against the old installation are trying
to be loaded. Remove the old installation.

In a similar fashion we can compare the directories in the sources to the files
that will be installed after compilation and running make install (described
further below):

Sources Installation

src/apps/marble-kde bin/marble

src/apps/marble-qt bin/marble-qt

src/apps/marble-mobile bin/marble-mobile

src/apps/marble-touch bin/marble-touch

tests not installed, run make test in the build folder
tools not installed, execute directly from the build folder
examples/cpp/$name share/apps/marble/examples/$name

src/lib/marble/*.cpp lib/libmarblewidget.so

src/lib/astro/*.cpp lib/libastro.so/

src/plugins/*/$name/*.cpp lib/kde4/plugins/marble/$name.so

src/lib/marble/*.h include/marble/

src/lib/astro/*.h include/astro/

data/ share/apps/marble/data

8

1.3.4 Classic Makefiles (Linux)

1.3.5 Ninja Makefiles (Linux)

1.3.6 Visual Studio Solution (MS Windows)

1.3.7 MinGW (MS Windows)

1.3.8 Bundles (MacOSX)

1.4 Development Environment

1.4.1 QtCreator

1.4.2 Visual Studio

1.5 Installation and Packaging

1.5.1 System-wide Installation (Linux)

1.5.2 Local Installation (Linux)

1.5.3 NSIS Installer (MS Windows)

2 Architecture and Concepts

2.1 MarbleWidget

MarbleWidget is a QWidget that shows a map and associated information. For
many use cases it is the main entry point into the marblewidget library. Many
properties and methods are available to customize the appearance of the widget
for your needs. By default MarbleWidget is interactive, allowing users to change
which parts of the planet are displayed.

2.1.1 Minimalistic Code Example

#include <QApplication>
#include <marble/MarbleWidget.h>

int main(int argc, char** argv)
{

QApplication app(argc, argv);
Marble::MarbleWidget *mapWidget = new Marble::MarbleWidget;

9

mapWidget->setMapThemeId("earth/srtm/srtm.dgml");
mapWidget->show();
return app.exec();

}

Thanks to using sane default values for all properties a basic MarbleWidget is
easy to setup. The only thing that needs to be set is the mapThemeId property
as explained in the Map Themes section. The code above, once compiled and
executed, results in an application that looks like this:

Figure 2: MarbleWidget Screenshot

2.1.2 Most Common Properties and Methods

While MarbleWidget can easily be created, it also provides a versatile configura-
tion. Among the commonly changed properties and methods are:

• Choosing a planet to display and how it is rendered with the help of the
mapThemeId property. See the Planets and Map Themes section for details.

10

• Deciding whether the map is shown as a globe or as some variant
of a flat map through the projection property. Most commonly
Marble::Spherical is used to render a globe and Marble::Mercator for
a “flat” map.

• Adjusting the part of the map that is shown by the zoom, longitude
and latitude parameters or one of their convenience methods. See the
Viewport and Projections section for details.

• Changing which elements are shown and how they are displayed by
the various variants of show* properties as well as the floatItems and
renderPlugins methods.

• Fine-tuning how the user can interact with MarbleWidget using the
popupMenu and inputHandler methods, or disabling input completely
using setInputEnabled(false).

• Adding your own rendering in a custom map layer using the addLayer
method. The Map Layers section covers this in detail.

• Managing data related properties by accessing properties and methods of
MarbleModel via the model property. See MarbleModel for details.

2.1.3 Qt Designer Integration

‘MarbleWidget’ can be used from within Qt Designer as described in this section.

2.2 MarbleModel

2.3 Planets and Map Themes

While most importantly used to display maps of planet Earth, Marble can render
maps of other planets or moons just as fine. All it takes is a DGML file which
assembles the associated image and/or vector data and provides meta data like
a name or the radius of the planet. Such a DGML file can be loaded using
MarbleWidget::setMapThemeId; the associated map theme is loaded as well as
the corresponding planet.

