topdownr
package.
topdownr 1.6.0
topdownr is free and open-source software. If you use it, please support the project by citing it in publications:
P.V. Shliaha, S. Gibb, V. Gorshkov, M.S. Jespersen, G.R. Andersen, D. Bailey, J. Schwartz, S. Eliuk, V. Schwämmle, and O.N. Jensen. 2018. Maximizing Sequence Coverage in Top-Down Proteomics By Automated Multi-modal Gas-phase Protein Fragmentation. Analytical Chemistry. DOI: 10.1021/acs.analchem.8b02344
For bugs, typos, suggestions or other questions, please file an issue
in our tracking system (https://github.com/sgibb/topdownr/issues)
providing as much information as possible, a reproducible example and
the output of sessionInfo()
.
If you don’t have a GitHub account or wish to reach a broader audience for general questions about proteomics analysis using R, you may want to use the Bioconductor support site: https://support.bioconductor.org/.
topdownr
Load the package.
library("topdownr")
Some example files are provided in the topdownrdata
package. For a full
analysis you need a .fasta
file with the protein sequence, the
.experiments.csv
files containing the method information, the .txt
files
containing the scan header information and the .mzML
files with the
deconvoluted spectra.
## list.files(topdownrdata::topDownDataPath("myoglobin"))
$csv
[1] ".../20170629_myo/experiments/myo_1211_ETDReagentTarget_1e6_1.experiments.csv.gz"
[2] ".../20170629_myo/experiments/myo_1211_ETDReagentTarget_1e6_2.experiments.csv.gz"
[3] "..."
$fasta
[1] ".../20170629_myo/fasta/myoglobin.fasta.gz"
[2] "..."
$mzML
[1] ".../20170629_myo/mzml/myo_1211_ETDReagentTarget_1e6_1.mzML.gz"
[2] ".../20170629_myo/mzml/myo_1211_ETDReagentTarget_1e6_2.mzML.gz"
[3] "..."
$txt
[1] ".../20170629_myo/header/myo_1211_ETDReagentTarget_1e6_1.txt.gz"
[2] ".../20170629_myo/header/myo_1211_ETDReagentTarget_1e6_2.txt.gz"
[3] "..."
All these files have to be in a directory. You could import them via
readTopDownFiles
. This function has some arguments. The most important ones
are the path
of the directory containing the files,
the protein modification
(e.g. initiator methionine removal,
"Met-loss"
), and adducts (e.g. proton transfer often occurs
from c to z-fragment after ETD reaction).
## the mass adduct for a proton
H <- 1.0078250321
myoglobin <- readTopDownFiles(
## directory path
path = topdownrdata::topDownDataPath("myoglobin"),
## fragmentation types
type = c("a", "b", "c", "x", "y", "z"),
## adducts (add -H/H to c/z and name
## them cmH/zpH (c minus H, z plus H)
adducts = data.frame(
mass=c(-H, H),
to=c("c", "z"),
name=c("cmH", "zpH")),
## initiator methionine removal
modifications = "Met-loss",
## don't use neutral loss
neutralLoss = NULL,
## tolerance for fragment matching
tolerance = 5e-6
)
## Warning in FUN(X[[i]], ...): 61 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): 63 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): 53 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): 55 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): 50 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): 50 FilterString entries modified because of
## duplicated ID for different conditions.
## Warning in FUN(X[[i]], ...): ID in FilterString are not sorted in ascending
## order. Introduce own condition ID via 'cumsum'.
## Warning in FUN(X[[i]], ...): ID in FilterString are not sorted in ascending
## order. Introduce own condition ID via 'cumsum'.
myoglobin
## TopDownSet object (7.19 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 5882
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x5882 (5.15% != 0)
## Number of matched fragments: 368296
## Intensity range: [87.61;10704001.00]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
TopDownSet
AnatomyThe assembled object is an TopDownSet
object.
