The main function to calculate the quality metrics is sesameQC_calcStats
. This function takes a SigDF, calculates the QC statistics, and returns a single S4 sesameQC
object, which can be printed directly to the console. To calculate QC metrics on a given list of samples or all IDATs in a folder, one can use sesameQC_calcStats
within the standard openSesame
pipeline. When used with openSesame
, a list of sesameQC
s will be returned. Note that one should turn off preprocessing using prep=""
:
## calculate metrics on all IDATs in a specific folder
qcs = openSesame(idat_dir, prep="", func=sesameQC_calcStats)
SeSAMe divides sample quality metrics into multiple groups. These groups are listed below and can be referred to by short keys. For example, “intensity” generates signal intensity-related quality metrics.
Short.Key | Description |
---|---|
detection | Signal Detection |
numProbes | Number of Probes |
intensity | Signal Intensity |
channel | Color Channel |
dyeBias | Dye Bias |
betas | Beta Value |
By default, sesameQC_calcStats
calculates all QC groups. To save time, one can compute a specific QC group by specifying one or multiple short keys in the funs=
argument:
sdfs <- sesameDataGet("EPIC.5.SigDF.normal")[1:2] # get two examples
## only compute signal detection stats
qcs = openSesame(sdfs, prep="", func=sesameQC_calcStats, funs="detection")
qcs[[1]]
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 837907 (num_dt)
## % Detection Success : 96.7 % (frac_dt)
## N. Detection Succ. (after masking) : 837907 (num_dt_mk)
## % Detection Succ. (after masking) : 96.7 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 835380 (num_dt_cg)
## % Detection Success (cg) : 96.7 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2469 (num_dt_ch)
## % Detection Success (ch) : 84.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
We consider signal detection the most important QC metric.
One can retrieve the actual stat numbers from sesameQC
using the sesameQC_getStats (the following generates the fraction of probes with detection success):
## [1] 0.9665611
After computing the QCs, one can optionally combine the sesameQC
objects into a data frame for easy comparison.
Note that when the input is an SigDF
object, calling sesameQC_calcStats
within openSesame
and as a standalone function are equivalent.
sdf <- sesameDataGet('EPIC.1.SigDF')
qc = openSesame(sdf, prep="", func=sesameQC_calcStats, funs=c("detection"))
## equivalent direct call
qc = sesameQC_calcStats(sdf, c("detection"))
qc
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 834922 (num_dt)
## % Detection Success : 96.3 % (frac_dt)
## N. Detection Succ. (after masking) : 834922 (num_dt_mk)
## % Detection Succ. (after masking) : 96.3 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 832046 (num_dt_cg)
## % Detection Success (cg) : 96.4 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2616 (num_dt_ch)
## % Detection Success (ch) : 89.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
SeSAMe features comparison of your sample with public data sets. The sesameQC_rankStats()
function ranks the input sesameQC
object with sesameQC
calculated from public datasets. It shows the rank percentage of the input sample as well as the number of datasets compared.
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity) - Rank 15.7% (N=636)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii) - Rank 15.6% (N=636)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn) - Rank 7.5% (N=636)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red) - Rank 21.2% (N=636)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn) - Rank 4.2% (N=636)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red) - Rank 3.6% (N=636)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
SeSAMe provides functions to create QC plots. Some functions takes sesameQC as input while others directly plot the SigDF objects. Here are some examples:
sesameQC_plotBar()
takes a list of sesameQC objects and creates bar plot for each metric calculated.
sesameQC_plotRedGrnQQ()
graphs the dye bias between the two color channels.
sesameQC_plotIntensVsBetas()
plots the relationship between β values and signal intensity and can be used to diagnose artificial readout and influence of signal background.
sesameQC_plotHeatSNPs()
plots SNP probes and can be used to detect sample swaps.
More about quality control plots can be found in Supplemental Vignette.
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] SummarizedExperiment_1.26.1 Biobase_2.56.0
## [3] GenomicRanges_1.48.0 GenomeInfoDb_1.32.2
## [5] IRanges_2.30.0 S4Vectors_0.34.0
## [7] MatrixGenerics_1.8.0 matrixStats_0.62.0
## [9] knitr_1.39 sesame_1.14.2
## [11] sesameData_1.14.0 ExperimentHub_2.4.0
## [13] AnnotationHub_3.4.0 BiocFileCache_2.4.0
## [15] dbplyr_2.1.1 BiocGenerics_0.42.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 bit64_4.0.5
## [3] filelock_1.0.2 RColorBrewer_1.1-3
## [5] httr_1.4.3 tools_4.2.0
## [7] bslib_0.3.1 utf8_1.2.2
## [9] R6_2.5.1 DBI_1.1.2
## [11] colorspace_2.0-3 withr_2.5.0
## [13] tidyselect_1.1.2 preprocessCore_1.58.0
## [15] bit_4.0.4 curl_4.3.2
## [17] compiler_4.2.0 cli_3.3.0
## [19] DelayedArray_0.22.0 labeling_0.4.2
## [21] sass_0.4.1 scales_1.2.0
## [23] readr_2.1.2 rappdirs_0.3.3
## [25] stringr_1.4.0 digest_0.6.29
## [27] rmarkdown_2.14 XVector_0.36.0
## [29] pkgconfig_2.0.3 htmltools_0.5.2
## [31] highr_0.9 fastmap_1.1.0
## [33] rlang_1.0.2 RSQLite_2.2.14
## [35] shiny_1.7.1 farver_2.1.0
## [37] jquerylib_0.1.4 generics_0.1.2
## [39] jsonlite_1.8.0 wheatmap_0.2.0
## [41] BiocParallel_1.30.2 dplyr_1.0.9
## [43] RCurl_1.98-1.6 magrittr_2.0.3
## [45] GenomeInfoDbData_1.2.8 Matrix_1.4-1
## [47] Rcpp_1.0.8.3 munsell_0.5.0
## [49] fansi_1.0.3 lifecycle_1.0.1
## [51] stringi_1.7.6 yaml_2.3.5
## [53] zlibbioc_1.42.0 plyr_1.8.7
## [55] grid_4.2.0 blob_1.2.3
## [57] ggrepel_0.9.1 parallel_4.2.0
## [59] promises_1.2.0.1 crayon_1.5.1
## [61] lattice_0.20-45 Biostrings_2.64.0
## [63] hms_1.1.1 KEGGREST_1.36.0
## [65] pillar_1.7.0 reshape2_1.4.4
## [67] glue_1.6.2 BiocVersion_3.15.2
## [69] evaluate_0.15 BiocManager_1.30.18
## [71] png_0.1-7 vctrs_0.4.1
## [73] tzdb_0.3.0 httpuv_1.6.5
## [75] gtable_0.3.0 purrr_0.3.4
## [77] assertthat_0.2.1 cachem_1.0.6
## [79] ggplot2_3.3.6 xfun_0.31
## [81] mime_0.12 xtable_1.8-4
## [83] later_1.3.0 tibble_3.1.7
## [85] AnnotationDbi_1.58.0 memoise_2.0.1
## [87] ellipsis_0.3.2 interactiveDisplayBase_1.34.0
## [89] BiocStyle_2.24.0