Typically you do not have to deal with planets directly, however. Instead
one of the ready-made map themes can easily be loaded for display in
MarbleWidget using its mapThemeId property. Map theme IDs follow a
$planet/$theme/$theme.dgml naming scheme. Check out the data/maps/
directory in the Marble sources for a list of default map themes. A typical
Marble installation provides the following ones:

Preview Name ID Description

OpenStreetMap earth/openstreetmap/openstreetmap.dgml The free Wiki world map

11

Preview Name ID Description

Atlas earth/srtm/srtm.dgml A vector map in Atlas style

Satellite View earth/bluemarble/bluemarble.dgml Earth seen from space

Political Map earth/political/political.dgml Highlights governmental boundaries with colors

Earth at Night earth/citylights/citylights.dgml Earth seen from space at night

Plain Map earth/plain/plain.dgml A minimalistic vector map

Historical Map 1689 earth/schagen1689/schagen1689.dgml More than 400 years old

Temperature (July) earth/temp-july/temp-july.dgml Average temperature in July

Temperature (December) earth/temp-dec/temp-dec.dgml Average temperature in December

Precipitation (July) earth/precip-july/precip-july.dgml Average precipitation in July

Precipitation (December) earth/precip-dec/precip-dec.dgml Average precipitation in December

Moon moon/clementine/clementine.dgml Earth’s moon recorded by the Clementine spacecraft

Further map themes are available at marble.kde.org. The Marble applications
provide built-in support to easily explore and install them. You can add support
for it as well in your application using the MapThemeDownloadDialog class.
Other popular maps like Google Maps, Google Satellite, Bing Maps and more
can easily be integrated into Marble as well from a technical point of view. From

12

http://marble.kde.org/maps-4.5.php

a legal point of view however this is likely problematic and we do not want to
promote the usage of maps which we think are not free.

Programmatic access to the list of installed map themes is provided through the
MapThemeManager class, which provides a QAbstractItemModel for convenience.

Marble does know about a dozen different planets by itself. They can be accessed
using PlanetFactory. For example, PlanetFactory::construct("earth")
creates an instance of planet Earth. The Planet class is a lightweight class that
contains a handful properties mostly needed for calculations. For planets yet
unknown to Marble you can instantiate a Planet directly and set the respective
properties. Alternatively new planets can also be instantiated from DGML
files. This enables dynamic extension of the list of planets without the need to
recompile Marble.

2.4 Rendering in Map Layers

2.5 Viewport and Projections

The zoom property has no unit, but its related properties distance and radius
have: distance is the distance in km between the map surface and the virtual
camera (increasing the distance zooms out), radius is the radius of the full globe
in pixel (increasing the radius zooms in). These three properties are related and
changing any of them changes the other two automatically. The longitude and
latitude properties are accompanied by several convenience centerOn methods
which take points, places or rectangular regions as arguments.

13

2.6 The Tree Model

2.7 Geographic Scene

2.8 Runners

2.9 Search

2.10 Routing

2.11 Location

2.12 Plugins

2.13 Float Items

2.14 DGML

2.15 KML

2.16 GeoData

2.17 Python Bindings

3 Extending Marble

3.1 Writing Map Themes

3.2 Writing Plugins

3.3 Integrating Marble into Applications

3.4 Using Qt Designer Plugins

When Marble is build with the WITH_DESIGNER_PLUGIN=TRUE flag (activated
by default), MarbleWidget is available from within Qt Designer and can be
embedded into .ui files just like any other QWidget. If MarbleWidget does not
show up in Qt Designer, check that:

• The boolean cmake option WITH_DESIGNER_PLUGIN is activated
• The designer plugin is installed in a directory that is among Qt Designer’s

plugin paths

14

• The running Qt Designer has access to the marblewidget library through
LD_LIBRARY_PATH or a comparable library search path setup.

Please note that MarbleWidget will not show up in Qt Creator’s Design Pane.
You have to use Qt Designer instead.

3.5 Contributing Back

3.5.1 Generating Patches

3.5.2 Reviewboard

15

	Building Marble
	Obtaining the Source Code
	Source Code Organization
	CMake Build System
	General Options
	Controlling Dependencies
	Troubleshooting
	Classic Makefiles (Linux)
	Ninja Makefiles (Linux)
	Visual Studio Solution (MS Windows)
	MinGW (MS Windows)
	Bundles (MacOSX)

	Development Environment
	QtCreator
	Visual Studio

	Installation and Packaging
	System-wide Installation (Linux)
	Local Installation (Linux)
	NSIS Installer (MS Windows)

	Architecture and Concepts
	MarbleWidget
	Minimalistic Code Example
	Most Common Properties and Methods
	Qt Designer Integration

	MarbleModel
	Planets and Map Themes
	Rendering in Map Layers
	Viewport and Projections
	The Tree Model
	Geographic Scene
	Runners
	Search
	Routing
	Location
	Plugins
	Float Items
	DGML
	KML
	GeoData
	Python Bindings

	Extending Marble
	Writing Map Themes
	Writing Plugins
	Integrating Marble into Applications
	Using Qt Designer Plugins
	Contributing Back
	Generating Patches
	Reviewboard