Briefly it is composed of three interconnected tables:
rowViews
/fragment data: holds the information on the type of fragments,
their modifications and adducts.colData
/condition data: contains the corresponding fragmentation
condition for every spectrum.assayData
: contains the intensity of assigned fragments.This section explains the implementation details of the TopDownSet
class. It
is not necessary to understand everything written here to use topdownr
for the
analysis of fragmentation data.
The TopDownSet
contains the following components: Fragment data, Condition
data, Assay data.
rowViews(myoglobin)
## FragmentViews on a 153-letter sequence:
## GLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGH...KHPGDFGADAQGAMTKALELFRNDIAAKYKELGFQG
## Mass:
## 16922.95406
## Modifications:
## Met-loss
## Views:
## start end width mass name type z
## [1] 1 1 1 30.03 a1 a 1 [G]
## [2] 1 1 1 58.03 b1 b 1 [G]
## [3] 1 1 1 59.01 z1 z 1 [G]
## [4] 1 1 1 60.02 zpH1 z 1 [G]
## [5] 1 1 1 74.05 cmH1 c 1 [G]
## ... ... ... ... ... ... ... ... ...
## [1212] 2 153 152 16868.93 zpH152 z 1 [LSDGEWQQVLNV...IAAKYKELGFQG]
## [1213] 1 152 152 16882.96 cmH152 c 1 [GLSDGEWQQVLN...DIAAKYKELGFQ]
## [1214] 1 152 152 16883.97 c152 c 1 [GLSDGEWQQVLN...DIAAKYKELGFQ]
## [1215] 2 153 152 16884.95 y152 y 1 [LSDGEWQQVLNV...IAAKYKELGFQG]
## [1216] 2 153 152 16910.93 x152 x 1 [LSDGEWQQVLNV...IAAKYKELGFQG]
The fragmentation data are represented by an FragmentViews
object that is an
overloaded XStringViews
object. It contains one AAString
(the protein sequence) and an IRanges
object that stores the
start
, end
(and width
) values of the fragments.
Additionally it has a DataFrame
for the mass
, type
and z
information
of each fragment.
conditionData(myoglobin)[, 1:5]
## DataFrame with 5882 rows and 5 columns
## File
## <Rle>
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_1 myo_707_ETDReagentTarget_1e6_1
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_2 myo_707_ETDReagentTarget_1e6_1
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_3 myo_707_ETDReagentTarget_1e6_2
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_4 myo_707_ETDReagentTarget_1e6_2
## C0707.30_1.0e+05_1.0e+06_02.50_14_00_1 myo_707_ETDReagentTarget_1e6_1
## ... ...
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_07 myo_1211_ETDReagentTarget_1e7_2
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_08 myo_1211_ETDReagentTarget_5e6_1
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_09 myo_1211_ETDReagentTarget_5e6_1
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_10 myo_1211_ETDReagentTarget_5e6_2
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_11 myo_1211_ETDReagentTarget_5e6_2
## Scan SpectrumIndex PeaksCount
## <numeric> <integer> <integer>
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_1 33 22 161
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_2 34 23 175
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_3 33 23 180
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_4 34 24 171
## C0707.30_1.0e+05_1.0e+06_02.50_14_00_1 36 25 172
## ... ... ... ...
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_07 223 203 213
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_08 221 202 250
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_09 222 203 145
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_10 223 203 207
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_11 224 204 158
## TotIonCurrent
## <numeric>
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_1 27224936.7177734
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_2 29167765.3955078
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_3 26132872.484375
## C0707.30_1.0e+05_1.0e+06_02.50_07_00_4 25475501.0371094
## C0707.30_1.0e+05_1.0e+06_02.50_14_00_1 27347105.4853516
## ... ...
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_07 2566120.42312622
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_08 2348707.19299316
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_09 2305899.88635254
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_10 2262800.11270142
## C1211.70_1.0e+06_0.0e+00_00.00_00_35_11 2212188.7298584
Condition data is a DataFrame
that contains the combined header information
for each MS run (combined from method (.experiments.csv
files)/scan header
(.txt
files) table and metadata from the .mzML
files).
assayData(myoglobin)[206:215, 1:10]
## 10 x 10 sparse Matrix of class "dgCMatrix"
## [[ suppressing 10 column names 'C0707.30_1.0e+05_1.0e+06_02.50_07_00_1', 'C0707.30_1.0e+05_1.0e+06_02.50_07_00_2', 'C0707.30_1.0e+05_1.0e+06_02.50_07_00_3' ... ]]
##
## z26 . . . . . . .
## zpH26 491328.4 446301.1 407389.1 473200.9 470679.3 493244.8 390025.8
## y26 . . . . . . .
## b27 . . . . . . .
## cmH27 . . . . . . .
## c27 . . . . . . .
## x26 . . . . . . .
## z27 . . . . . . .
## zpH27 534307.6 534135.1 434296.8 436866.2 550887.3 513038.8 460476.4
## y27 . . . . . . .
##
## z26 . . .
## zpH26 389430.25 496551.3 554295.7
## y26 23648.63 . .
## b27 . . .
## cmH27 . . .
## c27 . . .
## x26 . . .
## z27 . . .
## zpH27 456524.97 602207.0 579989.8
## y27 . . .
Assay data is a sparseMatrix
from the Matrix
package
(in detail a dgCMatrix
) where the rows correspond to the fragments,
the columns to the runs/conditions and the entries to the intensity values.
A sparseMatrix
is similar to the classic matrix
in R but stores just
the values that are different from zero.
TopDownSet
A TopDownSet
could be subsetted by the fragment and the condition data.
# select the first 100 fragments
myoglobin[1:100]
## TopDownSet object (3.47 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 100
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;1426.70]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 5882
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 100x5882 (9.68% != 0)
## Number of matched fragments: 56955
## Intensity range: [105.70;1076768.00]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:46] Subsetted 368296 fragments [1216;5882] to 56955 fragments [100;5882].
# select all "c" fragments
myoglobin["c"]
## TopDownSet object (4.42 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 304
## Theoretical fragment types (1): c
## Theoretical mass range: [74.05;16883.97]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 5882
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 304x5882 (7.69% != 0)
## Number of matched fragments: 137461
## Intensity range: [87.61;1203763.75]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:46] Subsetted 368296 fragments [1216;5882] to 137461 fragments [304;5882].
# select just the 100. "c" fragment
myoglobin["c100"]
## TopDownSet object (2.80 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1
## Theoretical fragment types (1): c
## Theoretical mass range: [11085.96;11085.96]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 5882
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1x5882 (0.09% != 0)
## Number of matched fragments: 5
## Intensity range: [1276.91;17056.12]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:47] Subsetted 368296 fragments [1216;5882] to 5 fragments [1;5882].
# select all "a" and "b" fragments but just the first 100 "c"
myoglobin[c("a", "b", paste0("c", 1:100))]
## TopDownSet object (4.50 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 404
## Theoretical fragment types (3): a, b, c
## Theoretical mass range: [30.03;16866.94]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 5882
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 404x5882 (6.04% != 0)
## Number of matched fragments: 143582
## Intensity range: [87.61;1630533.12]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:47] Subsetted 368296 fragments [1216;5882] to 143582 fragments [404;5882].
# select condition/run 1 to 10
myoglobin[, 1:10]
## TopDownSet object (0.26 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 3
## Number of scans: 10
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x10 (8.38% != 0)
## Number of matched fragments: 1019
## Intensity range: [7872.05;1036892.19]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:47] Subsetted 368296 fragments [1216;5882] to 1019 fragments [1216;10].
# select all conditions from one file
myoglobin[, myoglobin$File == "myo_1211_ETDReagentTarget_1e+06_1"]
## TopDownSet object (0.24 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:47] Subsetted 368296 fragments [1216;5882] to 0 fragments [1216;0].
# select all "c" fragments from a single file
myoglobin["c", myoglobin$File == "myo_1211_ETDReagentTarget_1e+06_1"]
## TopDownSet object (0.11 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 304
## Theoretical fragment types (1): c
## Theoretical mass range: [74.05;16883.97]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:47] Subsetted 368296 fragments [1216;5882] to 0 fragments [304;0].
TopDownSet
Each condition represents one spectrum. We could plot a single condition
interactively or all spectra into a pdf
file
(or any other R device that supports multiple pages/plots).
# plot a single condition
plot(myoglobin[, "C0707.30_1.0e+05_1.0e+06_10.00_00_28_3"])
## [[1]]
## # example to plot the first ten conditions into a pdf
## # (not evaluated in the vignette)
## pdf("topdown-conditions.pdf", paper="a4r", width=12)
## plot(myoglobin[, 1:10])
## dev.off()
plot
returns a list
(an item per condition) of ggplot
objects which could
further modified or investigated interactively by calling plotly::ggplotly()
.
We follow the following workflow:
We use the example data loaded in Importing Files.
The data contains several replicates for each fragmentation condition. Before aggregation can be performed we need to remove scans with inadequate injection times and fragments with low intensity or poor intensity reproducibility.
Injection times should be consistent for a particular m/z and particular
AGC target. High or low injection times indicate problems with on-the-flight
AGC calculation or spray instability for a particular scan. Hence the
topdownr
automatically calculates median injection time for a given m/z
and AGC target combination. The user can choose to remove all scans that
deviate more than a certain amount from the corresponding median and/or
choose to keep N
scans with the lowest deviation from the median for
every condition.
Here we show an example of such filtering and the effect on the distribution of injection times.
injTimeBefore <- colData(myoglobin)
injTimeBefore$Status <- "before filtering"
## filtering on max deviation and just keep the
## 2 technical replicates per condition with the
## lowest deviation
myoglobin <- filterInjectionTime(
myoglobin,
maxDeviation = log2(3),
keepTopN = 2
)
myoglobin
## TopDownSet object (5.05 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 3696
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x3696 (5.63% != 0)
## Number of matched fragments: 252897
## Intensity range: [109.29;8493567.00]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:49] Subsetted 368296 fragments [1216;5882] to 252897 fragments [1216;3696].
## [2019-05-02 22:46:49] 2186 scans filtered with injection time deviation >= 1.58496250072116 or rank >= 3; 252897 fragments [1216;3696].
injTimeAfter <- colData(myoglobin)
injTimeAfter$Status <- "after filtering"
injTime <- as.data.frame(rbind(injTimeBefore, injTimeAfter))
## use ggplot for visualisation
library("ggplot2")
ggplot(injTime,
aes(x = as.factor(AgcTarget),
y = IonInjectionTimeMs,
group = AgcTarget)) +
geom_boxplot() +
facet_grid(Status ~ Mz)
High CV of intensity for a fragment suggests either fragment contamination by another m/z species or problems with deisotoping and we recommend removing all fragments with CV > 30, as shown below.
myoglobin <- filterCv(myoglobin, threshold=30)
myoglobin
## TopDownSet object (4.62 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 3696
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x3696 (4.80% != 0)
## Number of matched fragments: 215569
## Intensity range: [109.29;8493567.00]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:49] Subsetted 368296 fragments [1216;5882] to 252897 fragments [1216;3696].
## [2019-05-02 22:46:49] 2186 scans filtered with injection time deviation >= 1.58496250072116 or rank >= 3; 252897 fragments [1216;3696].
## [2019-05-02 22:46:51] 37328 fragments with CV > 30% filtered; 215569 fragments [1216;3696].
When optimizing protein fragmentation we also want to focus on the most intense fragments, hence we recommend removing all low intensity fragments from analysis.
Low intensity is defined relatively to the most intense observation for
this fragment (i.e. relatively to the maximum value in an assayData
row).
In the example below all intensity values, which have less than 10%
intensity of the highest intensity to their corresponding fragment
(in their corresponding row) are removed.
myoglobin <- filterIntensity(myoglobin, threshold=0.1)
myoglobin
## TopDownSet object (3.76 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 3696
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x3696 (3.13% != 0)
## Number of matched fragments: 140483
## Intensity range: [219.52;8493567.00]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:49] Subsetted 368296 fragments [1216;5882] to 252897 fragments [1216;3696].
## [2019-05-02 22:46:49] 2186 scans filtered with injection time deviation >= 1.58496250072116 or rank >= 3; 252897 fragments [1216;3696].
## [2019-05-02 22:46:51] 37328 fragments with CV > 30% filtered; 215569 fragments [1216;3696].
## [2019-05-02 22:46:51] 75086 intensity values < 0.1 (relative) filtered; 140483 fragments [1216;3696].
The next step of analysis is aggregating technical replicates of fragmentation
conditions (columns of assayData
).
myoglobin <- aggregate(myoglobin)
myoglobin
## TopDownSet object (2.22 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## Mass : 16922.95
## Modifications (1): Met-loss
## - - - Fragment data - - -
## Number of theoretical fragments: 1216
## Theoretical fragment types (6): a, b, c, x, y, z
## Theoretical mass range: [30.03;16910.93]
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 1852
## Condition variables (64): File, Scan, ..., Sample, MedianIonInjectionTimeMs
## - - - Intensity data - - -
## Size of array: 1216x1852 (3.96% != 0)
## Number of matched fragments: 89230
## Intensity range: [219.52;8492743.50]
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:49] Subsetted 368296 fragments [1216;5882] to 252897 fragments [1216;3696].
## [2019-05-02 22:46:49] 2186 scans filtered with injection time deviation >= 1.58496250072116 or rank >= 3; 252897 fragments [1216;3696].
## [2019-05-02 22:46:51] 37328 fragments with CV > 30% filtered; 215569 fragments [1216;3696].
## [2019-05-02 22:46:51] 75086 intensity values < 0.1 (relative) filtered; 140483 fragments [1216;3696].
## [2019-05-02 22:46:52] Aggregated 140483 fragments [1216;3696] to 89230 fragments [1216;1852].
To examine which of the features (fragmentation parameters) have the highest
overall impact for a protein we perform random forest machine learning using the
ranger
(Wright and Ziegler 2017) R
-package.
Before we compute some fragmentation statistics (number of assigned fragments, total assigned intensity, etc.).
library("ranger")
## statistics
head(summary(myoglobin))
## Fragments Total Min Q1 Median Mean Q3 Max
## 1 114 20287547 15477.93 50676.35 117379.4 16683.84 284206.6 889160.9
## 2 112 20647046 9950.82 52033.36 130829.6 16979.48 280873.9 880548.7
## 3 107 21156793 7872.05 51000.28 137816.3 17398.68 299479.5 945866.1
## 4 112 20148236 13521.25 50698.44 118552.1 16569.27 280191.6 874603.0
## 5 113 19598593 11322.55 53494.00 113005.6 16117.26 272462.7 882041.0
## 6 110 19913901 15506.45 65573.98 119684.7 16376.56 265715.7 950459.8
## number of fragments
nFragments <- summary(myoglobin)$Fragments
## features of interest
foi <- c(
"AgcTarget",
"EtdReagentTarget",
"EtdActivation",
"CidActivation",
"HcdActivation",
"Charge"
)
rfTable <- as.data.frame(colData(myoglobin)[foi])
## set NA to zero
rfTable[is.na(rfTable)] <- 0
rfTable <- as.data.frame(cbind(
scale(rfTable),
Fragments = nFragments
))
featureImportance <- ranger(
Fragments ~ .,
data = rfTable,
importance = "impurity"
)$variable.importance
barplot(
featureImportance/sum(featureImportance),
cex.names = 0.7
)
The two parameters having the lowest overall impact in the myoglobin
dataset across all conditions are ETD reagent target (EtdReagentTarget
),
CID activation energy (CidActivation
) and AGC target (AgcTarget
),
while ETD reaction energy (EtdActivation
) and HCD activation energy
(HcdActivation
) demonstrate the highest overall impact.
The purpose of topdownr
is to investigate how maximum coverage with high
intensity fragments can be achieved with minimal instrument time.
Therefore topdownr
reports the best combination of fragmentation conditions
(with user specified number of conditions) that covers the highest number of
different bonds.
Different fragmentation methods predominantly generate different types of fragments (e.g. b and y for HCD and CID, c and z for ETD, a and x for UVPD).
However N-terminal (a, b and c) as well as C-terminal (x, y and z) fragments originating from the same bond, cover the same number of amino acid sidechains. Hence different types of N-terminal (a, b and c) or C-terminal (x, y and z) fragments from the same bond add no extra sequence information.
Before we compute combinations all the fragments are converted to either N- or C-terminal, as shown in the image below.
In topdownr
we convert the TopDownSet
into an NCBSet
object
(N-terminal/C-terminal/Bidirectional).
myoglobinNcb <- as(myoglobin, "NCBSet")
myoglobinNcb
## NCBSet object (2.04 Mb)
## - - - Protein data - - -
## Amino acid sequence (153): GLSDGEWQQVLNVWGKVEADIAGH...AMTKALELFRNDIAAKYKELGFQG
## - - - Fragment data - - -
## Number of N-terminal fragments: 30592
## Number of C-terminal fragments: 29456
## Number of N- and C-terminal fragments: 9506
## - - - Condition data - - -
## Number of conditions: 1852
## Number of scans: 1852
## Condition variables (65): File, Scan, ..., MedianIonInjectionTimeMs, AssignedIntensity
## - - - Assay data - - -
## Size of array: 152x1852 (24.71% != 0)
## - - - Processing information - - -
## [2019-05-02 22:46:46] 368296 fragments [1216;5882] matched (tolerance: 5 ppm, strategies ion/fragment: remove/remove).
## [2019-05-02 22:46:46] Condition names updated based on: Mz, AgcTarget, EtdReagentTarget, EtdActivation, CidActivation, HcdActivation. Order of conditions changed. 1852 conditions.
## [2019-05-02 22:46:46] Recalculate median injection time based on: Mz, AgcTarget.
## [2019-05-02 22:46:49] Subsetted 368296 fragments [1216;5882] to 252897 fragments [1216;3696].
## [2019-05-02 22:46:49] 2186 scans filtered with injection time deviation >= 1.58496250072116 or rank >= 3; 252897 fragments [1216;3696].
## [2019-05-02 22:46:51] 37328 fragments with CV > 30% filtered; 215569 fragments [1216;3696].
## [2019-05-02 22:46:51] 75086 intensity values < 0.1 (relative) filtered; 140483 fragments [1216;3696].
## [2019-05-02 22:46:52] Aggregated 140483 fragments [1216;3696] to 89230 fragments [1216;1852].
## [2019-05-02 22:46:53] Coerced TopDownSet into an NCBSet object; 69554 fragments [152;1852].
An NCBSet
is very similar to a TopDownSet
but instead of an FragmentViews
the rowViews
are an XStringViews
for the former. Another difference is that
the NCBSet
has one row per bond instead one row per fragment. Also the
assayData
contains no intensity information but a 1
for an N-terminal, a
2
for a C-terminal and a 3
for bidirectional fragments.
The NCBSet
can be used to select the combination of conditions that provide
the best fragment coverage. While computing coverage topdownr
awards 1 point
for every fragment going from every bond in either N or C directions.
This means that bonds covered in both directions increase the score of a
condition by 2 points.
For the myoglobin fragmentation example we get the following table for the best
three conditions:
bestConditions(myoglobinNcb, n=3)
## Index FragmentsAddedToCombination
## C0893.10_1.0e+06_1.0e+06_05.00_14_00_1 1049 143
## C1211.70_1.0e+05_0.0e+00_00.00_28_00_05 1431 62
## C0707.30_5.0e+05_5.0e+06_02.50_07_00_1 275 28
## BondsAddedToCombination
## C0893.10_1.0e+06_1.0e+06_05.00_14_00_1 98
## C1211.70_1.0e+05_0.0e+00_00.00_28_00_05 36
## C0707.30_5.0e+05_5.0e+06_02.50_07_00_1 10
## FragmentsInCondition
## C0893.10_1.0e+06_1.0e+06_05.00_14_00_1 143
## C1211.70_1.0e+05_0.0e+00_00.00_28_00_05 108
## C0707.30_5.0e+05_5.0e+06_02.50_07_00_1 132
## BondsInCondition FragmentCoverage
## C0893.10_1.0e+06_1.0e+06_05.00_14_00_1 98 0.4703947
## C1211.70_1.0e+05_0.0e+00_00.00_28_00_05 82 0.6743421
## C0707.30_5.0e+05_5.0e+06_02.50_07_00_1 97 0.7664474
## BondCoverage
## C0893.10_1.0e+06_1.0e+06_05.00_14_00_1 0.6447368
## C1211.70_1.0e+05_0.0e+00_00.00_28_00_05 0.8815789
## C0707.30_5.0e+05_5.0e+06_02.50_07_00_1 0.9473684
Fragmentation maps allow visualising the type of fragments produced by
fragmentation conditions and their overall distribution along the protein
backbone. It also illustrates how the combination of conditions results in
a cumulative increase in fragment coverage.
Shown below is a fragmentation map for myoglobin m/z 707.3, AGC target 1e6
and ETD reagent target of 1e7
for ETD
(plotting more conditions is not practical for the vignette):
sel <-
myoglobinNcb$Mz == 707.3 &
myoglobinNcb$AgcTarget == 1e6 &
(myoglobinNcb$EtdReagentTarget == 1e7 &
!is.na(myoglobinNcb$EtdReagentTarget))
myoglobinNcbSub <- myoglobinNcb[, sel]
fragmentationMap(
myoglobinNcbSub,
nCombinations = 10,
labels = seq_len(ncol(myoglobinNcbSub))
)
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ggplot2_3.1.1 ranger_0.11.2 topdownrdata_1.5.0
## [4] topdownr_1.6.0 Biostrings_2.52.0 XVector_0.24.0
## [7] IRanges_2.18.0 S4Vectors_0.22.0 ProtGenerics_1.16.0
## [10] BiocGenerics_0.30.0 BiocStyle_2.12.0
##
## loaded via a namespace (and not attached):
## [1] tidyselect_0.2.5 xfun_0.6 reshape2_1.4.3
## [4] purrr_0.3.2 lattice_0.20-38 colorspace_1.4-1
## [7] htmltools_0.3.6 yaml_2.2.0 vsn_3.52.0
## [10] XML_3.98-1.19 rlang_0.3.4 pillar_1.3.1
## [13] withr_2.1.2 glue_1.3.1 MSnbase_2.10.0
## [16] mzR_2.18.0 BiocParallel_1.18.0 affy_1.62.0
## [19] affyio_1.54.0 foreach_1.4.4 plyr_1.8.4
## [22] mzID_1.22.0 stringr_1.4.0 zlibbioc_1.30.0
## [25] munsell_0.5.0 pcaMethods_1.76.0 gtable_0.3.0
## [28] codetools_0.2-16 evaluate_0.13 labeling_0.3
## [31] Biobase_2.44.0 knitr_1.22 doParallel_1.0.14
## [34] highr_0.8 preprocessCore_1.46.0 Rcpp_1.0.1
## [37] scales_1.0.0 BiocManager_1.30.4 limma_3.40.0
## [40] impute_1.58.0 digest_0.6.18 stringi_1.4.3
## [43] bookdown_0.9 dplyr_0.8.0.1 ncdf4_1.16.1
## [46] grid_3.6.0 tools_3.6.0 magrittr_1.5
## [49] lazyeval_0.2.2 tibble_2.1.1 crayon_1.3.4
## [52] pkgconfig_2.0.2 Matrix_1.2-17 MASS_7.3-51.4
## [55] assertthat_0.2.1 rmarkdown_1.12 iterators_1.0.10
## [58] R6_2.4.0 MALDIquant_1.19.2 compiler_3.6.0
Morgan, Martin, Valerie Obenchain, Jim Hester, and Hervé Pagès. 2017. SummarizedExperiment: SummarizedExperiment Container.
Wright, Marvin N., and Andreas Ziegler. 2017. “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.” Journal of Statistical Software 77 (1):1–17. https://doi.org/10.18637/jss.v077.i01.